# tasks is mostly writing lean but perhaps making it think it's good at maths is also good? we could later test just focusing system prompting it to be good at Lean 4.
SYSTEM_PROMPT_SKETCH_V0='You are an expert mathematician and an expert in the Lean 4 Proof Assistant.'
sketch="```lean\nimport Mathlib.Data.Nat.Basic\nimport Aesop\n\ntheorem n_plus_zero : ∀ n : ℕ, n + 0 = n := by\n -- Consider any natural number n. We need to show that n + 0 = n.\n -- Use the fact that adding zero to any natural number does not change its value.\n have h_nat_add_zero: ∀ n : ℕ, n + 0 = n := <TODO_PROOF_OR_HAMMER>\n -- Combine facts to close goal\n <TODO_PROOF_OR_HAMMER>\n```"
"\ntheorem n_plus_zero : ∀ n : Nat, n + 0 = n := by\n -- Consider any natural number n. We need to show that n + 0 = n.\n -- Use the fact that adding zero to any natural number does not change its value.\n have h_nat_add_zero: ∀ n : Nat, n + 0 = n := sorry\n -- Combine facts to close goal\n sorry\n"
sketch="To solve the problem formally in Lean 4, we will sketch the proof by breaking down the steps of the informal solution, leveraging Lean 4 tactics and possibly automated theorem proving. Here's how the formal sketch might look:\n\n```lean\nimport Mathlib.Data.Complex.Basic\nimport Aesop\n\n-- Define the complex number z\ndef z : ℂ := (1 + Complex.i) / Real.sqrt 2\n\ntheorem complex_problem_solution : \n (∑ i in finset.range 12, z ^ (i + 1) ^ 2) * \n (∑ i in finset.range 12, z ^ -((i + 1) ^ 2)) = 36 := by\n -- We first compute z as a complex number with a modulus of 1.\n -- Thus, powers of z represent rotations in the complex plane.\n have h_mod_z : Complex.abs z = 1 := <TODO_PROOF_OR_HAMMER>\n -- Recognize that each term z^(k^2) and its reciprocal are conjugates due to modulus 1.\n have h_conjugates : ∀ k : ℕ, z^(k^2) * (z^(-k^2)) = 1 := <TODO_PROOF_OR_HAMMER>\n -- The product (z^(1^2) + z^(2^2) + ... + z^(12^2)) * (z^(-1^2) + z^(-2^2) + ... + z^(-12^2))\n -- simplifies as a result of this conjugate pair property.\n have h_sum_conjugates : ∑ i in finset.range 12, z ^ (i + 1) ^ 2 = 0 := <TODO_PROOF_OR_HAMMER>\n have h_sum_reciprocals : ∑ i in finset.range 12, z ^ -((i + 1) ^ 2) = 0 := <TODO_PROOF_OR_HAMMER>\n -- Combine all the contributions, where non-zero terms contribute to the total sum\n -- to ensure the final product is 36 based on the angle and distribution of terms.\n have h_final_sum_product : (∑ i in finset.range 12, z ^ (i + 1) ^ 2) *\n (∑ i in finset.range 12, z ^ -((i + 1) ^ 2)) = 36 := <TODO_PROOF_OR_HAMMER>\n -- Conclude the proof with the calculated product.\n exact h_final_sum_product\n```\n\nIn this sketch:\n- We define \\( z \\) as the complex number \\(\\frac{1+i}{\\sqrt{2}}\\).\n- We use properties of complex numbers with modulus 1, recognizing rotational symmetry and conjugate pair relations.\n- We use automated tactics (`<TODO_PROOF_OR_HAMMER>`) to handle calculations involving sums, products, and properties of the complex exponentials.\n- Finally, we show that the structure of these complex exponentials simplifies the product to yield the desired result of 36."