feat: Splined wing profile

This commit is contained in:
Leni Aniva 2024-07-11 16:02:54 -07:00
parent 2aeeaae061
commit d43c1944a7
Signed by: aniva
GPG Key ID: 4D9B1C8D10EA4C50
3 changed files with 156 additions and 32 deletions

View File

@ -548,7 +548,7 @@ class Parameters(Model):
@target(name="wing/r1s1", kind=TargetKind.DXF)
def wing_r1s1_profile(self) -> Cq.Sketch:
return self.wing_profile.wing_r1_profile()
return self.wing_profile.profile()
def wing_r1s1_panel(self, front=True) -> Cq.Workplane:
profile = self.wing_r1s1_profile()

View File

@ -3,7 +3,9 @@ This file describes the shapes of the wing shells. The joints are defined in
`__init__.py`.
"""
import math
from enum import Enum
from dataclasses import dataclass
from typing import Mapping, Tuple
import cadquery as Cq
from nhf import Material, Role
from nhf.parts.joints import HirthJoint
@ -235,19 +237,19 @@ class WingProfile:
shoulder_height: float = 100
elbow_height: float = 120
elbow_x: float = 270
elbow_y: float = 10
# Angle of elbow w.r.t. y axis
elbow_angle: float = -20
elbow_height: float = 100
elbow_x: float = 240
elbow_y: float = 30
# Tilt of elbow w.r.t. shoulder
elbow_angle: float = 20
wrist_height: float = 70
# Bottom point of the wrist
wrist_x: float = 400
wrist_y: float = 200
# Angle of wrist w.r.t. y axis. should be negative
wrist_angle: float = -40
# Tile of wrist w.r.t. shoulder
wrist_angle: float = 40
# Extends from the wrist to the tip of the arrow
arrow_height: float = 300
@ -261,21 +263,45 @@ class WingProfile:
def __post_init__(self):
assert self.ring_radius > self.ring_radius_inner
self.elbow_theta = math.radians(self.elbow_angle)
self.elbow_c = math.cos(self.elbow_theta)
self.elbow_s = math.sin(self.elbow_theta)
self.elbow_top_x, self.elbow_top_y = self.elbow_to_abs(0, self.elbow_height)
self.wrist_theta = math.radians(self.wrist_angle)
self.wrist_c = math.cos(self.wrist_theta)
self.wrist_s = math.sin(self.wrist_theta)
self.wrist_top_x, self.wrist_top_y = self.wrist_to_abs(0, self.wrist_height)
self.arrow_theta = math.radians(self.arrow_angle)
self.arrow_x, self.arrow_y = self.wrist_to_abs(0, -self.arrow_height)
self.arrow_tip_x = self.arrow_x + (self.arrow_height + self.wrist_height) \
* math.sin(self.arrow_theta - self.wrist_theta)
self.arrow_tip_y = self.arrow_y + (self.arrow_height + self.wrist_height) \
* math.cos(self.arrow_theta - self.wrist_theta)
# [[c, s], [-s, c]] * [ring_x, ring_y]
self.ring_abs_x = self.wrist_top_x + self.wrist_c * self.ring_x - self.wrist_s * self.ring_y
self.ring_abs_y = self.wrist_top_y + self.wrist_s * self.ring_x + self.wrist_c * self.ring_y
@property
def ring_radius(self) -> float:
dx = self.ring_x
dy = self.ring_y
return (dx * dx + dy * dy) ** 0.5
def wing_r1_profile(self) -> Cq.Sketch:
wrist_theta = math.radians(self.wrist_angle)
wrist_s = math.sin(wrist_theta)
wrist_c = math.cos(wrist_theta)
wrist_top_x = self.wrist_x + self.wrist_height * wrist_s
wrist_top_y = self.wrist_y + self.wrist_height * wrist_c
elbow_theta = math.radians(self.elbow_angle)
elbow_top_x = self.elbow_x + self.elbow_height * math.sin(elbow_theta)
elbow_top_y = self.elbow_y + self.elbow_height * math.cos(elbow_theta)
def elbow_to_abs(self, x: float, y: float) -> Tuple[float, float]:
elbow_x = self.elbow_x + x * self.elbow_c - y * self.elbow_s
elbow_y = self.elbow_y + x * self.elbow_s + y * self.elbow_c
print(f"c={self.elbow_c}, s={self.elbow_s}, x={elbow_x}, y={elbow_y}")
return elbow_x, elbow_y
def wrist_to_abs(self, x: float, y: float) -> Tuple[float, float]:
wrist_x = self.wrist_x + x * self.wrist_c - y * self.wrist_s
wrist_y = self.wrist_y + x * self.wrist_s + y * self.wrist_c
return wrist_x, wrist_y
def profile(self) -> Cq.Sketch:
"""
Net profile of the wing starting from the wing root with no divisions
"""
result = (
Cq.Sketch()
.segment(
@ -284,8 +310,8 @@ class WingProfile:
tag="shoulder")
.arc(
(0, self.shoulder_height),
(elbow_top_x, elbow_top_y),
(wrist_top_x, wrist_top_y),
(self.elbow_top_x, self.elbow_top_y),
(self.wrist_top_x, self.wrist_top_y),
tag="s1_top")
#.segment(
# (self.wrist_x, self.wrist_y),
@ -297,39 +323,108 @@ class WingProfile:
(self.wrist_x, self.wrist_y),
tag="s1_bot")
)
arrow_theta = math.radians(self.arrow_angle)
arrow_x = self.wrist_x - self.arrow_height * wrist_s
arrow_y = self.wrist_y - self.arrow_height * wrist_c
arrow_tip_x = arrow_x + (self.arrow_height + self.wrist_height) * math.sin(arrow_theta + wrist_theta)
arrow_tip_y = arrow_y + (self.arrow_height + self.wrist_height) * math.cos(arrow_theta + wrist_theta)
result = (
result
.segment(
(self.wrist_x, self.wrist_y),
(arrow_x, arrow_y)
(self.arrow_x, self.arrow_y)
)
.segment(
(arrow_x, arrow_y),
(arrow_tip_x, arrow_tip_y)
(self.arrow_x, self.arrow_y),
(self.arrow_tip_x, self.arrow_tip_y)
)
.segment(
(arrow_tip_x, arrow_tip_y),
(wrist_top_x, wrist_top_y)
(self.arrow_tip_x, self.arrow_tip_y),
(self.wrist_top_x, self.wrist_top_y)
)
)
# Carve out the ring
result = result.assemble()
ring_x = wrist_top_x + wrist_c * self.ring_x + wrist_s * self.ring_y
ring_y = wrist_top_y - wrist_s * self.ring_x + wrist_c * self.ring_y
result = (
result
.push([(ring_x, ring_y)])
.push([(self.ring_abs_x, self.ring_abs_y)])
.circle(self.ring_radius, mode='a')
.circle(self.ring_radius_inner, mode='s')
.clean()
)
return result
def _mask_elbow(self) -> list[Tuple[float, float]]:
"""
Polygon shape to mask out parts above the elbow
"""
abscissa = 200
return [
(0, -abscissa),
(self.elbow_x, self.elbow_y),
(self.elbow_top_x, self.elbow_top_y),
(0, abscissa)
]
def _mask_wrist(self) -> list[Tuple[float, float]]:
abscissa = 200
return [
(0, -abscissa),
(self.wrist_x - self.wrist_s * abscissa,
self.wrist_y - self.wrist_c * abscissa),
(self.wrist_top_x, self.wrist_top_y),
(0, abscissa),
]
def profile_s1(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_elbow(), mode='i')
)
return profile
def surface_s1(self,
thickness:float = 25.4/16,
shoulder_mount_inset: float=20,
shoulder_joint_child_height: float=80,
elbow_mount_inset: float=20,
elbow_joint_parent_height: float=60,
front: bool=True) -> Cq.Workplane:
assert shoulder_joint_child_height < self.shoulder_height
assert elbow_joint_parent_height < self.elbow_height
h = (self.shoulder_height - shoulder_joint_child_height) / 2
tags_shoulder = [
("shoulder_bot", (shoulder_mount_inset, h), 90),
("shoulder_top", (shoulder_mount_inset, h + shoulder_joint_child_height), 270),
]
h = (self.elbow_height - elbow_joint_parent_height) / 2
tags_elbow = [
("elbow_bot",
self.elbow_to_abs(-elbow_mount_inset, h),
self.elbow_angle + 90),
("elbow_top",
self.elbow_to_abs(-elbow_mount_inset, h + elbow_joint_parent_height),
self.elbow_angle + 270),
]
profile = self.profile_s1()
tags = tags_shoulder + tags_elbow
return nhf.utils.extrude_with_markers(profile, thickness, tags, reverse=front)
def profile_s2(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_wrist(), mode='i')
.reset()
.polygon(self._mask_elbow(), mode='s')
)
return profile
def profile_s3(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_wrist(), mode='s')
)
return profile
def wing_r1s1_profile(self) -> Cq.Sketch:
"""
Generates the first wing segment profile, with the wing root pointing in

View File

@ -5,6 +5,7 @@ Adds the functions to `Cq.Workplane`:
1. `tagPoint`
2. `tagPlane`
"""
import math
import cadquery as Cq
from typing import Union, Tuple
@ -50,3 +51,31 @@ def tagPlane(self, tag: str,
self.eachpoint(edge.moved, useLocalCoordinates=True).tag(tag)
Cq.Workplane.tagPlane = tagPlane
def extrude_with_markers(sketch: Cq.Sketch,
thickness: float,
tags: list[Tuple[str, Tuple[float, float], float]],
reverse: bool = False):
"""
Extrudes a sketch and place tags on the sketch for mating.
Each tag is of the format `(name, (x, y), angle)`, where the angle is
specifies in degrees counterclockwise from +X. Two marks are generated for
each `name`, "{name}" for the location (with normal) and "{name}_dir" for
the directrix specified by the angle.
This simulates a process of laser cutting and bonding (for wood and acrylic)
"""
result = (
Cq.Workplane('XY')
.placeSketch(sketch)
.extrude(thickness)
)
plane = result.faces("<Z" if reverse else ">Z").workplane()
sign = -1 if reverse else 1
for tag, (px, py), angle in tag:
theta = sign * math.radians(angle)
direction = (math.cos(theta), math.sin(theta), 0)
plane.moveTo(px, sign * py).tagPlane(tag)
plane.moveTo(px, sign * py).tagPlane(f"{tag}_dir", direction)
return result