Cosplay/nhf/parts/joints.py

430 lines
14 KiB
Python
Raw Normal View History

from dataclasses import dataclass, field
2024-07-10 10:52:48 -07:00
from typing import Optional
2024-06-19 15:54:09 -07:00
import math
2024-06-26 12:57:22 -07:00
import cadquery as Cq
from nhf.parts.springs import TorsionSpring
2024-06-28 14:21:30 -07:00
from nhf import Role
import nhf.utils
TOL = 1e-6
2024-06-28 14:21:30 -07:00
2024-07-03 18:45:16 -07:00
@dataclass
class HirthJoint:
"""
A Hirth joint attached to a cylindrical base
2024-06-19 15:54:09 -07:00
"""
2024-06-30 14:28:42 -07:00
# r
radius: float = 60
2024-06-30 14:28:42 -07:00
# r_i
radius_inner: float = 40
base_height: float = 20
n_tooth: float = 16
2024-06-30 14:28:42 -07:00
# h_o
tooth_height: float = 16
2024-06-28 14:21:30 -07:00
def __post_init__(self):
# Ensures tangent doesn't blow up
assert self.n_tooth >= 5
assert self.radius > self.radius_inner
2024-06-19 15:54:09 -07:00
@property
def tooth_angle(self):
2024-06-30 14:28:42 -07:00
return 360 / self.n_tooth
2024-06-19 15:54:09 -07:00
@property
def total_height(self):
return self.base_height + self.tooth_height
@property
def joint_height(self):
return 2 * self.base_height + self.tooth_height
def generate(self, is_mated=False, tol=0.01):
"""
is_mated: If set to true, rotate the teeth so they line up at 0 degrees.
2024-06-30 14:28:42 -07:00
FIXME: Mate is not exact when number of tooth is low
"""
2024-06-30 14:28:42 -07:00
phi = math.radians(self.tooth_angle)
alpha = 2 * math.atan(self.radius / self.tooth_height * math.tan(phi/2))
#alpha = math.atan(self.radius * math.radians(180 / self.n_tooth) / self.tooth_height)
gamma = math.radians(90 / self.n_tooth)
# Tooth half height
l = self.radius * math.cos(gamma)
a = self.radius * math.sin(gamma)
t = a / math.tan(alpha / 2)
beta = math.asin(t / l)
dx = self.tooth_height * math.tan(alpha / 2)
profile = (
Cq.Workplane('YZ')
2024-06-30 14:28:42 -07:00
.polyline([
(0, 0),
(dx, self.tooth_height),
(-dx, self.tooth_height),
])
.close()
2024-06-30 14:28:42 -07:00
.extrude(-self.radius)
.val()
2024-06-30 14:28:42 -07:00
.rotate((0, 0, 0), (0, 1, 0), math.degrees(beta))
.moved(Cq.Location((0, 0, self.base_height)))
)
2024-06-30 14:28:42 -07:00
core = Cq.Solid.makeCylinder(
radius=self.radius_inner,
height=self.tooth_height,
pnt=(0, 0, self.base_height),
)
2024-06-30 14:28:42 -07:00
angle_offset = self.tooth_angle / 2 if is_mated else 0
result = (
Cq.Workplane('XY')
.cylinder(
radius=self.radius,
2024-06-30 14:28:42 -07:00
height=self.base_height + self.tooth_height,
centered=(True, True, False))
2024-06-30 14:28:42 -07:00
.faces(">Z")
.tag("bore")
2024-06-30 14:28:42 -07:00
.cut(core)
.polarArray(
radius=self.radius,
startAngle=angle_offset,
angle=360,
count=self.n_tooth)
.cutEach(
lambda loc: profile.moved(loc),
)
)
(
2024-06-30 14:28:42 -07:00
result
.polyline([
(0, 0, self.base_height),
(0, 0, self.base_height + self.tooth_height)
], forConstruction=True)
.tag("mate")
)
(
2024-06-30 14:28:42 -07:00
result
.polyline([(0, 0, 0), (1, 0, 0)], forConstruction=True)
2024-07-16 12:03:51 -07:00
.tag("dirX")
)
(
result
.polyline([(0, 0, 0), (0, 1, 0)], forConstruction=True)
.tag("dirY")
)
2024-06-30 14:28:42 -07:00
return result
def add_constraints(self,
assembly: Cq.Assembly,
parent: str,
child: str,
2024-07-16 12:03:51 -07:00
offset: int = 0):
angle = offset * self.tooth_angle
(
assembly
.constrain(f"{parent}?mate", f"{child}?mate", "Plane")
2024-07-16 12:03:51 -07:00
.constrain(f"{parent}?dirX", f"{child}?dirX",
"Axis", param=angle)
.constrain(f"{parent}?dirY", f"{child}?dirX",
"Axis", param=90 - angle)
)
def assembly(self, offset: int = 1):
"""
Generate an example assembly
"""
tab = (
Cq.Workplane('XY')
.box(100, 10, 2, centered=False)
)
obj1 = (
self.generate()
.faces(tag="bore")
.cboreHole(
diameter=10,
cboreDiameter=20,
cboreDepth=3)
.union(tab)
)
obj2 = (
self.generate(is_mated=True)
.union(tab)
)
result = (
Cq.Assembly()
.addS(obj1, name="obj1", role=Role.PARENT)
.addS(obj2, name="obj2", role=Role.CHILD)
)
2024-07-16 12:03:51 -07:00
self.add_constraints(
result,
parent="obj1",
child="obj2",
offset=offset)
return result.solve()
2024-06-19 15:54:09 -07:00
2024-07-02 19:59:09 -07:00
@dataclass
2024-06-26 12:57:22 -07:00
class TorsionJoint:
"""
This jonit consists of a rider puck on a track puck. IT is best suited if
the radius has to be small and vertical space is abundant.
The rider part consists of:
1. A cylinderical base
2. A annular extrusion with the same radius as the base, but with slots
carved in
3. An annular rider
The track part consists of:
1. A cylindrical base
2. A slotted annular extrusion where the slot allows the spring to rest
3. An outer and an inner annuli which forms a track the rider can move on
2024-06-26 12:57:22 -07:00
"""
spring: TorsionSpring = field(default_factory=lambda: TorsionSpring(
radius=10.0,
thickness=2.0,
height=15.0,
tail_length=35.0,
right_handed=False,
))
2024-06-26 12:57:22 -07:00
# Radius limit for rotating components
radius_track: float = 40
radius_rider: float = 38
track_disk_height: float = 10
rider_disk_height: float = 8
2024-06-26 12:57:22 -07:00
2024-07-03 18:45:16 -07:00
radius_axle: float = 6
2024-06-26 12:57:22 -07:00
# If true, cover the spring hole. May make it difficult to insert the spring
# considering the stiffness of torsion spring steel.
spring_hole_cover_track: bool = False
spring_hole_cover_rider: bool = False
2024-06-26 12:57:22 -07:00
2024-07-03 18:45:16 -07:00
groove_radius_outer: float = 35
groove_radius_inner: float = 20
# Gap on inner groove to ease movement
groove_inner_gap: float = 0.2
2024-07-03 18:45:16 -07:00
groove_depth: float = 5
rider_gap: float = 1
rider_n_slots: float = 4
# Degrees of the first and last rider slots
rider_slot_begin: float = 0
rider_slot_span: float = 90
2024-06-26 12:57:22 -07:00
2024-06-26 12:57:22 -07:00
def __post_init__(self):
assert self.radius_track > self.groove_radius_outer
assert self.radius_rider > self.groove_radius_outer > self.groove_radius_inner + self.groove_inner_gap
assert self.groove_radius_inner > self.spring.radius > self.radius_axle
assert self.spring.height > self.groove_depth, "Groove is too deep"
assert self.groove_depth < self.spring.height - self.spring.thickness * 2
if self.rider_n_slots == 1:
assert self.rider_slot_span == 0.0, "Non-zero span is impossible with multiple riders"
2024-06-26 12:57:22 -07:00
@property
def total_height(self):
"""
Total height counting from bottom to top
"""
return self.track_disk_height + self.rider_disk_height + self.spring.height
2024-06-26 12:57:22 -07:00
@property
def radius(self):
"""
Maximum radius of this joint
"""
return max(self.radius_rider, self.radius_track)
2024-06-26 12:57:22 -07:00
def _slot_polygon(self, flip: bool=False):
r1 = self.spring.radius_inner
r2 = self.spring.radius
flip = flip != self.spring.right_handed
2024-06-26 12:57:22 -07:00
if flip:
r1 = -r1
r2 = -r2
return [
(0, r2),
(self.spring.tail_length, r2),
(self.spring.tail_length, r1),
2024-06-26 12:57:22 -07:00
(0, r1),
]
def _directrix(self, height, theta=0):
c, s = math.cos(theta), math.sin(theta)
r2 = self.spring.radius
l = self.spring.tail_length
if self.spring.right_handed:
2024-06-26 12:57:22 -07:00
r2 = -r2
2024-07-07 09:44:54 -07:00
# This is (0, r2) and (l, r2) transformed by right handed rotation
# matrix `[[c, -s], [s, c]]`
return [
2024-07-07 09:44:54 -07:00
(-s * r2, c * r2, height),
(c * l - s * r2, s * l + c * r2, height),
2024-06-26 12:57:22 -07:00
]
def track(self):
2024-07-07 21:01:40 -07:00
# TODO: Cover outer part of track only. Can we do this?
2024-06-26 12:57:22 -07:00
groove_profile = (
Cq.Sketch()
.circle(self.radius_track)
2024-06-26 12:57:22 -07:00
.circle(self.groove_radius_outer, mode='s')
.circle(self.groove_radius_inner, mode='a')
.circle(self.spring.radius, mode='s')
2024-06-26 12:57:22 -07:00
)
spring_hole_profile = (
Cq.Sketch()
.circle(self.radius_track)
.circle(self.spring.radius, mode='s')
2024-06-26 12:57:22 -07:00
)
slot_height = self.spring.thickness
if not self.spring_hole_cover_track:
slot_height += self.groove_depth
slot = (
Cq.Workplane('XY')
.sketch()
.polygon(self._slot_polygon(flip=False))
.finalize()
.extrude(slot_height)
.val()
)
2024-06-26 12:57:22 -07:00
result = (
Cq.Workplane('XY')
.cylinder(
radius=self.radius_track,
height=self.track_disk_height,
centered=(True, True, False))
2024-06-26 12:57:22 -07:00
.faces('>Z')
.tag("spring")
.placeSketch(spring_hole_profile)
.extrude(self.spring.thickness)
2024-06-26 12:57:22 -07:00
# If the spring hole profile is not simply connected, this workplane
# will have to be created from the `spring-mate` face.
.faces('>Z')
.placeSketch(groove_profile)
.extrude(self.groove_depth)
.faces('>Z')
.hole(self.radius_axle * 2)
.cut(slot.moved(Cq.Location((0, 0, self.track_disk_height))))
2024-06-26 12:57:22 -07:00
)
# Insert directrix
result.polyline(self._directrix(self.track_disk_height),
forConstruction=True).tag("dir")
2024-06-26 12:57:22 -07:00
return result
def rider(self, rider_slot_begin=None, reverse_directrix_label=False):
2024-07-07 12:15:47 -07:00
if not rider_slot_begin:
rider_slot_begin = self.rider_slot_begin
2024-06-26 12:57:22 -07:00
def slot(loc):
wire = Cq.Wire.makePolygon(self._slot_polygon(flip=False))
face = Cq.Face.makeFromWires(wire)
return face.located(loc)
wall_profile = (
Cq.Sketch()
.circle(self.radius_rider, mode='a')
.circle(self.spring.radius, mode='s')
2024-06-26 12:57:22 -07:00
.parray(
r=0,
a1=rider_slot_begin,
da=self.rider_slot_span,
n=self.rider_n_slots)
2024-06-26 12:57:22 -07:00
.each(slot, mode='s')
#.circle(self._radius_wall, mode='a')
)
contact_profile = (
Cq.Sketch()
.circle(self.groove_radius_outer, mode='a')
.circle(self.groove_radius_inner + self.groove_inner_gap, mode='s')
2024-06-26 12:57:22 -07:00
)
if not self.spring_hole_cover_rider:
contact_profile = (
contact_profile
.parray(
r=0,
a1=rider_slot_begin,
da=self.rider_slot_span,
n=self.rider_n_slots)
.each(slot, mode='s')
.reset()
)
#.circle(self._radius_wall, mode='a')
middle_height = self.spring.height - self.groove_depth - self.rider_gap - self.spring.thickness
2024-06-26 12:57:22 -07:00
result = (
Cq.Workplane('XY')
.cylinder(
radius=self.radius_rider,
height=self.rider_disk_height,
centered=(True, True, False))
2024-06-26 12:57:22 -07:00
.faces('>Z')
.tag("spring")
.workplane()
2024-06-26 12:57:22 -07:00
.placeSketch(wall_profile)
.extrude(middle_height)
.faces(tag="spring")
.workplane()
2024-06-26 12:57:22 -07:00
# The top face might not be in one piece.
.workplane(offset=middle_height)
.placeSketch(contact_profile)
.extrude(self.groove_depth + self.rider_gap)
.faces(tag="spring")
.workplane()
.circle(self.spring.radius_inner)
.extrude(self.spring.height)
.faces("<Z")
.workplane()
.hole(self.radius_axle * 2)
2024-06-26 12:57:22 -07:00
)
2024-07-10 10:52:48 -07:00
theta_begin = -math.radians(rider_slot_begin)
theta_span = math.radians(self.rider_slot_span)
if self.rider_n_slots <= 1:
theta_step = 0
elif abs(math.remainder(self.rider_slot_span, 360)) < TOL:
theta_step = theta_span / self.rider_n_slots
else:
theta_step = theta_span / (self.rider_n_slots - 1)
for i in range(self.rider_n_slots):
2024-07-10 10:52:48 -07:00
theta = theta_begin - i * theta_step
j = self.rider_n_slots - i - 1 if reverse_directrix_label else i
result.polyline(self._directrix(self.rider_disk_height, theta),
forConstruction=True).tag(f"dir{j}")
2024-06-26 12:57:22 -07:00
return result
def rider_track_assembly(self, directrix: int = 0, deflection: float = 0):
2024-06-26 12:57:22 -07:00
rider = self.rider()
track = self.track()
spring = self.spring.generate(deflection=deflection)
2024-06-26 12:57:22 -07:00
result = (
Cq.Assembly()
.addS(spring, name="spring", role=Role.DAMPING)
.addS(track, name="track", role=Role.PARENT)
.addS(rider, name="rider", role=Role.CHILD)
)
2024-07-10 10:52:48 -07:00
TorsionJoint.add_constraints(
result,
rider="rider", track="track", spring="spring",
directrix=directrix)
return result.solve()
@staticmethod
def add_constraints(assembly: Cq.Assembly,
2024-07-10 10:52:48 -07:00
spring: str,
rider: Optional[str] = None,
track: Optional[str] = None,
directrix: int = 0):
"""
Add the necessary constraints to a RT assembly
"""
2024-07-10 10:52:48 -07:00
if track:
(
assembly
.constrain(f"{track}?spring", f"{spring}?top", "Plane")
.constrain(f"{track}?dir", f"{spring}?dir_top",
"Axis", param=0)
)
if rider:
(
assembly
.constrain(f"{rider}?spring", f"{spring}?bot", "Plane")
.constrain(f"{rider}?dir{directrix}", f"{spring}?dir_bot",
"Axis", param=0)
)