from dataclasses import dataclass import math import cadquery as Cq import nhf.parts.springs as springs from nhf import Role import nhf.utils TOL = 1e-6 @dataclass class HirthJoint: """ A Hirth joint attached to a cylindrical base """ # r radius: float = 60 # r_i radius_inner: float = 40 base_height: float = 20 n_tooth: float = 16 # h_o tooth_height: float = 16 def __post_init__(self): # Ensures tangent doesn't blow up assert self.n_tooth >= 5 assert self.radius > self.radius_inner @property def tooth_angle(self): return 360 / self.n_tooth @property def total_height(self): return self.base_height + self.tooth_height def generate(self, is_mated=False, tol=0.01): """ is_mated: If set to true, rotate the teeth so they line up at 0 degrees. FIXME: Mate is not exact when number of tooth is low """ phi = math.radians(self.tooth_angle) alpha = 2 * math.atan(self.radius / self.tooth_height * math.tan(phi/2)) #alpha = math.atan(self.radius * math.radians(180 / self.n_tooth) / self.tooth_height) gamma = math.radians(90 / self.n_tooth) # Tooth half height l = self.radius * math.cos(gamma) a = self.radius * math.sin(gamma) t = a / math.tan(alpha / 2) beta = math.asin(t / l) dx = self.tooth_height * math.tan(alpha / 2) profile = ( Cq.Workplane('YZ') .polyline([ (0, 0), (dx, self.tooth_height), (-dx, self.tooth_height), ]) .close() .extrude(-self.radius) .val() .rotate((0, 0, 0), (0, 1, 0), math.degrees(beta)) .moved(Cq.Location((0, 0, self.base_height))) ) core = Cq.Solid.makeCylinder( radius=self.radius_inner, height=self.tooth_height, pnt=(0, 0, self.base_height), ) angle_offset = self.tooth_angle / 2 if is_mated else 0 result = ( Cq.Workplane('XY') .cylinder( radius=self.radius, height=self.base_height + self.tooth_height, centered=(True, True, False)) .faces(">Z") .tag("bore") .cut(core) .polarArray( radius=self.radius, startAngle=angle_offset, angle=360, count=self.n_tooth) .cutEach( lambda loc: profile.moved(loc), ) ) ( result .polyline([ (0, 0, self.base_height), (0, 0, self.base_height + self.tooth_height) ], forConstruction=True) .tag("mate") ) ( result .polyline([(0, 0, 0), (1, 0, 0)], forConstruction=True) .tag("directrix") ) return result def assembly(self, offset: int = 1): """ Generate an example assembly """ tab = ( Cq.Workplane('XY') .box(100, 10, 2, centered=False) ) obj1 = ( self.generate() .faces(tag="bore") .cboreHole( diameter=10, cboreDiameter=20, cboreDepth=3) .union(tab) ) obj2 = ( self.generate(is_mated=True) .union(tab) ) angle = offset * self.tooth_angle result = ( Cq.Assembly() .add(obj1, name="obj1", color=Role.PARENT.color) .add(obj2, name="obj2", color=Role.CHILD.color) .constrain("obj1", "Fixed") .constrain("obj1?mate", "obj2?mate", "Plane") .constrain("obj1?directrix", "obj2?directrix", "Axis", param=angle) .solve() ) return result def comma_joint(radius=30, shaft_radius=10, height=10, flange=10, flange_thickness=25, n_serration=16, serration_angle_offset=0, serration_height=5, serration_inner_radius=20, serration_theta=2 * math.pi / 48, serration_tilt=-30, right_handed=False): """ Produces a "o_" shaped joint, with serrations to accomodate a torsion spring """ assert flange_thickness <= radius flange_poly = [ (0, radius - flange_thickness), (0, radius), (flange + radius, radius), (flange + radius, radius - flange_thickness) ] if right_handed: flange_poly = [(x, -y) for x,y in flange_poly] sketch = ( Cq.Sketch() .circle(radius) .polygon(flange_poly, mode='a') .circle(shaft_radius, mode='s') ) serration_poly = [ (0, 0), (radius, 0), (radius, radius * math.tan(serration_theta)) ] serration = ( Cq.Workplane('XY') .sketch() .polygon(serration_poly) .circle(radius, mode='i') .circle(serration_inner_radius, mode='s') .finalize() .extrude(serration_height) .translate(Cq.Vector((-serration_inner_radius, 0, height))) .rotate( axisStartPoint=(0, 0, 0), axisEndPoint=(0, 0, height), angleDegrees=serration_tilt) .val() ) serrations = ( Cq.Workplane('XY') .polarArray(radius=serration_inner_radius, startAngle=0+serration_angle_offset, angle=360+serration_angle_offset, count=n_serration) .eachpoint(lambda loc: serration.located(loc)) ) result = ( Cq.Workplane() .add(sketch) .extrude(height) .union(serrations) .clean() ) result.polyline([ (0, 0, height - serration_height), (0, 0, height + serration_height)], forConstruction=True).tag("serrated") result.polyline([ (0, radius, 0), (flange + radius, radius, 0)], forConstruction=True).tag("tail") result.faces('>X').tag("tail_end") return result def comma_assembly(): joint1 = comma_joint() joint2 = comma_joint() spring = springs.torsion_spring() result = ( Cq.Assembly() .add(joint1, name="joint1", color=Cq.Color(0.8,0.8,0.5,0.3)) .add(joint2, name="joint2", color=Cq.Color(0.8,0.8,0.5,0.3)) .add(spring, name="spring", color=Cq.Color(0.5,0.5,0.5,1)) .constrain("joint1?serrated", "spring?bot", "Plane") .constrain("joint2?serrated", "spring?top", "Plane") .constrain("joint1?tail", "FixedAxis", (1, 0, 0)) .constrain("joint2?tail", "FixedAxis", (-1, 0, 0)) .solve() ) return result @dataclass class TorsionJoint: """ This jonit consists of a rider puck on a track puck. IT is best suited if the radius has to be small and vertical space is abundant. The rider part consists of: 1. A cylinderical base 2. A annular extrusion with the same radius as the base, but with slots carved in 3. An annular rider The track part consists of: 1. A cylindrical base 2. A slotted annular extrusion where the slot allows the spring to rest 3. An outer and an inner annuli which forms a track the rider can move on """ # Radius limit for rotating components radius: float = 40 track_disk_height: float = 10 rider_disk_height: float = 8 radius_spring: float = 15 radius_axle: float = 6 # If true, cover the spring hole. May make it difficult to insert the spring # considering the stiffness of torsion spring steel. spring_hole_cover_track: bool = False spring_hole_cover_rider: bool = False # Also used for the height of the hole for the spring spring_thickness: float = 2 spring_height: float = 15 spring_tail_length: float = 35 groove_radius_outer: float = 35 groove_radius_inner: float = 20 groove_depth: float = 5 rider_gap: float = 1 rider_n_slots: float = 4 # Degrees of the first and last rider slots rider_slot_begin: float = 0 rider_slot_span: float = 90 right_handed: bool = False def __post_init__(self): assert self.radius > self.groove_radius_outer assert self.groove_radius_outer > self.groove_radius_inner assert self.groove_radius_inner > self.radius_spring assert self.spring_height > self.groove_depth, "Groove is too deep" assert self.radius_spring > self.radius_axle @property def total_height(self): return self.track_disk_height + self.rider_disk_height + self.spring_height @property def _radius_spring_internal(self): return self.radius_spring - self.spring_thickness def _slot_polygon(self, flip: bool=False): r1 = self.radius_spring - self.spring_thickness r2 = self.radius_spring flip = flip != self.right_handed if flip: r1 = -r1 r2 = -r2 return [ (0, r2), (self.spring_tail_length, r2), (self.spring_tail_length, r1), (0, r1), ] def _directrix(self, height, theta=0): c, s = math.cos(theta), math.sin(theta) r2 = self.radius_spring l = self.spring_tail_length if self.right_handed: r2 = -r2 # This is (0, r2) and (l, r2) transformed by right handed rotation # matrix `[[c, -s], [s, c]]` return [ (-s * r2, c * r2, height), (c * l - s * r2, s * l + c * r2, height), ] def spring(self): return springs.torsion_spring( radius=self.radius_spring, height=self.spring_height, thickness=self.spring_thickness, tail_length=self.spring_tail_length, right_handed=self.right_handed, ) def track(self): groove_profile = ( Cq.Sketch() .circle(self.radius) .circle(self.groove_radius_outer, mode='s') .circle(self.groove_radius_inner, mode='a') .circle(self.radius_spring, mode='s') ) spring_hole_profile = ( Cq.Sketch() .circle(self.radius) .circle(self.radius_spring, mode='s') ) slot_height = self.spring_thickness if not self.spring_hole_cover_track: slot_height += self.groove_depth slot = ( Cq.Workplane('XY') .sketch() .polygon(self._slot_polygon(flip=False)) .finalize() .extrude(slot_height) .val() ) result = ( Cq.Workplane('XY') .cylinder( radius=self.radius, height=self.track_disk_height, centered=(True, True, False)) .faces('>Z') .tag("spring") .placeSketch(spring_hole_profile) .extrude(self.spring_thickness) # If the spring hole profile is not simply connected, this workplane # will have to be created from the `spring-mate` face. .faces('>Z') .placeSketch(groove_profile) .extrude(self.groove_depth) .faces('>Z') .hole(self.radius_axle * 2) .cut(slot.moved(Cq.Location((0, 0, self.track_disk_height)))) ) # Insert directrix` result.polyline(self._directrix(self.track_disk_height), forConstruction=True).tag("directrix") return result def rider(self): def slot(loc): wire = Cq.Wire.makePolygon(self._slot_polygon(flip=False)) face = Cq.Face.makeFromWires(wire) return face.located(loc) wall_profile = ( Cq.Sketch() .circle(self.radius, mode='a') .circle(self.radius_spring, mode='s') .parray( r=0, a1=self.rider_slot_begin, da=self.rider_slot_span, n=self.rider_n_slots) .each(slot, mode='s') #.circle(self._radius_wall, mode='a') ) contact_profile = ( Cq.Sketch() .circle(self.groove_radius_outer, mode='a') .circle(self.groove_radius_inner, mode='s') ) if not self.spring_hole_cover_rider: contact_profile = ( contact_profile .parray( r=0, a1=self.rider_slot_begin, da=self.rider_slot_span, n=self.rider_n_slots) .each(slot, mode='s') .reset() ) #.circle(self._radius_wall, mode='a') middle_height = self.spring_height - self.groove_depth - self.rider_gap - self.spring_thickness result = ( Cq.Workplane('XY') .cylinder( radius=self.radius, height=self.rider_disk_height, centered=(True, True, False)) .faces('>Z') .tag("spring") .workplane() .placeSketch(wall_profile) .extrude(middle_height) .faces(tag="spring") .workplane() # The top face might not be in one piece. .workplane(offset=middle_height) .placeSketch(contact_profile) .extrude(self.groove_depth + self.rider_gap) .faces(tag="spring") .workplane() .circle(self._radius_spring_internal) .extrude(self.spring_height) #.faces(tag="spring") #.workplane() .hole(self.radius_axle * 2) ) theta_begin = math.radians(self.rider_slot_begin) + math.pi theta_span = math.radians(self.rider_slot_span) if abs(math.remainder(self.rider_slot_span, 360)) < TOL: theta_step = theta_span / self.rider_n_slots else: theta_step = theta_span / (self.rider_n_slots - 1) for i in range(self.rider_n_slots): theta = theta_begin - i * theta_step result.polyline(self._directrix(self.rider_disk_height, theta), forConstruction=True).tag(f"directrix{i}") return result def rider_track_assembly(self, directrix=0): rider = self.rider() track = self.track() spring = self.spring() result = ( Cq.Assembly() .add(spring, name="spring", color=Role.DAMPING.color) .add(track, name="track", color=Role.PARENT.color) .constrain("track?spring", "spring?top", "Plane") .constrain("track?directrix", "spring?directrix_bot", "Axis") .add(rider, name="rider", color=Role.CHILD.color) .constrain("rider?spring", "spring?bot", "Plane") .constrain(f"rider?directrix{directrix}", "spring?directrix_top", "Axis") .solve() ) return result