Pantograph/experiments/dsp/solve/data.py

135 lines
3.4 KiB
Python
Raw Normal View History

2024-10-04 21:55:47 -07:00
from typing import Union, Optional
2024-10-08 19:20:57 -07:00
from dataclasses import dataclass, field
from pantograph.search import SearchResult
2024-10-04 21:55:47 -07:00
@dataclass
class Datum:
"""
Represents one theorem proving datapoint.
"""
id: Optional[str] = None
# Problem and solution in natural language
nl_problem: Optional[Union[str, list[str]]] = None
nl_solution: Optional[Union[str, list[str]]] = None
# Problem in formal language
fl_problem: Optional[str] = None
def __str__(self):
if self.id:
return self.id
return self.nl_problem_str
2024-10-04 21:55:47 -07:00
@property
def nl_problem_str(self) -> Optional[str]:
if not self.nl_problem:
return None
if isinstance(self.nl_problem, list):
return "\n".join(self.nl_problem)
return self.nl_problem
@staticmethod
def load_default(obj: dict):
"""
Loads data in the "default" format
"""
fl_problem = obj.get("fl_problem")
if isinstance(fl_problem, list):
fl_problem = "\n".join(fl_problem)
return Datum(
nl_problem=obj.get("nl_problem"),
nl_solution=obj.get("nl_solution"),
fl_problem=fl_problem,
)
@staticmethod
def load_minif2f(obj: dict):
"""
Loads minif2f data
"""
fl_problem = obj["formal_statement"].strip()
if fl_problem.startswith("--"):
return None
return Datum(
id=obj["id"],
fl_problem=fl_problem,
#header=obj["header"],
nl_problem=obj["informal_stmt"],
nl_solution=obj["informal_proof"],
)
@staticmethod
def load(obj: dict, data_format: str):
if data_format == "default":
return Datum.load_default(obj)
elif data_format == "minif2f":
return Datum.load_minif2f(obj)
else:
raise ValueError(f"Invalid data format {data_format}")
2024-10-08 19:20:57 -07:00
@dataclass
class SamplingParams:
n: int
max_tokens: int
top_p: int
temperature: float
stop: str
@dataclass(frozen=True)
class SketchParseFailure:
error: str
sketch: str
@dataclass(frozen=True)
class SearchFailure:
error: str
sketch: str
message: str
@dataclass(frozen=True)
class DatumResult:
"""
Result from one DSP data point
"""
name: str
error: Optional[str] = None
duration: float = -1.0
success: Optional[bool] = False
proves: list[Union[SearchResult, SearchFailure, SketchParseFailure]] = field(default_factory=list)
@staticmethod
def parse_result(obj: dict):
if "message" in obj:
return SearchFailure(**obj)
if "error" in obj:
return SketchParseFailure(**obj)
return SearchResult(**obj)
@staticmethod
def parse(obj: dict):
return DatumResult(
name=obj['name'],
error=obj.get('error'),
duration=obj.get('duration'),
success=obj['success'],
proves=[DatumResult.parse_result(o) for o in obj['proves']]
)
@property
def hammer_invocations(self) -> Optional[float]:
"""
Average number of hammer invocations required
"""
li = [
sr.n_goals_root
for sr in self.proves
if isinstance(sr, SearchResult)
]
if not li:
return None
return sum(li)