2023-10-15 17:15:23 -07:00
/-
Tests pertaining to goals with no interdependencies
-/
2023-05-22 14:49:56 -07:00
import LSpec
2023-10-15 12:31:22 -07:00
import Pantograph.Goal
2023-05-22 14:49:56 -07:00
import Pantograph.Serial
2023-10-15 17:15:23 -07:00
namespace Pantograph
def TacticResult.toString : TacticResult → String
| .success _ goals => s!".success ({goals.size} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
end Pantograph
2023-10-06 17:31:36 -07:00
namespace Pantograph.Test.Proofs
2023-05-22 14:49:56 -07:00
open Pantograph
2023-05-24 00:54:48 -07:00
open Lean
2023-05-22 14:49:56 -07:00
inductive Start where
| copy (name: String) -- Start from some name in the environment
| expr (expr: String) -- Start from some expression
2023-10-15 17:15:23 -07:00
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M)
2023-05-23 05:12:46 -07:00
2023-10-15 17:15:23 -07:00
deriving instance DecidableEq, Repr for Protocol.Expression
deriving instance DecidableEq, Repr for Protocol.Variable
deriving instance DecidableEq, Repr for Protocol.Goal
2023-08-27 19:53:09 -07:00
2023-10-15 17:15:23 -07:00
def addTest (test: LSpec.TestSeq): TestM Unit := do
2023-08-27 19:53:09 -07:00
set $ (← get) ++ test
2023-10-15 17:15:23 -07:00
def startProof (start: Start): TestM (Option GoalState) := do
2023-05-23 05:12:46 -07:00
let env ← Lean.MonadEnv.getEnv
2023-05-22 14:49:56 -07:00
match start with
| .copy name =>
let cInfo? := str_to_name name |> env.find?
2023-10-15 17:15:23 -07:00
addTest $ LSpec.check s!"Symbol exists {name}" cInfo?.isSome
2023-05-22 14:49:56 -07:00
match cInfo? with
2023-05-23 05:12:46 -07:00
| .some cInfo =>
2023-08-27 19:53:09 -07:00
let goal ← GoalState.create (expr := cInfo.type)
return Option.some goal
2023-05-22 14:49:56 -07:00
| .none =>
2023-08-27 19:53:09 -07:00
return Option.none
2023-05-22 14:49:56 -07:00
| .expr expr =>
2023-05-24 00:54:48 -07:00
let syn? := syntax_from_str env expr
2023-10-15 17:15:23 -07:00
addTest $ LSpec.check s!"Parsing {expr}" (syn?.isOk)
2023-05-22 14:49:56 -07:00
match syn? with
| .error error =>
IO.println error
2023-08-27 19:53:09 -07:00
return Option.none
2023-05-22 14:49:56 -07:00
| .ok syn =>
2023-10-15 12:31:22 -07:00
let expr? ← syntax_to_expr_type syn
2023-10-15 17:15:23 -07:00
addTest $ LSpec.check s!"Elaborating" expr?.isOk
2023-05-22 14:49:56 -07:00
match expr? with
| .error error =>
IO.println error
2023-08-27 19:53:09 -07:00
return Option.none
2023-05-22 14:49:56 -07:00
| .ok expr =>
2023-08-27 19:53:09 -07:00
let goal ← GoalState.create (expr := expr)
return Option.some goal
2023-05-22 14:49:56 -07:00
2023-10-15 17:15:23 -07:00
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
2023-05-22 14:49:56 -07:00
2023-10-15 17:15:23 -07:00
def buildGoal (nameType: List (String × String)) (target: String): Protocol.Goal :=
2023-05-27 23:10:39 -07:00
{
2023-08-14 21:43:40 -07:00
target := { pp? := .some target},
vars := (nameType.map fun x => ({
2023-08-15 15:40:54 -07:00
name := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
2023-05-27 23:10:39 -07:00
}
2023-10-15 17:15:23 -07:00
-- Like `buildGoal` but allow certain variables to be elided.
def buildGoalSelective (nameType: List (String × Option String)) (target: String): Protocol.Goal :=
2023-08-27 19:53:09 -07:00
{
target := { pp? := .some target},
vars := (nameType.map fun x => ({
name := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
2023-10-15 17:15:23 -07:00
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context := {
currNamespace := Name.append .anonymous "Aniva",
openDecls := [], -- No 'open' directives needed
fileName := "<Pantograph>",
fileMap := { source := "", positions := #[0], lines := #[1] }
}
let metaM := termElabM.run' (ctx := {
declName? := some "_pantograph",
errToSorry := false
})
let coreM := metaM.run'
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
return LSpec.test "Exception" (s!"internal exception #{← exception.toMessageData.toString}" = "")
| .ok (_, a) =>
return a
2023-08-27 19:53:09 -07:00
2023-05-22 14:49:56 -07:00
2023-08-27 19:53:09 -07:00
-- Individual test cases
2023-05-22 14:49:56 -07:00
example: ∀ (a b: Nat), a + b = b + a := by
intro n m
rw [Nat.add_comm]
2023-10-15 17:15:23 -07:00
def proof_nat_add_comm (manual: Bool): TestM Unit := do
let state? ← startProof <| match manual with
| false => .copy "Nat.add_comm"
| true => .expr "∀ (a b: Nat), a + b = b + a"
addTest $ LSpec.check "Start goal" state?.isSome
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let (state1, goal1) ← match ← state0.execute (goalId := 0) (tactic := "intro n m") with
| .success state #[goal] => pure (state, goal)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro n m" (goal1 = buildGoal [("n", "Nat"), ("m", "Nat")] "n + m = m + n")
match ← state1.execute (goalId := 0) (tactic := "assumption") with
| .failure #[message] =>
addTest $ LSpec.check "assumption" (message = "tactic 'assumption' failed\nn m : Nat\n⊢ n + m = m + n")
| other => do
addTest $ assertUnreachable $ other.toString
let state2 ← match ← state1.execute (goalId := 0) (tactic := "rw [Nat.add_comm]") with
| .success state #[] => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
return ()
2023-08-27 19:53:09 -07:00
2023-05-22 14:49:56 -07:00
2023-05-22 22:48:48 -07:00
-- Two ways to write the same theorem
2023-05-22 14:49:56 -07:00
example: ∀ (p q: Prop), p ∨ q → q ∨ p := by
intro p q h
cases h
apply Or.inr
assumption
apply Or.inl
assumption
2023-05-22 22:48:48 -07:00
example: ∀ (p q: Prop), p ∨ q → q ∨ p := by
intro p q h
cases h
. apply Or.inr
assumption
. apply Or.inl
assumption
2023-08-27 19:53:09 -07:00
def proof_or_comm: TestM Unit := do
2023-10-15 17:15:23 -07:00
let state? ← startProof (.expr "∀ (p q: Prop), p ∨ q → q ∨ p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
2023-05-22 14:49:56 -07:00
2023-10-15 17:15:23 -07:00
let (state1, goal1) ← match ← state0.execute (goalId := 0) (tactic := "intro p q h") with
| .success state #[goal] => pure (state, goal)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "p q h" (goal1 = buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p ∨ q")] "q ∨ p")
let (state2, goal1, goal2) ← match ← state1.execute (goalId := 0) (tactic := "cases h") with
| .success state #[goal1, goal2] => pure (state, goal1, goal2)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "cases h/1" (goal1 = branchGoal "inl" "p")
addTest $ LSpec.check "cases h/2" (goal2 = branchGoal "inr" "q")
let (state3_1, _goal) ← match ← state2.execute (goalId := 0) (tactic := "apply Or.inr") with
| .success state #[goal] => pure (state, goal)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state4_1 ← match ← state3_1.execute (goalId := 0) (tactic := "assumption") with
| .success state #[] => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let (state3_2, _goal) ← match ← state2.execute (goalId := 1) (tactic := "apply Or.inl") with
| .success state #[goal] => pure (state, goal)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state4_2 ← match ← state3_2.execute (goalId := 0) (tactic := "assumption") with
| .success state #[] => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
2023-10-25 16:03:45 -07:00
-- Ensure the proof can continue from `state4_2`.
let state2b ← match state2.continue state4_2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.test "state2b" (state2b.goals == [state2.goals.get! 0])
let (state3_1, _goal) ← match ← state2b.execute (goalId := 0) (tactic := "apply Or.inr") with
| .success state #[goal] => pure (state, goal)
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state4_1 ← match ← state3_1.execute (goalId := 0) (tactic := "assumption") with
| .success state #[] => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
IO.println "===== 4_1 ====="
state4_1.print ({ printNonVisible := false })
2023-10-15 17:15:23 -07:00
return ()
where
typeProp: Protocol.Expression := { pp? := .some "Prop" }
branchGoal (caseName name: String): Protocol.Goal := {
caseName? := .some caseName,
target := { pp? := .some "q ∨ p" },
vars := #[
{ name := "p", type? := .some typeProp, isInaccessible? := .some false },
{ name := "q", type? := .some typeProp, isInaccessible? := .some false },
{ name := "h✝", type? := .some { pp? := .some name }, isInaccessible? := .some true }
]
}
--example (w x y z : Nat) (p : Nat → Prop)
-- (h : p (x * y + z * w * x)) : p (x * w * z + y * x) := by
-- simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *
-- assumption
--def proof_arith_1: TestM Unit := do
-- let goal? ← startProof (.expr "∀ (w x y z : Nat) (p : Nat → Prop) (h : p (x * y + z * w * x)), p (x * w * z + y * x)")
-- addTest $ LSpec.check "Start goal" goal?.isSome
-- if let .some goal := goal? then
-- if let .success #[(goal, _)] ← goal.execute "intros" then
-- if let .success #[(goal, _)] ← goal.execute "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *" then
-- if let .success #[] ← goal.execute "assumption" then
-- return ()
-- else
-- addTest $ assertUnreachable "assumption"
-- else
-- addTest $ assertUnreachable "simp ..."
-- else
-- addTest $ assertUnreachable "intros"
--
--def proof_delta_variable: TestM Unit := withReader (fun _ => {proofVariableDelta := true}) do
-- let goal? ← startProof (.expr "∀ (a b: Nat), a + b = b + a")
-- addTest $ LSpec.check "Start goal" goal?.isSome
-- if let .some goal := goal? then
-- if let .success #[(goal, sGoal)] ← goal.execute "intro n" then
-- let sGoal1e: Protocol.Goal :=buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"
-- addTest $ LSpec.check "intro n" (sGoal = sGoal1e)
--
-- if let .success #[(_, sGoal)] ← goal.execute "intro m" then
-- let sGoal2e: Protocol.Goal :=buildGoalSelective [("n", .none), ("m", .some "Nat")] "n + m = m + n"
-- addTest $ LSpec.check "intro m" (sGoal = sGoal2e)
-- else
-- addTest $ assertUnreachable "intro m"
-- else
-- addTest $ assertUnreachable "intro n"
2023-08-15 15:40:54 -07:00
2023-10-06 17:31:36 -07:00
/-- Tests the most basic form of proofs whose goals do not relate to each other -/
def suite: IO LSpec.TestSeq := do
2023-05-23 05:12:46 -07:00
let env: Lean.Environment ← Lean.importModules
2023-10-15 12:31:22 -07:00
(imports := #[{ module := Name.append .anonymous "Init", runtimeOnly := false}])
2023-05-23 05:12:46 -07:00
(opts := {})
(trustLevel := 1)
2023-08-27 19:53:09 -07:00
let tests := [
2023-10-15 17:15:23 -07:00
("Nat.add_comm", proof_nat_add_comm false),
("Nat.add_comm manual", proof_nat_add_comm true),
("Or.comm", proof_or_comm)
--("arithmetic 1", proof_arith_1),
--("delta variable", proof_delta_variable)
2023-08-27 19:53:09 -07:00
]
let tests ← tests.foldlM (fun acc tests => do
let (name, tests) := tests
2023-10-15 17:15:23 -07:00
let tests ← proofRunner env tests
2023-08-27 19:53:09 -07:00
return acc ++ (LSpec.group name tests)) LSpec.TestSeq.done
2023-05-23 05:12:46 -07:00
2023-08-27 19:53:09 -07:00
return LSpec.group "Proofs" tests
2023-05-22 14:49:56 -07:00
2023-10-06 17:31:36 -07:00
end Pantograph.Test.Proofs