Cosplay/nhf/touhou/houjuu_nue/wing.py

279 lines
7.3 KiB
Python

"""
This file describes the shapes of the wing shells. The joints are defined in
`__init__.py`.
"""
import math
from dataclasses import dataclass
import cadquery as Cq
from nhf import Material, Role
from nhf.parts.joints import HirthJoint
import nhf.utils
def wing_root_profiles(
base_sweep=150,
wall_thickness=8,
base_radius=40,
middle_offset=30,
middle_height=80,
conn_thickness=40,
conn_height=100) -> tuple[Cq.Wire, Cq.Wire]:
assert base_sweep < 180
assert middle_offset > 0
theta = math.pi * base_sweep / 180
c, s = math.cos(theta), math.sin(theta)
c_1, s_1 = math.cos(theta * 0.75), math.sin(theta * 0.75)
c_2, s_2 = math.cos(theta / 2), math.sin(theta / 2)
r1 = base_radius
r2 = base_radius - wall_thickness
base = (
Cq.Sketch()
.arc(
(c * r1, s * r1),
(c_1 * r1, s_1 * r1),
(c_2 * r1, s_2 * r1),
)
.arc(
(c_2 * r1, s_2 * r1),
(r1, 0),
(c_2 * r1, -s_2 * r1),
)
.arc(
(c_2 * r1, -s_2 * r1),
(c_1 * r1, -s_1 * r1),
(c * r1, -s * r1),
)
.segment(
(c * r1, -s * r1),
(c * r2, -s * r2),
)
.arc(
(c * r2, -s * r2),
(c_1 * r2, -s_1 * r2),
(c_2 * r2, -s_2 * r2),
)
.arc(
(c_2 * r2, -s_2 * r2),
(r2, 0),
(c_2 * r2, s_2 * r2),
)
.arc(
(c_2 * r2, s_2 * r2),
(c_1 * r2, s_1 * r2),
(c * r2, s * r2),
)
.segment(
(c * r2, s * r2),
(c * r1, s * r1),
)
.assemble(tag="wire")
.wires().val()
)
assert isinstance(base, Cq.Wire)
# The interior sweep is given by theta, but the exterior sweep exceeds the
# interior sweep so the wall does not become thinner towards the edges.
# If the exterior sweep is theta', it has to satisfy
#
# sin(theta) * r2 + wall_thickness = sin(theta') * r1
x, y = conn_thickness / 2, middle_height / 2
t = wall_thickness
dx = middle_offset
middle = (
Cq.Sketch()
# Interior arc, top point
.arc(
(x - t, y - t),
(x - t + dx, 0),
(x - t, -y + t),
)
.segment(
(x - t, -y + t),
(-x, -y+t)
)
.segment((-x, -y))
.segment((x, -y))
# Outer arc, bottom point
.arc(
(x, -y),
(x + dx, 0),
(x, y),
)
.segment(
(x, y),
(-x, y)
)
.segment((-x, y-t))
#.segment((x2, a))
.close()
.assemble(tag="wire")
.wires().val()
)
assert isinstance(middle, Cq.Wire)
x, y = conn_thickness / 2, conn_height / 2
t = wall_thickness
tip = (
Cq.Sketch()
.segment((-x, y), (x, y))
.segment((x, -y))
.segment((-x, -y))
.segment((-x, -y+t))
.segment((x-t, -y+t))
.segment((x-t, y-t))
.segment((-x, y-t))
.close()
.assemble(tag="wire")
.wires().val()
)
return base, middle, tip
def wing_root(joint: HirthJoint,
bolt_diam: int = 12,
union_tol=1e-4,
shoulder_attach_diam=8,
shoulder_attach_dist=25,
conn_thickness=40,
conn_height=100,
wall_thickness=8) -> Cq.Assembly:
"""
Generate the contiguous components of the root wing segment
"""
tip_centre = Cq.Vector((-150, 0, -80))
attach_theta = math.radians(5)
c, s = math.cos(attach_theta), math.sin(attach_theta)
attach_points = [
(15, 4),
(15 + shoulder_attach_dist * c, 4 + shoulder_attach_dist * s),
]
root_profile, middle_profile, tip_profile = wing_root_profiles(
conn_thickness=conn_thickness,
conn_height=conn_height,
wall_thickness=8,
)
middle_profile = middle_profile.located(Cq.Location(
(-40, 0, -40), (0, 1, 0), 30
))
antetip_profile = tip_profile.located(Cq.Location(
(-95, 0, -75), (0, 1, 0), 60
))
tip_profile = tip_profile.located(Cq.Location(
tip_centre, (0, 1, 0), 90
))
profiles = [
root_profile,
middle_profile,
antetip_profile,
tip_profile,
]
result = None
for p1, p2 in zip(profiles[:-1], profiles[1:]):
seg = (
Cq.Workplane('XY')
.add(p1)
.toPending()
.workplane() # This call is necessary
.add(p2)
.toPending()
.loft()
)
if result:
result = result.union(seg, tol=union_tol)
else:
result = seg
result = (
result
# Create connector holes
.copyWorkplane(
Cq.Workplane('bottom', origin=tip_centre + Cq.Vector((0, -50, 0)))
)
.pushPoints(attach_points)
.hole(shoulder_attach_diam)
)
# Generate attach point tags
for sign in [False, True]:
y = conn_height / 2 - wall_thickness
side = "bottom" if sign else "top"
y = y if sign else -y
plane = (
result
# Create connector holes
.copyWorkplane(
Cq.Workplane(side, origin=tip_centre +
Cq.Vector((0, y, 0)))
)
)
if side == "bottom":
side = "bot"
for i, (px, py) in enumerate(attach_points):
tag = f"conn_{side}{i}"
plane.moveTo(px, -py if side == "top" else py).tagPlane(tag)
result.faces("<Z").tag("base")
result.faces(">X").tag("conn")
j = (
joint.generate(is_mated=True)
.faces("<Z")
.hole(bolt_diam)
)
color = Material.PLASTIC_PLA.color
result = (
Cq.Assembly()
.add(result, name="scaffold", color=color)
.add(j, name="joint", color=Role.CHILD.color,
loc=Cq.Location((0, 0, -joint.total_height)))
)
return result
@dataclass
class WingProfile:
shoulder_height: float = 100
elbow_height: float = 120
def wing_r1s1_profile(self) -> Cq.Sketch:
"""
Generates the first wing segment profile, with the wing root pointing in
the positive x axis.
"""
w = 270
# Depression of the wing middle, measured
h = 0
# spline curve easing extension
theta = math.radians(30)
c_th, s_th = math.cos(theta), math.sin(theta)
bend = 30
ext = 40
ext_dh = -5
assert ext * 2 < w
factor = 0.7
result = (
Cq.Sketch()
.segment((0, 0), (0, self.shoulder_height))
.spline([
(0, self.shoulder_height),
((w - s_th * self.elbow_height) / 2, self.shoulder_height / 2 + (self.elbow_height * c_th - h) / 2 - bend),
(w - s_th * self.elbow_height, self.elbow_height * c_th - h),
])
.segment(
(w - s_th * self.elbow_height, self.elbow_height * c_th -h),
(w, -h),
)
.spline([
(0, 0),
(w / 2, -h / 2 - bend),
(w, -h),
])
.assemble()
)
return result