Cosplay/nhf/touhou/houjuu_nue/wing.py

1236 lines
45 KiB
Python

"""
This file describes the shapes of the wing shells. The joints are defined in
`__init__.py`.
"""
import math
from enum import Enum
from dataclasses import dataclass, field
from typing import Mapping, Tuple, Optional
import cadquery as Cq
from nhf import Material, Role
from nhf.build import Model, TargetKind, target, assembly, submodel
from nhf.parts.box import box_with_centre_holes, MountingBox, Hole
from nhf.parts.joints import HirthJoint
from nhf.parts.planar import extrude_with_markers
from nhf.touhou.houjuu_nue.joints import RootJoint, ShoulderJoint, ElbowJoint, DiskJoint
from nhf.touhou.houjuu_nue.electronics import LINEAR_ACTUATOR_10, LINEAR_ACTUATOR_50, ElectronicBoard
import nhf.utils
@dataclass(kw_only=True)
class WingProfile(Model):
name: str = "wing"
base_width: float = 80.0
root_joint: RootJoint = field(default_factory=lambda: RootJoint())
panel_thickness: float = 25.4 / 16
# 1/4" acrylic for the spacer. Anything thinner would threathen structural
# strength
spacer_thickness: float = 25.4 / 4
shoulder_joint: ShoulderJoint = field(default_factory=lambda: ShoulderJoint(
))
shoulder_angle_bias: float = 0.0
shoulder_width: float = 36.0
shoulder_tip_x: float = -260.0
shoulder_tip_y: float = 165.0
shoulder_mid_x: float = -125.0
shoulder_mid_y: float = 75.0
s0_hole_loc: Cq.Location = Cq.Location.from2d(-25, 33)
s0_hole_diam: float = 15.0
s0_top_hole: bool = False
s0_bot_hole: bool = True
electronic_board: ElectronicBoard = field(default_factory=lambda: ElectronicBoard())
s1_thickness: float = 25.0
elbow_joint: ElbowJoint = field(default_factory=lambda: ElbowJoint(
disk_joint=DiskJoint(
movement_angle=55,
),
hole_diam=4.0,
angle_neutral=15.0,
actuator=LINEAR_ACTUATOR_50,
flexor_offset_angle=-15,
))
# Distance between the two spacers on the elbow, halved
elbow_h2: float = 5.0
wrist_joint: ElbowJoint = field(default_factory=lambda: ElbowJoint(
disk_joint=DiskJoint(
movement_angle=30,
radius_disk=13.0,
radius_housing=15.0,
),
hole_pos=[10],
lip_length=30,
child_arm_radius=23.0,
parent_arm_radius=30.0,
hole_diam=4.0,
angle_neutral=-30.0,
actuator=LINEAR_ACTUATOR_10,
))
# Distance between the two spacers on the elbow, halved
wrist_h2: float = 5.0
mat_panel: Material = Material.ACRYLIC_TRANSLUSCENT
mat_bracket: Material = Material.ACRYLIC_TRANSPARENT
mat_hs_joint: Material = Material.PLASTIC_PLA
role_panel: Role = Role.STRUCTURE
# Subclass must populate
elbow_bot_loc: Cq.Location
elbow_height: float
wrist_bot_loc: Cq.Location
wrist_height: float
elbow_rotate: float = -5.0
wrist_rotate: float = -30.0
# Position of the elbow axle with 0 being bottom and 1 being top (flipped on the left side)
elbow_axle_pos: float = 0.5
wrist_axle_pos: float = 0.0
# False for the right side, True for the left side
flip: bool
def __post_init__(self):
super().__init__(name=self.name)
assert self.electronic_board.length == self.shoulder_height
self.elbow_top_loc = self.elbow_bot_loc * Cq.Location.from2d(0, self.elbow_height)
self.wrist_top_loc = self.wrist_bot_loc * Cq.Location.from2d(0, self.wrist_height)
if self.flip:
self.elbow_axle_pos = 1 - self.elbow_axle_pos
self.elbow_axle_loc = self.elbow_bot_loc * Cq.Location.from2d(0, self.elbow_height * self.elbow_axle_pos)
if self.flip:
self.wrist_axle_pos = 1 - self.wrist_axle_pos
self.wrist_axle_loc = self.wrist_bot_loc * Cq.Location.from2d(0, self.wrist_height * self.wrist_axle_pos)
assert self.elbow_joint.total_thickness < min(self.s1_thickness, self.s2_thickness)
assert self.wrist_joint.total_thickness < min(self.s2_thickness, self.s3_thickness)
self.shoulder_joint.angle_neutral = -self.shoulder_angle_neutral - self.shoulder_angle_bias
self.shoulder_axle_loc = Cq.Location.from2d(self.shoulder_tip_x, self.shoulder_tip_y - self.shoulder_width / 2, self.shoulder_angle_bias)
self.shoulder_joint.child_guard_width = self.s1_thickness + self.panel_thickness * 2
assert self.spacer_thickness == self.root_joint.child_mount_thickness
@property
def s2_thickness(self) -> float:
"""
s2 needs to duck under s1, so its thinner
"""
return self.s1_thickness - 2 * self.panel_thickness
@property
def s3_thickness(self) -> float:
"""
s3 does not need to duck under s2
"""
extra = 2 * self.panel_thickness if self.flip else 0
return self.s1_thickness - 2 * self.panel_thickness - extra
@submodel(name="shoulder-joint")
def submodel_shoulder_joint(self) -> Model:
return self.shoulder_joint
@submodel(name="elbow-joint")
def submodel_elbow_joint(self) -> Model:
return self.elbow_joint
@submodel(name="wrist-joint")
def submodel_wrist_joint(self) -> Model:
return self.wrist_joint
@property
def root_height(self) -> float:
return self.shoulder_joint.height
@property
def shoulder_height(self) -> float:
return self.shoulder_joint.height
def outer_profile_s0(self) -> Cq.Sketch:
"""
The outer boundary of s0, used to produce the curved panel and the
top/bottom slots
"""
tip_x = self.shoulder_tip_x
tip_y = self.shoulder_tip_y
return (
Cq.Sketch()
.spline([
(0, 0),
(-30.0, 80.0),
(tip_x, tip_y)
])
#.segment(
# (tip_x, tip_y),
# (tip_x - 10, tip_y),
#)
)
@property
def shoulder_angle_neutral(self) -> float:
"""
Returns the neutral angle of the shoulder
"""
dx = self.shoulder_mid_x - self.shoulder_tip_x
dy = -(self.shoulder_mid_y - (self.shoulder_tip_y - self.shoulder_width))
result = math.degrees(math.atan2(dy, dx))
assert result >= 0
return result
@target(name="profile-s0", kind=TargetKind.DXF)
def profile_s0(self, top: bool = True) -> Cq.Sketch:
tip_x = self.shoulder_tip_x
tip_y = self.shoulder_tip_y
mid_x = self.shoulder_mid_x
mid_y = self.shoulder_mid_y
sw = self.shoulder_width
sketch = (
self.outer_profile_s0()
.segment((-self.base_width, 0), (0, 0))
.segment(
(tip_x, tip_y),
(tip_x, tip_y - sw),
)
.segment(
(tip_x, tip_y - sw),
(mid_x, mid_y),
)
.segment(
(mid_x, mid_y),
(-self.base_width, 0),
)
.assemble()
.push([self.shoulder_axle_loc.to2d_pos()])
.circle(self.shoulder_joint.radius, mode='a')
.circle(self.shoulder_joint.bolt.diam_head / 2, mode='s')
)
top = top == self.flip
if (self.s0_top_hole and top) or (self.s0_bot_hole and not top):
sketch = (
sketch
.reset()
.push([self.s0_hole_loc.to2d_pos()])
.circle(self.s0_hole_diam / 2, mode='s')
)
return sketch
def outer_shell_s0(self) -> Cq.Workplane:
t = self.panel_thickness
profile = Cq.Wire.assembleEdges(self.outer_profile_s0().edges().vals())
result = (
Cq.Workplane('XZ')
.rect(t, self.root_height + t*2, centered=(False, False))
.sweep(profile)
)
plane = result.copyWorkplane(Cq.Workplane('XZ'))
plane.moveTo(0, 0).tagPlane("bot")
plane.moveTo(0, self.root_height + t*2).tagPlane("top")
return result
@submodel(name="spacer-s0-shoulder")
def spacer_s0_shoulder(self) -> MountingBox:
"""
Shoulder side serves double purpose for mounting shoulder joint and
structural support
"""
holes = [
hole
for i, (x, y) in enumerate(self.shoulder_joint.parent_conn_hole_pos)
for hole in [
Hole(x=x, y=y, tag=f"conn_top{i}"),
Hole(x=-x, y=y, tag=f"conn_bot{i}"),
]
]
return MountingBox(
length=self.shoulder_joint.height,
width=self.shoulder_joint.parent_lip_width,
thickness=self.spacer_thickness,
holes=holes,
hole_diam=self.shoulder_joint.parent_conn_hole_diam,
centred=(True, True),
flip_y=self.flip,
)
@submodel(name="spacer-s0-shoulder")
def spacer_s0_base(self) -> MountingBox:
"""
Base side connects to H-S joint
"""
assert self.root_joint.child_width < self.base_width
assert self.root_joint.child_corner_dx * 2 < self.base_width
assert self.root_joint.child_corner_dz * 2 < self.root_height
dy = self.root_joint.child_corner_dx
dx = self.root_joint.child_corner_dz
holes = [
Hole(x=-dx, y=-dy),
Hole(x=dx, y=-dy),
Hole(x=dx, y=dy),
Hole(x=-dx, y=dy),
]
return MountingBox(
length=self.root_height,
width=self.root_joint.child_width,
thickness=self.spacer_thickness,
holes=holes,
hole_diam=self.root_joint.corner_hole_diam,
centred=(True, True),
flip_y=self.flip,
)
@submodel(name="spacer-s0-electronic")
def spacer_s0_electronic_mount(self) -> MountingBox:
return MountingBox(
holes=self.electronic_board.mount_holes,
hole_diam=self.electronic_board.mount_hole_diam,
length=self.root_height,
width=self.electronic_board.width,
centred=(True, True),
thickness=self.spacer_thickness,
flip_y=self.flip,
generate_reverse_tags=True,
)
def surface_s0(self, top: bool = False) -> Cq.Workplane:
base_dx = -(self.base_width - self.root_joint.child_width) / 2 - 10
base_dy = self.root_joint.hirth_joint.joint_height
loc_tip = Cq.Location(0, -self.shoulder_joint.parent_lip_width / 2)
#mid_spacer_loc = (
# Cq.Location.from2d(0, -self.shoulder_width/2) *
# self.shoulder_axle_loc *
# Cq.Location.rot2d(self.shoulder_joint.angle_neutral)
#)
tags = [
("shoulder",
self.shoulder_axle_loc *
self.shoulder_joint.parent_arm_loc() *
loc_tip),
("base", Cq.Location.from2d(base_dx, base_dy, 90)),
("electronic_mount", Cq.Location.from2d(-55, 75, 64)),
]
result = extrude_with_markers(
self.profile_s0(top=top),
self.panel_thickness,
tags,
reverse=not top,
)
h = self.panel_thickness if top else 0
result.copyWorkplane(Cq.Workplane('XZ')).moveTo(0, h).tagPlane("corner")
return result
@assembly()
def assembly_s0(self, ignore_detail: bool=False) -> Cq.Assembly:
result = (
Cq.Assembly()
.addS(self.surface_s0(top=True), name="bot",
material=self.mat_panel, role=self.role_panel)
.addS(self.surface_s0(top=False), name="top",
material=self.mat_panel, role=self.role_panel,
loc=Cq.Location((0, 0, self.root_height + self.panel_thickness)))
.constrain("bot", "Fixed")
.constrain("top", "Fixed")
#.constrain("bot@faces@>Z", "top@faces@<Z", "Point",
# param=self.shoulder_joint.height)
.addS(self.outer_shell_s0(), name="outer_shell",
material=self.mat_panel, role=self.role_panel)
.constrain("bot?corner", "outer_shell?bot", "Plane", param=0)
.constrain("top?corner", "outer_shell?top", "Plane", param=0)
)
for o, tag in [
(self.spacer_s0_shoulder().generate(), "shoulder"),
(self.spacer_s0_base().generate(), "base"),
(self.spacer_s0_electronic_mount().generate(), "electronic_mount"),
]:
top_tag, bot_tag = "top", "bot"
if self.flip:
top_tag, bot_tag = bot_tag, top_tag
(
result
.addS(o, name=tag,
role=Role.STRUCTURE | Role.CONNECTION,
material=self.mat_bracket)
.constrain(f"{tag}?{bot_tag}", f"bot?{tag}", "Plane")
.constrain(f"{tag}?{top_tag}", f"top?{tag}", "Plane")
.constrain(f"{tag}?dir", f"top?{tag}_dir", "Axis")
)
if not ignore_detail:
result.add(self.electronic_board.assembly(), name="electronic_board")
for hole in self.electronic_board.mount_holes:
assert hole.tag
nut_name = f"electronic_board_{hole.tag}_nut"
(
result
.addS(
self.electronic_board.nut.assembly(),
name=nut_name)
.constrain(
f"electronic_mount?{hole.rev_tag}",
f'{nut_name}?top',
"Plane"
)
.constrain(
f"electronic_mount?{hole.tag}",
f'electronic_board/{hole.tag}_spacer?bot',
"Plane"
)
)
return result.solve()
### s1, s2, s3 ###
def profile(self) -> Cq.Sketch:
"""
Generates profile from shoulder and above. Subclass should implement
"""
@target(name="profile-s3-extra", kind=TargetKind.DXF)
def profile_s3_extra(self) -> Optional[Cq.Sketch]:
"""
Extra element to be glued on s3. Not needed for left side
"""
return None
def _wrist_joint_retract_cut_polygon(self, loc: Cq.Location) -> Optional[Cq.Sketch]:
"""
Creates a cutting polygon for removing the contraction part of a joint
"""
if not self.flip:
"""
No cutting needed on RHS
"""
return None
theta = math.radians(self.wrist_joint.motion_span)
dx = self.wrist_height * math.tan(theta)
dy = self.wrist_height
sign = -1 if self.flip else 1
points = [
(0, 0),
(0, -sign * dy),
(-dx, -sign * dy),
]
return (
Cq.Sketch()
.polygon([
(loc * Cq.Location.from2d(*p)).to2d_pos()
for p in points
])
)
def _child_joint_extension_profile(
self,
axle_loc: Cq.Location,
radius: float,
angle_span: float,
bot: bool = False) -> Cq.Sketch:
"""
Creates a sector profile which accomodates extension
"""
sign = -1 if bot else 1
axle_loc = axle_loc * Cq.Location.rot2d(-90 if bot else 90)
loc_h = Cq.Location.from2d(radius, 0)
start = axle_loc * loc_h
mid = axle_loc * Cq.Location.rot2d(-sign * angle_span/2) * loc_h
end = axle_loc * Cq.Location.rot2d(-sign * angle_span) * loc_h
return (
Cq.Sketch()
.segment(
axle_loc.to2d_pos(),
start.to2d_pos(),
)
.arc(
start.to2d_pos(),
mid.to2d_pos(),
end.to2d_pos(),
)
.segment(
end.to2d_pos(),
axle_loc.to2d_pos(),
)
.assemble()
)
def _parent_joint_extension_profile(
self,
loc_axle: Cq.Location,
loc_bot: Cq.Location,
loc_top: Cq.Location,
angle_span: float,
bot: bool = True
) -> Cq.Sketch:
"""
Generates a sector-like profile on the child side of a panel to
accomodate for joint rotation
"""
sign = -1 if bot else 1
loc_tip = loc_top if bot else loc_bot
loc_arc_right = loc_bot if bot else loc_top
loc_rel_arc_right = loc_axle.inverse * loc_arc_right
loc_arc_left = loc_axle * Cq.Location.rot2d(sign * angle_span) * loc_rel_arc_right
loc_arc_middle = loc_axle * Cq.Location.rot2d(sign * angle_span / 2) * loc_rel_arc_right
return (
Cq.Sketch()
.segment(
loc_tip.to2d_pos(),
loc_arc_right.to2d_pos(),
)
.arc(
loc_arc_right.to2d_pos(),
loc_arc_middle.to2d_pos(),
loc_arc_left.to2d_pos(),
)
.segment(
loc_tip.to2d_pos(),
loc_arc_left.to2d_pos(),
)
.assemble()
)
def _assembly_insert_spacer(
self,
a: Cq.Assembly,
spacer: Cq.Workplane,
point_tag: str,
front_tag: str = "front",
back_tag: str = "back",
flipped: bool = False,
rotate: bool = False,
):
"""
For a child joint facing up, front panel should be on the right, back
panel on the left
"""
site_front, site_back = "right", "left"
if flipped:
site_front, site_back = site_back, site_front
angle = 180 if rotate else 0
(
a
.addS(
spacer,
name=point_tag,
material=self.mat_bracket,
role=self.role_panel)
.constrain(f"{front_tag}?{point_tag}",
f"{point_tag}?{site_front}", "Plane")
.constrain(f"{back_tag}?{point_tag}",
f"{point_tag}?{site_back}", "Plane")
.constrain(f"{point_tag}?dir", f"{front_tag}?{point_tag}_dir",
"Axis", param=angle)
)
def _mask_elbow(self) -> list[Tuple[float, float]]:
"""
Polygon shape to mask out parts above the elbow
"""
def _mask_wrist(self) -> list[Tuple[float, float]]:
"""
Polygon shape to mask wrist
"""
def spacer_of_joint(
self,
joint: ElbowJoint,
segment_thickness: float,
dx: float) -> MountingBox:
length = joint.lip_length / 2 - dx
holes = [
Hole(x - dx)
for x in joint.hole_pos
]
mbox = MountingBox(
length=length,
width=segment_thickness,
thickness=self.spacer_thickness,
holes=holes,
hole_diam=joint.hole_diam,
centred=(False, True),
)
return mbox
@target(name="profile-s1", kind=TargetKind.DXF)
def profile_s1(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_elbow(), mode='i')
)
return profile
def surface_s1(self, front: bool = True) -> Cq.Workplane:
shoulder_h = self.shoulder_joint.child_height
h = (self.shoulder_joint.height - shoulder_h) / 2
tags_shoulder = [
("shoulder_bot", Cq.Location.from2d(0, h, 90)),
("shoulder_top", Cq.Location.from2d(0, h + shoulder_h, 270)),
]
h = self.elbow_height / 2
loc_elbow = Cq.Location.rot2d(self.elbow_rotate) * self.elbow_joint.parent_arm_loc()
tags_elbow = [
("elbow_bot", self.elbow_axle_loc * loc_elbow *
Cq.Location.from2d(0, -self.elbow_h2)),
("elbow_top", self.elbow_axle_loc * loc_elbow *
Cq.Location.from2d(0, self.elbow_h2)),
]
profile = self.profile_s1()
tags = tags_shoulder + tags_elbow
return extrude_with_markers(
profile, self.panel_thickness, tags, reverse=front)
@submodel(name="spacer-s1-shoulder")
def spacer_s1_shoulder(self) -> MountingBox:
holes = [
Hole(x)
for x in self.shoulder_joint.child_conn_hole_pos
]
return MountingBox(
length=50.0, # FIXME: magic
width=self.s1_thickness,
thickness=self.spacer_thickness,
holes=holes,
hole_diam=self.shoulder_joint.child_conn_hole_diam,
)
@submodel(name="spacer-s1-elbow")
def spacer_s1_elbow(self) -> MountingBox:
return self.spacer_of_joint(
joint=self.elbow_joint,
segment_thickness=self.s1_thickness,
dx=self.elbow_h2,
)
@assembly()
def assembly_s1(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.addS(self.surface_s1(front=True), name="front",
material=self.mat_panel, role=self.role_panel)
.constrain("front", "Fixed")
.addS(self.surface_s1(front=False), name="back",
material=self.mat_panel, role=self.role_panel)
.constrain("front@faces@>Z", "back@faces@<Z", "Point",
param=self.s1_thickness)
)
for t in ["shoulder_bot", "shoulder_top", "elbow_bot", "elbow_top"]:
is_top = t.endswith("_top")
is_parent = t.startswith("shoulder")
o = self.spacer_s1_shoulder().generate() if is_parent else self.spacer_s1_elbow().generate()
self._assembly_insert_spacer(
result,
o,
point_tag=t,
flipped=not is_top,
)
return result.solve()
@target(name="profile-s2", kind=TargetKind.DXF)
def profile_s2(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_elbow(), mode='s')
.reset()
.polygon(self._mask_wrist(), mode='i')
.reset()
.push([self.elbow_axle_loc])
.each(lambda loc: self._parent_joint_extension_profile(
loc,
self.elbow_bot_loc,
self.elbow_top_loc,
self.elbow_joint.motion_span,
bot=not self.flip,
), mode='a')
)
return profile
def surface_s2(self, front: bool = True) -> Cq.Workplane:
loc_elbow = Cq.Location.rot2d(self.elbow_rotate) * self.elbow_joint.child_arm_loc(flip=self.flip)
tags_elbow = [
("elbow_bot", self.elbow_axle_loc * loc_elbow *
Cq.Location.from2d(0, self.elbow_h2)),
("elbow_top", self.elbow_axle_loc * loc_elbow *
Cq.Location.from2d(0, -self.elbow_h2)),
]
loc_wrist = Cq.Location.rot2d(self.wrist_rotate) * self.wrist_joint.parent_arm_loc()
tags_wrist = [
("wrist_bot", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, -self.wrist_h2)),
("wrist_top", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, self.wrist_h2)),
]
profile = self.profile_s2()
tags = tags_elbow + tags_wrist
return extrude_with_markers(profile, self.panel_thickness, tags, reverse=front)
@target(name="profile-s2-bridge", kind=TargetKind.DXF)
def profile_s2_bridge(self) -> Cq.Workplane:
# FIXME: Leave some margin here so we can glue the panels
# Generates the extension profile, which is required on both sides
profile = self._child_joint_extension_profile(
axle_loc=self.wrist_axle_loc,
radius=self.wrist_height * (0.5 if self.flip else 1),
angle_span=self.wrist_joint.motion_span,
bot=self.flip,
)
# Generates the contraction (cut) profile. only required on the left
if self.flip:
extra = (
self.profile()
.reset()
.push([self.wrist_axle_loc])
.each(self._wrist_joint_retract_cut_polygon, mode='i')
)
profile = (
profile
.push([self.wrist_axle_loc])
.each(lambda _: extra, mode='a')
)
return profile
def surface_s2_bridge(self, front: bool = True) -> Cq.Workplane:
profile = self.profile_s2_bridge()
loc_wrist = Cq.Location.rot2d(self.wrist_rotate) * self.wrist_joint.parent_arm_loc()
tags = [
("wrist_bot", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, -self.wrist_h2)),
("wrist_top", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, self.wrist_h2)),
]
return extrude_with_markers(
profile, self.panel_thickness, tags, reverse=not front)
@submodel(name="spacer-s2-elbow")
def spacer_s2_elbow(self) -> MountingBox:
return self.spacer_of_joint(
joint=self.elbow_joint,
segment_thickness=self.s2_thickness,
dx=self.elbow_h2,
)
@submodel(name="spacer-s2-wrist")
def spacer_s2_wrist(self) -> MountingBox:
return self.spacer_of_joint(
joint=self.wrist_joint,
segment_thickness=self.s2_thickness,
dx=self.wrist_h2,
)
@assembly()
def assembly_s2(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.addS(self.surface_s2(front=True), name="front",
material=self.mat_panel, role=self.role_panel)
.constrain("front", "Fixed")
.addS(self.surface_s2(front=False), name="back",
material=self.mat_panel, role=self.role_panel)
.constrain("front@faces@>Z", "back@faces@<Z", "Point",
param=self.s1_thickness)
.addS(self.surface_s2_bridge(front=True), name="bridge_front",
material=self.mat_panel, role=self.role_panel)
.constrain("front?wrist_bot", "bridge_front?wrist_bot", "Plane")
.constrain("front?wrist_top", "bridge_front?wrist_top", "Plane")
.addS(self.surface_s2_bridge(front=False), name="bridge_back",
material=self.mat_panel, role=self.role_panel)
.constrain("back?wrist_bot", "bridge_back?wrist_bot", "Plane")
.constrain("back?wrist_top", "bridge_back?wrist_top", "Plane")
)
for t in ["elbow_bot", "elbow_top", "wrist_bot", "wrist_top"]:
is_top = t.endswith("_top")
is_parent = t.startswith("elbow")
o = self.spacer_s2_elbow() if is_parent else self.spacer_s2_wrist()
self._assembly_insert_spacer(
result,
o.generate(),
point_tag=t,
flipped=is_top == is_parent,
#rotate=not is_parent,
)
return result.solve()
@target(name="profile-s3", kind=TargetKind.DXF)
def profile_s3(self) -> Cq.Sketch:
profile = (
self.profile()
.reset()
.polygon(self._mask_wrist(), mode='s')
)
return profile
def surface_s3(self,
front: bool = True) -> Cq.Workplane:
loc_wrist = Cq.Location.rot2d(self.wrist_rotate) * self.wrist_joint.child_arm_loc(flip=not self.flip)
tags = [
("wrist_bot", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, self.wrist_h2)),
("wrist_top", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, -self.wrist_h2)),
]
profile = self.profile_s3()
return extrude_with_markers(profile, self.panel_thickness, tags, reverse=front)
def surface_s3_extra(self,
front: bool = True) -> Optional[Cq.Workplane]:
profile = self.profile_s3_extra()
if profile is None:
return None
loc_wrist = Cq.Location.rot2d(self.wrist_rotate) * self.wrist_joint.child_arm_loc(flip=not self.flip)
tags = [
("wrist_bot", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, self.wrist_h2)),
("wrist_top", self.wrist_axle_loc * loc_wrist *
Cq.Location.from2d(0, -self.wrist_h2)),
]
return extrude_with_markers(profile, self.panel_thickness, tags, reverse=not front)
@submodel(name="spacer-s3-wrist")
def spacer_s3_wrist(self) -> MountingBox:
return self.spacer_of_joint(
joint=self.wrist_joint,
segment_thickness=self.s3_thickness,
dx=self.wrist_h2,
)
@assembly()
def assembly_s3(self) -> Cq.Assembly:
result = (
Cq.Assembly()
.addS(self.surface_s3(front=True), name="front",
material=self.mat_panel, role=self.role_panel)
.constrain("front", "Fixed")
.addS(self.surface_s3(front=False), name="back",
material=self.mat_panel, role=self.role_panel)
.constrain("front@faces@>Z", "back@faces@<Z", "Point",
param=self.s1_thickness)
)
if not self.flip:
(
result
.addS(self.surface_s3_extra(front=True), name="extra_front",
material=self.mat_panel, role=self.role_panel)
.constrain("front?wrist_bot", "extra_front?wrist_bot", "Plane")
.constrain("front?wrist_top", "extra_front?wrist_top", "Plane")
.addS(self.surface_s3_extra(front=False), name="extra_back",
material=self.mat_panel, role=self.role_panel)
.constrain("back?wrist_bot", "extra_back?wrist_bot", "Plane")
.constrain("back?wrist_top", "extra_back?wrist_top", "Plane")
)
for t in ["wrist_bot", "wrist_top"]:
is_top = t.endswith("_top")
o = self.spacer_s3_wrist()
self._assembly_insert_spacer(
result,
o.generate(),
point_tag=t,
flipped=is_top,
)
return result.solve()
@assembly()
def assembly(self,
parts: Optional[list[str]] = None,
shoulder_deflection: float = 0.0,
elbow_wrist_deflection: float = 0.0,
root_offset: int = 5,
fastener_pos: float = 0.0,
ignore_detail: bool = False,
) -> Cq.Assembly():
if parts is None:
parts = [
"root",
"s0",
"shoulder",
"s1",
"elbow",
"s2",
"wrist",
"s3",
]
result = (
Cq.Assembly()
)
tag_top, tag_bot = "top", "bot"
if self.flip:
tag_top, tag_bot = tag_bot, tag_top
if "s0" in parts:
result.add(self.assembly_s0(ignore_detail=ignore_detail), name="s0")
if "root" in parts:
result.addS(self.root_joint.assembly(
offset=root_offset,
fastener_pos=fastener_pos,
), name="root")
result.constrain("root/parent", "Fixed")
if "s0" in parts and "root" in parts:
(
result
.constrain("s0/base?conn0", "root/child?conn0", "Plane", param=0)
.constrain("s0/base?conn1", "root/child?conn1", "Plane", param=0)
.constrain("s0/base?conn2", "root/child?conn2", "Plane", param=0)
)
if "shoulder" in parts:
angle = shoulder_deflection * self.shoulder_joint.angle_max_deflection
result.add(self.shoulder_joint.assembly(
fastener_pos=fastener_pos,
deflection=angle), name="shoulder")
if "s0" in parts and "shoulder" in parts:
(
result
.constrain(f"s0/shoulder?conn_top0", f"shoulder/parent_{tag_top}/lip?conn0", "Plane")
.constrain(f"s0/shoulder?conn_top1", f"shoulder/parent_{tag_top}/lip?conn1", "Plane")
.constrain(f"s0/shoulder?conn_bot0", f"shoulder/parent_{tag_bot}/lip?conn0", "Plane")
.constrain(f"s0/shoulder?conn_bot1", f"shoulder/parent_{tag_bot}/lip?conn1", "Plane")
)
if "s1" in parts:
result.add(self.assembly_s1(), name="s1")
if "s1" in parts and "shoulder" in parts:
(
result
.constrain("s1/shoulder_top?conn0", f"shoulder/child/lip_{tag_top}?conn0", "Plane")
.constrain("s1/shoulder_top?conn1", f"shoulder/child/lip_{tag_top}?conn1", "Plane")
.constrain("s1/shoulder_bot?conn0", f"shoulder/child/lip_{tag_bot}?conn0", "Plane")
.constrain("s1/shoulder_bot?conn1", f"shoulder/child/lip_{tag_bot}?conn1", "Plane")
)
if "elbow" in parts:
angle = self.elbow_joint.motion_span * elbow_wrist_deflection
result.add(self.elbow_joint.assembly(angle=angle), name="elbow")
if "s1" in parts and "elbow" in parts:
(
result
.constrain("s1/elbow_top?conn0", f"elbow/parent_upper/lip?conn_{tag_top}0", "Plane")
.constrain("s1/elbow_top?conn1", f"elbow/parent_upper/lip?conn_{tag_top}1", "Plane")
.constrain("s1/elbow_bot?conn0", f"elbow/parent_upper/lip?conn_{tag_bot}0", "Plane")
.constrain("s1/elbow_bot?conn1", f"elbow/parent_upper/lip?conn_{tag_bot}1", "Plane")
)
if "s2" in parts:
result.add(self.assembly_s2(), name="s2")
if "s2" in parts and "elbow" in parts:
(
result
.constrain("s2/elbow_top?conn0", f"elbow/child/lip?conn_{tag_top}0", "Plane")
.constrain("s2/elbow_top?conn1", f"elbow/child/lip?conn_{tag_top}1", "Plane")
.constrain("s2/elbow_bot?conn0", f"elbow/child/lip?conn_{tag_bot}0", "Plane")
.constrain("s2/elbow_bot?conn1", f"elbow/child/lip?conn_{tag_bot}1", "Plane")
)
if "wrist" in parts:
angle = self.wrist_joint.motion_span * elbow_wrist_deflection
result.add(self.wrist_joint.assembly(angle=angle), name="wrist")
wrist_n_holes = len(self.wrist_joint.hole_pos)
if "s2" in parts and "wrist" in parts:
# Mounted backwards to bend in other direction
for i in range(wrist_n_holes):
(
result
.constrain(f"s2/wrist_top?conn{i}", f"wrist/parent_upper/lip?conn_{tag_bot}{i}", "Plane")
.constrain(f"s2/wrist_bot?conn{i}", f"wrist/parent_upper/lip?conn_{tag_top}{i}", "Plane")
)
if "s3" in parts:
result.add(self.assembly_s3(), name="s3")
if "s3" in parts and "wrist" in parts:
for i in range(wrist_n_holes):
(
result
.constrain(f"s3/wrist_top?conn{i}", f"wrist/child/lip?conn_{tag_bot}{i}", "Plane")
.constrain(f"s3/wrist_bot?conn{i}", f"wrist/child/lip?conn_{tag_top}{i}", "Plane")
)
if len(parts) > 1:
result.solve()
return result
@dataclass(kw_only=True)
class WingR(WingProfile):
"""
Right side wings
"""
elbow_bot_loc: Cq.Location = Cq.Location.from2d(290.0, 30.0, 27.0)
elbow_height: float = 111.0
wrist_bot_loc: Cq.Location = Cq.Location.from2d(403.0, 289.0, 45.0)
wrist_height: float = 60.0
# Extends from the wrist to the tip of the arrow
arrow_height: float = 300
arrow_angle: float = -8
# Underapproximate the wrist tangent angle to leave no gaps on the blade
blade_wrist_approx_tangent_angle: float = 40.0
blade_overlap_arrow_height: float = 5.0
# Some overlap needed to glue the two sides
blade_overlap_angle: float = -1
blade_hole_angle: float = 3
blade_hole_diam: float = 12.0
blade_hole_heights: list[float] = field(default_factory=lambda: [230, 260])
blade_angle: float = 7
# Relative (in wrist coordinate) centre of the ring
ring_rel_loc: Cq.Location = Cq.Location.from2d(45.0, 25.0)
ring_radius_inner: float = 22.0
flip: bool = False
def __post_init__(self):
super().__post_init__()
assert self.arrow_angle < 0, "Arrow angle cannot be positive"
self.arrow_bot_loc = self.wrist_bot_loc \
* Cq.Location.from2d(0, -self.arrow_height)
self.arrow_other_loc = self.arrow_bot_loc \
* Cq.Location.rot2d(self.arrow_angle) \
* Cq.Location.from2d(0, self.arrow_height + self.wrist_height)
self.ring_loc = self.wrist_top_loc * self.ring_rel_loc
assert self.ring_radius > self.ring_radius_inner
assert 0 > self.blade_overlap_angle > self.arrow_angle
assert 0 < self.blade_hole_angle < self.blade_angle
assert self.blade_wrist_approx_tangent_angle <= self.wrist_bot_loc.to2d_rot()
@property
def ring_radius(self) -> float:
(dx, dy), _ = self.ring_rel_loc.to2d()
return (dx * dx + dy * dy) ** 0.5
def profile(self) -> Cq.Sketch:
"""
Net profile of the wing starting from the wing root with no divisions
"""
result = (
Cq.Sketch()
.segment(
(0, 0),
(0, self.shoulder_joint.height),
tag="shoulder")
.spline([
(0, self.shoulder_joint.height),
self.elbow_top_loc.to2d_pos(),
self.wrist_top_loc.to2d_pos(),
],
tag="s1_top")
#.segment(
# (self.wrist_x, self.wrist_y),
# (wrist_top_x, wrist_top_y),
# tag="wrist")
.spline([
(0, 0),
self.elbow_bot_loc.to2d_pos(),
self.wrist_bot_loc.to2d_pos(),
],
tag="s1_bot")
)
result = (
result
.segment(
self.wrist_bot_loc.to2d_pos(),
self.arrow_bot_loc.to2d_pos(),
)
.segment(
self.arrow_bot_loc.to2d_pos(),
self.arrow_other_loc.to2d_pos(),
)
.segment(
self.arrow_other_loc.to2d_pos(),
self.wrist_top_loc.to2d_pos(),
)
)
# Carve out the ring
result = result.assemble()
result = (
result
.push([self.ring_loc.to2d_pos()])
.circle(self.ring_radius, mode='a')
.circle(self.ring_radius_inner, mode='s')
.clean()
)
return result
def profile_s3_extra(self) -> Cq.Sketch:
"""
Implements the blade part on Nue's wing
"""
left_bot_loc = self.arrow_bot_loc * Cq.Location.rot2d(-1)
hole_bot_loc = self.arrow_bot_loc * Cq.Location.rot2d(self.blade_hole_angle)
right_bot_loc = self.arrow_bot_loc * Cq.Location.rot2d(self.blade_angle)
h_loc = Cq.Location.from2d(0, self.arrow_height + self.blade_overlap_arrow_height)
# Law of sines, uses the triangle of (wrist_bot_loc, arrow_bot_loc, ?)
theta_wp = math.radians(90 - self.blade_wrist_approx_tangent_angle)
theta_b = math.radians(self.blade_angle)
h_blade = math.sin(theta_wp) / math.sin(math.pi - theta_b - theta_wp) * self.arrow_height
h_blade_loc = Cq.Location.from2d(0, h_blade)
return (
Cq.Sketch()
.segment(
self.arrow_bot_loc.to2d_pos(),
(left_bot_loc * h_loc).to2d_pos(),
)
.segment(
(self.arrow_bot_loc * h_loc).to2d_pos(),
)
.segment(
(right_bot_loc * h_blade_loc).to2d_pos(),
)
.close()
.assemble()
.reset()
.push([
(hole_bot_loc * Cq.Location.from2d(0, h)).to2d_pos()
for h in self.blade_hole_heights
])
.circle(self.blade_hole_diam / 2, mode='s')
)
def _mask_elbow(self) -> list[Tuple[float, float]]:
l = 200
elbow_x, _ = self.elbow_bot_loc.to2d_pos()
elbow_top_x, _ = self.elbow_top_loc.to2d_pos()
return [
(0, -l),
(elbow_x, -l),
self.elbow_bot_loc.to2d_pos(),
self.elbow_top_loc.to2d_pos(),
(elbow_top_x, l),
(0, l)
]
def _mask_wrist(self) -> list[Tuple[float, float]]:
l = 200
wrist_x, _ = self.wrist_bot_loc.to2d_pos()
_, wrist_top_y = self.wrist_top_loc.to2d_pos()
return [
(0, -l),
(wrist_x, -l),
self.wrist_bot_loc.to2d_pos(),
self.wrist_top_loc.to2d_pos(),
#(self.wrist_top_x, self.wrist_top_y),
(0, wrist_top_y),
]
@dataclass(kw_only=True)
class WingL(WingProfile):
elbow_bot_loc: Cq.Location = Cq.Location.from2d(260.0, 110.0, 0.0)
elbow_height: float = 80.0
wrist_angle: float = -45.0
wrist_bot_loc: Cq.Location = Cq.Location.from2d(460.0, -10.0, -45.0)
wrist_height: float = 43.0
shoulder_bezier_ext: float = 120.0
shoulder_bezier_drop: float = 15.0
elbow_bezier_ext: float = 80.0
wrist_bezier_ext: float = 30.0
arrow_length: float = 135.0
arrow_height: float = 120.0
flip: bool = True
elbow_axle_pos: float = 0.4
wrist_axle_pos: float = 0.5
def __post_init__(self):
assert self.wrist_height <= self.shoulder_joint.height
self.wrist_bot_loc = self.wrist_bot_loc.with_angle_2d(self.wrist_angle)
self.elbow_joint.angle_neutral = 15.0
self.elbow_rotate = 5.0
self.wrist_joint.angle_neutral = self.wrist_bot_loc.to2d_rot() + 30.0
self.wrist_rotate = -self.wrist_joint.angle_neutral
super().__post_init__()
def arrow_to_abs(self, x, y) -> Tuple[float, float]:
rel = Cq.Location.from2d(x * self.arrow_length, y * self.arrow_height / 2 + self.wrist_height / 2)
return (self.wrist_bot_loc * rel).to2d_pos()
def profile(self) -> Cq.Sketch:
result = (
Cq.Sketch()
.segment(
(0,0),
(0, self.shoulder_height)
)
.bezier([
(0, 0),
(self.shoulder_bezier_ext, -self.shoulder_bezier_drop),
(self.elbow_bot_loc * Cq.Location.from2d(-self.elbow_bezier_ext, 0)).to2d_pos(),
self.elbow_bot_loc.to2d_pos(),
])
.bezier([
(0, self.shoulder_joint.height),
(self.shoulder_bezier_ext, self.shoulder_joint.height),
(self.elbow_top_loc * Cq.Location.from2d(-self.elbow_bezier_ext, 0)).to2d_pos(),
self.elbow_top_loc.to2d_pos(),
])
.bezier([
self.elbow_bot_loc.to2d_pos(),
(self.elbow_bot_loc * Cq.Location.from2d(self.elbow_bezier_ext, 0)).to2d_pos(),
(self.wrist_bot_loc * Cq.Location.from2d(-self.wrist_bezier_ext, 0)).to2d_pos(),
self.wrist_bot_loc.to2d_pos(),
])
.bezier([
self.elbow_top_loc.to2d_pos(),
(self.elbow_top_loc * Cq.Location.from2d(self.elbow_bezier_ext, 0)).to2d_pos(),
(self.wrist_top_loc * Cq.Location.from2d(-self.wrist_bezier_ext, 0)).to2d_pos(),
self.wrist_top_loc.to2d_pos(),
])
)
# arrow base positions
base_u, base_v = 0.3, 0.3
result = (
result
.bezier([
self.wrist_top_loc.to2d_pos(),
(self.wrist_top_loc * Cq.Location.from2d(self.wrist_bezier_ext, 0)).to2d_pos(),
self.arrow_to_abs(base_u, base_v),
])
.bezier([
self.wrist_bot_loc.to2d_pos(),
(self.wrist_bot_loc * Cq.Location.from2d(self.wrist_bezier_ext, 0)).to2d_pos(),
self.arrow_to_abs(base_u, -base_v),
])
)
# Create the arrow
arrow_beziers = [
[
(0, 1),
(0.3, 1),
(0.8, .2),
(1, 0),
],
[
(0, 1),
(0.1, 0.8),
(base_u, base_v),
]
]
arrow_beziers = [
l2
for l in arrow_beziers
for l2 in [l, [(x, -y) for x,y in l]]
]
for line in arrow_beziers:
result = result.bezier([self.arrow_to_abs(x, y) for x,y in line])
return result.assemble()
def _mask_elbow(self) -> list[Tuple[float, float]]:
l = 200
elbow_bot_x, _ = self.elbow_bot_loc.to2d_pos()
elbow_top_x, _ = self.elbow_top_loc.to2d_pos()
return [
(0, -l),
(elbow_bot_x, -l),
self.elbow_bot_loc.to2d_pos(),
self.elbow_top_loc.to2d_pos(),
(elbow_top_x, l),
(0, l)
]
def _mask_wrist(self) -> list[Tuple[float, float]]:
l = 200
elbow_bot_x, _ = self.elbow_bot_loc.to2d_pos()
elbow_top_x, elbow_top_y = self.elbow_top_loc.to2d_pos()
_, wrist_bot_y = self.wrist_bot_loc.to2d_pos()
wrist_top_x, wrist_top_y = self.wrist_top_loc.to2d_pos()
return [
(0, -l),
(elbow_bot_x, wrist_bot_y),
self.wrist_bot_loc.to2d_pos(),
self.wrist_top_loc.to2d_pos(),
(wrist_top_x, wrist_top_y + l),
(elbow_top_x, elbow_top_y + l),
(0, l),
]