Cosplay/nhf/touhou/houjuu_nue/__init__.py

639 lines
22 KiB
Python

"""
To build, execute
```
python3 nhf/touhou/houjuu_nue/__init__.py
```
This cosplay consists of 3 components:
## Trident
The trident is composed of individual segments, made of acrylic, and a 3D
printed head (convention rule prohibits metal) with a metallic paint. To ease
transportation, the trident handle has individual segments with threads and can
be assembled on site.
## Snake
A 3D printed snake with a soft material so it can wrap around and bend
## Wings
This is the crux of the cosplay and the most complex component. The wings mount
on a wearable harness. Each wing consists of 4 segments with 3 joints. Parts of
the wing which demands transluscency are created from 1/16" acrylic panels.
These panels serve double duty as the exoskeleton.
The wings are labeled r1,r2,r3,l1,l2,l3. The segments of the wings are labeled
from root to tip s0 (root),
s1, s2, s3. The joints are named (from root to tip)
shoulder, elbow, wrist in analogy with human anatomy.
"""
from dataclasses import dataclass, field
import cadquery as Cq
from nhf import Material, Role
from nhf.build import Model, TargetKind, target, assembly
from nhf.parts.joints import HirthJoint, TorsionJoint
from nhf.parts.handle import Handle, BayonetMount
import nhf.touhou.houjuu_nue.wing as MW
import nhf.touhou.houjuu_nue.trident as MT
import nhf.touhou.houjuu_nue.joints as MJ
import nhf.utils
@dataclass
class Parameters(Model):
"""
Defines dimensions for the Houjuu Nue cosplay
"""
# Thickness of the exoskeleton panel in millimetres
panel_thickness: float = 25.4 / 16
# Harness
harness_thickness: float = 25.4 / 8
harness_width: float = 300
harness_height: float = 400
harness_fillet: float = 10
harness_wing_base_pos: list[tuple[str, float, float]] = field(default_factory=lambda: [
("r1", 70, 150),
("l1", -70, 150),
("r2", 100, 0),
("l2", -100, 0),
("r3", 70, -150),
("l3", -70, -150),
])
# Holes drilled onto harness for attachment with HS joint
harness_to_root_conn_diam: float = 6
hs_hirth_joint: HirthJoint = field(default_factory=lambda: HirthJoint(
radius=30,
radius_inner=20,
tooth_height=10,
base_height=5
))
# Wing root properties
#
# The Houjuu-Scarlett joint mechanism at the base of the wing
hs_joint_base_width: float = 85
hs_joint_base_thickness: float = 10
hs_joint_corner_fillet: float = 5
hs_joint_corner_cbore_diam: float = 12
hs_joint_corner_cbore_depth: float = 2
hs_joint_corner_inset: float = 12
hs_joint_axis_diam: float = 12
hs_joint_axis_cbore_diam: float = 20
hs_joint_axis_cbore_depth: float = 3
wing_profile: MW.WingProfile = field(default_factory=lambda: MW.WingProfile(
shoulder_height=100.0,
elbow_height=110.0,
))
# Exterior radius of the wing root assembly
wing_root_radius: float = 40
wing_root_wall_thickness: float = 8
shoulder_joint: MJ.ShoulderJoint = field(default_factory=lambda: MJ.ShoulderJoint(
shoulder_height=100.0,
))
elbow_joint: MJ.ElbowJoint = field(default_factory=lambda: MJ.ElbowJoint(
))
wrist_joint: MJ.ElbowJoint = field(default_factory=lambda: MJ.ElbowJoint(
))
"""
Heights for various wing joints, where the numbers start from the first
joint.
"""
wing_s0_thickness: float = 40
# Length of the spacer
wing_s1_thickness: float = 20
wing_s1_spacer_thickness: float = 25.4 / 8
wing_s1_spacer_width: float = 20
wing_s1_spacer_hole_diam: float = 8
wing_s1_shoulder_spacer_hole_dist: float = 20
wing_s1_shoulder_spacer_width: float = 60
trident_handle: Handle = field(default_factory=lambda: Handle(
diam=38,
diam_inner=38-2 * 25.4/8,
diam_connector_internal=18,
simplify_geometry=False,
mount=BayonetMount(n_pin=3),
))
trident_terminal_height: float = 80
trident_terminal_hole_diam: float = 24
trident_terminal_bottom_thickness: float = 10
material_panel: Material = Material.ACRYLIC_TRANSPARENT
material_bracket: Material = Material.ACRYLIC_TRANSPARENT
def __post_init__(self):
super().__init__(name="houjuu-nue")
assert self.wing_root_radius > self.hs_hirth_joint.radius,\
"Wing root must be large enough to accomodate joint"
assert self.wing_s1_shoulder_spacer_hole_dist > self.wing_s1_spacer_hole_diam, \
"Spacer holes are too close to each other"
@target(name="trident/handle-connector")
def handle_connector(self):
return self.trident_handle.connector()
@target(name="trident/handle-insertion")
def handle_insertion(self):
return self.trident_handle.insertion()
@target(name="trident/proto-handle-connector", prototype=True)
def proto_handle_connector(self):
return self.trident_handle.one_side_connector(height=15)
@target(name="trident/handle-terminal-connector")
def handle_terminal_connector(self):
result = self.trident_handle.one_side_connector(height=self.trident_terminal_height)
#result.faces("<Z").circle(radius=25/2).cutThruAll()
h = self.trident_terminal_height + self.trident_handle.insertion_length - self.trident_terminal_bottom_thickness
result = result.faces(">Z").hole(self.trident_terminal_hole_diam, depth=h)
return result
def harness_profile(self) -> Cq.Sketch:
"""
Creates the harness shape
"""
w, h = self.harness_width / 2, self.harness_height / 2
sketch = (
Cq.Sketch()
.polygon([
(0.7 * w, h),
(w, 0),
(0.7 * w, -h),
(0.7 * -w, -h),
(-w, 0),
(0.7 * -w, h),
])
#.rect(self.harness_width, self.harness_height)
.vertices()
.fillet(self.harness_fillet)
)
for tag, x, y in self.harness_wing_base_pos:
conn = [(px + x, py + y) for px, py in self.hs_joint_harness_conn()]
sketch = (
sketch
.push(conn)
.tag(tag)
.circle(self.harness_to_root_conn_diam / 2, mode='s')
.reset()
)
return sketch
@target(name="harness", kind=TargetKind.DXF)
def harness(self) -> Cq.Shape:
"""
Creates the harness shape
"""
result = (
Cq.Workplane('XZ')
.placeSketch(self.harness_profile())
.extrude(self.harness_thickness)
)
result.faces(">Y").tag("mount")
plane = result.faces(">Y").workplane()
for tag, x, y in self.harness_wing_base_pos:
conn = [(px + x, py + y) for px, py
in self.hs_joint_harness_conn()]
for i, (px, py) in enumerate(conn):
(
plane
.moveTo(px, py)
.circle(1, forConstruction='True')
.edges()
.tag(f"{tag}_{i}")
)
return result
def hs_joint_harness_conn(self) -> list[tuple[int, int]]:
"""
Generates a set of points corresponding to the connectorss
"""
dx = self.hs_joint_base_width / 2 - self.hs_joint_corner_inset
return [
(dx, dx),
(dx, -dx),
(-dx, -dx),
(-dx, dx),
]
@target(name="hs_joint_parent")
def hs_joint_parent(self):
"""
Parent part of the Houjuu-Scarlett joint, which is composed of a Hirth
coupling, a cylindrical base, and a mounting base.
"""
hirth = self.hs_hirth_joint.generate()
conn = self.hs_joint_harness_conn()
result = (
Cq.Workplane('XY')
.box(
self.hs_joint_base_width,
self.hs_joint_base_width,
self.hs_joint_base_thickness,
centered=(True, True, False))
.translate((0, 0, -self.hs_joint_base_thickness))
.edges("|Z")
.fillet(self.hs_joint_corner_fillet)
.faces(">Z")
.workplane()
.pushPoints(conn)
.cboreHole(
diameter=self.harness_to_root_conn_diam,
cboreDiameter=self.hs_joint_corner_cbore_diam,
cboreDepth=self.hs_joint_corner_cbore_depth)
)
# Creates a plane parallel to the holes but shifted to the base
plane = result.faces(">Z").workplane(offset=-self.hs_joint_base_thickness)
for i, (px, py) in enumerate(conn):
(
plane
.pushPoints([(px, py)])
.circle(1, forConstruction='True')
.edges()
.tag(f"h{i}")
)
result = (
result
.faces(">Z")
.workplane()
.union(hirth, tol=0.1)
.clean()
)
result = (
result.faces("<Z")
.workplane()
.cboreHole(
diameter=self.hs_joint_axis_diam,
cboreDiameter=self.hs_joint_axis_cbore_diam,
cboreDepth=self.hs_joint_axis_cbore_depth,
)
.clean()
)
result.faces("<Z").tag("base")
return result
@assembly()
def harness_assembly(self) -> Cq.Assembly:
harness = self.harness()
result = (
Cq.Assembly()
.add(harness, name="base", color=Material.WOOD_BIRCH.color)
.constrain("base", "Fixed")
)
for name in ["l1", "l2", "l3", "r1", "r2", "r3"]:
j = self.hs_joint_parent()
(
result
.add(j, name=name, color=Role.PARENT.color)
.constrain("base?mount", f"{name}?base", "Axis")
)
for i in range(4):
result.constrain(f"base?{name}_{i}", f"{name}?h{i}", "Point")
result.solve()
return result
#@target(name="wing/joining-plate", kind=TargetKind.DXF)
#def joining_plate(self) -> Cq.Workplane:
# return self.wing_joining_plate.plate()
@target(name="wing/root")
def wing_root(self) -> Cq.Assembly:
"""
Generate the wing root which contains a Hirth joint at its base and a
rectangular opening on its side, with the necessary interfaces.
"""
return MW.wing_root(
joint=self.hs_hirth_joint,
shoulder_attach_dist=self.shoulder_joint.attach_dist,
shoulder_attach_diam=self.shoulder_joint.attach_diam,
wall_thickness=self.wing_root_wall_thickness,
conn_height=self.wing_profile.shoulder_height,
conn_thickness=self.wing_s0_thickness,
)
@target(name="wing/proto-shoulder-joint-parent", prototype=True)
def proto_shoulder_joint_parent(self):
return self.shoulder_joint.torsion_joint.track()
@target(name="wing/proto-shoulder-joint-child", prototype=True)
def proto_shoulder_joint_child(self):
return self.shoulder_joint.torsion_joint.rider()
@assembly()
def shoulder_assembly(self):
return self.shoulder_joint.assembly(
wing_root_wall_thickness=self.wing_root_wall_thickness,
lip_height=self.wing_s1_thickness,
hole_dist=self.wing_s1_shoulder_spacer_hole_dist,
spacer_hole_diam=self.wing_s1_spacer_hole_diam,
)
@assembly()
def elbow_assembly(self):
return self.elbow_joint.assembly()
@assembly()
def wrist_assembly(self):
return self.wrist_joint.assembly()
@target(name="wing/s1-spacer", kind=TargetKind.DXF)
def wing_s1_spacer(self) -> Cq.Workplane:
result = (
Cq.Workplane('XZ')
.sketch()
.rect(self.wing_s1_spacer_width, self.wing_s1_thickness)
.finalize()
.extrude(self.wing_s1_spacer_thickness)
)
result.faces("<Z").tag("weld1")
result.faces(">Z").tag("weld2")
result.faces(">Y").tag("dir")
return result
@target(name="wing/s1-shoulder-spacer", kind=TargetKind.DXF)
def wing_s1_shoulder_spacer(self) -> Cq.Workplane:
"""
Creates a rectangular spacer. This could be cut from acrylic.
There are two holes on the top of the spacer. With the holes
"""
dx = self.wing_s1_shoulder_spacer_hole_dist
h = self.wing_s1_spacer_thickness
length = self.wing_s1_shoulder_spacer_width
hole_diam = self.wing_s1_spacer_hole_diam
assert dx + hole_diam < length / 2
result = (
Cq.Workplane('XY')
.sketch()
.rect(length, self.wing_s1_thickness)
.push([
(0, 0),
(dx, 0),
])
.circle(hole_diam / 2, mode='s')
.finalize()
.extrude(h)
)
# Tag the mating surfaces to be glued
result.faces("<Y").workplane().moveTo(length / 2, h).tagPlane("left")
result.faces(">Y").workplane().moveTo(-length / 2, h).tagPlane("right")
# Tag the directrix
result.faces(">Z").tag("dir")
# Tag the holes
plane = result.faces(">Z").workplane()
# Side closer to the parent is 0
plane.moveTo(dx, 0).tagPlane("conn0")
plane.tagPlane("conn1")
return result
def assembly_insert_shoulder_spacer(
self,
assembly,
spacer,
point_tag: str,
front_tag: str = "panel_front",
back_tag: str = "panel_back",
flipped: bool = False,
):
"""
For a child joint facing up, front panel should be on the right, back
panel on the left
"""
site_front, site_back = "right", "left"
if flipped:
site_front, site_back = site_back, site_front
angle = 0
(
assembly
.add(spacer,
name=f"{point_tag}_spacer",
color=self.material_bracket.color)
.constrain(f"{front_tag}?{point_tag}",
f"{point_tag}_spacer?{site_front}", "Plane")
.constrain(f"{back_tag}?{point_tag}",
f"{point_tag}_spacer?{site_back}", "Plane")
.constrain(f"{point_tag}_spacer?dir", f"{front_tag}?{point_tag}_dir",
"Axis", param=angle)
)
@target(name="wing/r1s1", kind=TargetKind.DXF)
def wing_r1s1_profile(self) -> Cq.Sketch:
"""
FIXME: Output individual segment profiles
"""
return self.wing_profile.profile()
def wing_r1s1_panel(self, front=True) -> Cq.Workplane:
return self.wing_profile.surface_s1(
thickness=self.panel_thickness,
shoulder_joint_child_height=self.shoulder_joint.child_height,
front=front,
)
def wing_r1s2_panel(self, front=True) -> Cq.Workplane:
return self.wing_profile.surface_s2(
thickness=self.panel_thickness,
front=front,
)
def wing_r1s3_panel(self, front=True) -> Cq.Workplane:
return self.wing_profile.surface_s3(
thickness=self.panel_thickness,
front=front,
)
@assembly()
def wing_r1s1_assembly(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.add(self.wing_r1s1_panel(front=True), name="panel_front",
color=self.material_panel.color)
.constrain("panel_front", "Fixed")
.add(self.wing_r1s1_panel(front=False), name="panel_back",
color=self.material_panel.color)
.constrain("panel_front@faces@>Z", "panel_back@faces@<Z", "Point",
param=self.wing_s1_thickness)
)
for t in ["shoulder_bot", "shoulder_top", "elbow_bot", "elbow_top"]:
is_top = t.endswith("_top")
is_parent = t.startswith("shoulder")
self.assembly_insert_shoulder_spacer(
result,
self.wing_s1_shoulder_spacer(),
point_tag=t,
flipped=is_top == is_parent,
)
return result.solve()
@assembly()
def wing_r1s2_assembly(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.add(self.wing_r1s2_panel(front=True), name="panel_front",
color=self.material_panel.color)
.constrain("panel_front", "Fixed")
.add(self.wing_r1s2_panel(front=False), name="panel_back",
color=self.material_panel.color)
# FIXME: Use s2 thickness
.constrain("panel_front@faces@>Z", "panel_back@faces@<Z", "Point",
param=self.wing_s1_thickness)
)
for t in ["elbow_bot", "elbow_top", "wrist_bot", "wrist_top"]:
is_top = t.endswith("_top")
is_parent = t.startswith("elbow")
self.assembly_insert_shoulder_spacer(
result,
self.wing_s1_shoulder_spacer(),
point_tag=t,
flipped=is_top == is_parent,
)
return result.solve()
@assembly()
def wing_r1s3_assembly(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.add(self.wing_r1s3_panel(front=True), name="panel_front",
color=self.material_panel.color)
.constrain("panel_front", "Fixed")
.add(self.wing_r1s3_panel(front=False), name="panel_back",
color=self.material_panel.color)
# FIXME: Use s2 thickness
.constrain("panel_front@faces@>Z", "panel_back@faces@<Z", "Point",
param=self.wing_s1_thickness)
)
for t in ["wrist_bot", "wrist_top"]:
self.assembly_insert_shoulder_spacer(
result,
self.wing_s1_shoulder_spacer(),
point_tag=t
)
return result.solve()
@assembly()
def wing_r1_assembly(
self,
parts=["s0", "shoulder", "s1", "elbow", "s2", "wrist", "s3"],
) -> Cq.Assembly:
result = (
Cq.Assembly()
)
if "s0" in parts:
(
result
.add(self.wing_root(), name="s0")
.constrain("s0/scaffold", "Fixed")
)
if "shoulder" in parts:
result.add(self.shoulder_assembly(), name="shoulder")
if "s0" in parts and "shoulder" in parts:
(
result
.constrain("s0/scaffold?conn_top0", "shoulder/parent_top?conn0", "Plane")
.constrain("s0/scaffold?conn_top1", "shoulder/parent_top?conn1", "Plane")
.constrain("s0/scaffold?conn_bot0", "shoulder/parent_bot?conn0", "Plane")
.constrain("s0/scaffold?conn_bot1", "shoulder/parent_bot?conn1", "Plane")
)
if "s1" in parts:
result.add(self.wing_r1s1_assembly(), name="s1")
if "s1" in parts and "shoulder" in parts:
(
result
.constrain("shoulder/child/lip_bot?conn0",
"s1/shoulder_bot_spacer?conn0",
"Plane")
.constrain("shoulder/child/lip_bot?conn1",
"s1/shoulder_bot_spacer?conn1",
"Plane")
.constrain("shoulder/child/lip_top?conn0",
"s1/shoulder_top_spacer?conn0",
"Plane")
.constrain("shoulder/child/lip_top?conn1",
"s1/shoulder_top_spacer?conn1",
"Plane")
)
if "elbow" in parts:
result.add(self.elbow_assembly(), name="elbow")
if "s2" in parts:
result.add(self.wing_r1s2_assembly(), name="s2")
if "s1" in parts and "elbow" in parts:
(
result
.constrain("elbow/parent_upper/top?conn1",
"s1/elbow_top_spacer?conn1",
"Plane")
.constrain("elbow/parent_upper/top?conn0",
"s1/elbow_top_spacer?conn0",
"Plane")
.constrain("elbow/parent_upper/bot?conn1",
"s1/elbow_bot_spacer?conn1",
"Plane")
.constrain("elbow/parent_upper/bot?conn0",
"s1/elbow_bot_spacer?conn0",
"Plane")
)
if "s2" in parts and "elbow" in parts:
(
result
.constrain("elbow/child/bot?conn0",
"s2/elbow_bot_spacer?conn0",
"Plane")
.constrain("elbow/child/bot?conn1",
"s2/elbow_bot_spacer?conn1",
"Plane")
.constrain("elbow/child/top?conn0",
"s2/elbow_top_spacer?conn0",
"Plane")
.constrain("elbow/child/top?conn1",
"s2/elbow_top_spacer?conn1",
"Plane")
)
return result.solve()
@assembly()
def wings_assembly(self) -> Cq.Assembly:
"""
Assembly of harness with all the wings
"""
a_tooth = self.hs_hirth_joint.tooth_angle
result = (
Cq.Assembly()
.add(self.harness_assembly(), name="harness", loc=Cq.Location((0, 0, 0)))
.add(self.wing_root(), name="w0_r1")
.add(self.wing_root(), name="w0_l1")
.constrain("harness/base", "Fixed")
.constrain("w0_r1/joint?mate", "harness/r1?mate", "Plane")
.constrain("w0_r1/joint?dir", "harness/r1?dir",
"Axis", param=7 * a_tooth)
.constrain("w0_l1/joint?mate", "harness/l1?mate", "Plane")
.constrain("w0_l1/joint?dir", "harness/l1?dir",
"Axis", param=-1 * a_tooth)
.solve()
)
return result
@assembly(collision_check=False)
def trident_assembly(self) -> Cq.Assembly:
"""
Disable collision check since the threads may not align.
"""
return MT.trident_assembly(self.trident_handle)
if __name__ == '__main__':
p = Parameters()
p.build_all()