from dataclasses import dataclass, field from typing import Optional import math import cadquery as Cq from nhf.parts.springs import TorsionSpring from nhf import Role import nhf.utils TOL = 1e-6 @dataclass(frozen=True) class HirthJoint: """ A Hirth joint attached to a cylindrical base """ # r radius: float = 60 # r_i radius_inner: float = 40 base_height: float = 20 n_tooth: float = 16 # h_o tooth_height: float = 16 def __post_init__(self): # Ensures tangent doesn't blow up assert self.n_tooth >= 5 assert self.radius > self.radius_inner @property def tooth_angle(self): return 360 / self.n_tooth @property def total_height(self): return self.base_height + self.tooth_height @property def joint_height(self): return 2 * self.base_height + self.tooth_height def generate(self, is_mated=False, tol=0.01): """ is_mated: If set to true, rotate the teeth so they line up at 0 degrees. FIXME: Mate is not exact when number of tooth is low """ phi = math.radians(self.tooth_angle) alpha = 2 * math.atan(self.radius / self.tooth_height * math.tan(phi/2)) #alpha = math.atan(self.radius * math.radians(180 / self.n_tooth) / self.tooth_height) gamma = math.radians(90 / self.n_tooth) # Tooth half height l = self.radius * math.cos(gamma) a = self.radius * math.sin(gamma) t = a / math.tan(alpha / 2) beta = math.asin(t / l) dx = self.tooth_height * math.tan(alpha / 2) profile = ( Cq.Workplane('YZ') .polyline([ (0, 0), (dx, self.tooth_height), (-dx, self.tooth_height), ]) .close() .extrude(-self.radius) .val() .rotate((0, 0, 0), (0, 1, 0), math.degrees(beta)) .moved(Cq.Location((0, 0, self.base_height))) ) core = Cq.Solid.makeCylinder( radius=self.radius_inner, height=self.tooth_height, pnt=(0, 0, self.base_height), ) angle_offset = self.tooth_angle / 2 if is_mated else 0 result = ( Cq.Workplane('XY') .cylinder( radius=self.radius, height=self.base_height + self.tooth_height, centered=(True, True, False)) .faces(">Z") .tag("bore") .cut(core) .polarArray( radius=self.radius, startAngle=angle_offset, angle=360, count=self.n_tooth) .cutEach( lambda loc: profile.moved(loc), ) ) ( result .polyline([ (0, 0, self.base_height), (0, 0, self.base_height + self.tooth_height) ], forConstruction=True) .tag("mate") ) ( result .polyline([(0, 0, 0), (1, 0, 0)], forConstruction=True) .tag("dirX") ) ( result .polyline([(0, 0, 0), (0, 1, 0)], forConstruction=True) .tag("dirY") ) return result def add_constraints(self, assembly: Cq.Assembly, parent: str, child: str, offset: int = 0): angle = offset * self.tooth_angle ( assembly .constrain(f"{parent}?mate", f"{child}?mate", "Plane") .constrain(f"{parent}?dirX", f"{child}?dirX", "Axis", param=angle) .constrain(f"{parent}?dirY", f"{child}?dirX", "Axis", param=90 - angle) ) def assembly(self, offset: int = 1): """ Generate an example assembly """ tab = ( Cq.Workplane('XY') .box(100, 10, 2, centered=False) ) obj1 = ( self.generate() .faces(tag="bore") .cboreHole( diameter=10, cboreDiameter=20, cboreDepth=3) .union(tab) ) obj2 = ( self.generate(is_mated=True) .union(tab) ) result = ( Cq.Assembly() .addS(obj1, name="obj1", role=Role.PARENT) .addS(obj2, name="obj2", role=Role.CHILD) ) self.add_constraints( result, parent="obj1", child="obj2", offset=offset) return result.solve() @dataclass class TorsionJoint: """ This jonit consists of a rider puck on a track puck. IT is best suited if the radius has to be small and vertical space is abundant. The rider part consists of: 1. A cylinderical base 2. A annular extrusion with the same radius as the base, but with slots carved in 3. An annular rider The track part consists of: 1. A cylindrical base 2. A slotted annular extrusion where the slot allows the spring to rest 3. An outer and an inner annuli which forms a track the rider can move on """ spring: TorsionSpring = field(default_factory=lambda: TorsionSpring( mass=float('nan'), radius=10.0, thickness=2.0, height=15.0, tail_length=35.0, right_handed=False, )) # Radius limit for rotating components radius_track: float = 40 radius_rider: float = 38 track_disk_height: float = 10 rider_disk_height: float = 8 radius_axle: float = 6 # If true, cover the spring hole. May make it difficult to insert the spring # considering the stiffness of torsion spring steel. spring_hole_cover_track: bool = False spring_hole_cover_rider: bool = False groove_radius_outer: float = 35 groove_radius_inner: float = 20 # Gap on inner groove to ease movement groove_inner_gap: float = 0.2 groove_depth: float = 5 rider_gap: float = 1 rider_n_slots: float = 4 # Degrees of the first and last rider slots rider_slot_begin: float = 0 rider_slot_span: float = 90 def __post_init__(self): assert self.radius_track > self.groove_radius_outer assert self.radius_rider > self.groove_radius_outer > self.groove_radius_inner + self.groove_inner_gap assert self.groove_radius_inner > self.spring.radius > self.radius_axle assert self.spring.height > self.groove_depth, "Groove is too deep" assert self.groove_depth < self.spring.height - self.spring.thickness * 2 if self.rider_n_slots == 1: assert self.rider_slot_span == 0.0, "Non-zero span is impossible with multiple riders" @property def total_height(self): """ Total height counting from bottom to top """ return self.track_disk_height + self.rider_disk_height + self.spring.height @property def radius(self): """ Maximum radius of this joint """ return max(self.radius_rider, self.radius_track) def _slot_polygon(self, flip: bool=False): r1 = self.spring.radius_inner r2 = self.spring.radius flip = flip != self.spring.right_handed if flip: r1 = -r1 r2 = -r2 return [ (0, r2), (self.spring.tail_length, r2), (self.spring.tail_length, r1), (0, r1), ] def _directrix(self, height, theta=0): c, s = math.cos(theta), math.sin(theta) r2 = self.spring.radius l = self.spring.tail_length if self.spring.right_handed: r2 = -r2 # This is (0, r2) and (l, r2) transformed by right handed rotation # matrix `[[c, -s], [s, c]]` return [ (-s * r2, c * r2, height), (c * l - s * r2, s * l + c * r2, height), ] def track(self): # TODO: Cover outer part of track only. Can we do this? groove_profile = ( Cq.Sketch() .circle(self.radius_track) .circle(self.groove_radius_outer, mode='s') .circle(self.groove_radius_inner, mode='a') .circle(self.spring.radius, mode='s') ) spring_hole_profile = ( Cq.Sketch() .circle(self.radius_track) .circle(self.spring.radius, mode='s') ) slot_height = self.spring.thickness if not self.spring_hole_cover_track: slot_height += self.groove_depth slot = ( Cq.Workplane('XY') .sketch() .polygon(self._slot_polygon(flip=False)) .finalize() .extrude(slot_height) .val() ) result = ( Cq.Workplane('XY') .cylinder( radius=self.radius_track, height=self.track_disk_height, centered=(True, True, False)) .faces('>Z') .tag("spring") .placeSketch(spring_hole_profile) .extrude(self.spring.thickness) # If the spring hole profile is not simply connected, this workplane # will have to be created from the `spring-mate` face. .faces('>Z') .placeSketch(groove_profile) .extrude(self.groove_depth) .faces('>Z') .hole(self.radius_axle * 2) .cut(slot.moved(Cq.Location((0, 0, self.track_disk_height)))) ) result.faces("Z') .tag("spring") .workplane() .placeSketch(wall_profile) .extrude(middle_height) .faces(tag="spring") .workplane() # The top face might not be in one piece. .workplane(offset=middle_height) .placeSketch(contact_profile) .extrude(self.groove_depth + self.rider_gap) .faces(tag="spring") .workplane() .circle(self.spring.radius_inner) .extrude(self.spring.height) .faces("