Pantograph/docs/data.ipynb

168 lines
4.0 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "fe7a3037-5c49-4097-9a5d-575b958cc7f8",
"metadata": {},
"source": [
"# Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fc68ad1d-e64c-48b7-9461-50d872d30473",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"from pantograph.server import Server"
]
},
{
"cell_type": "markdown",
"id": "fd13c644-d731-4f81-964e-584bbd43e51c",
"metadata": {},
"source": [
"## Tactic Invocation\n",
"\n",
"Pantograph can extract tactic invocation data from a Lean file. A **tactic\n",
"invocation** is a tuple containing the before and after goal states, and the\n",
"tactic which converts the \"before\" state to the \"after\" state.\n",
"\n",
"To extract tactic invocation data, use `server.tactic_invocations(file_name)`\n",
"and supply the file name of the input Lean file."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a0a2a661-e357-4b80-92d1-4172670ab061",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"$PWD: /home/aniva/Projects/atp/PyPantograph/examples/Example\n",
"==== #0 ====\n",
"/-- Ensure that Aesop is running -/\n",
"example : αα :=\n",
" by aesop\n",
"\n",
"\n",
"==== #1 ====\n",
"example : ∀ (p q: Prop), p q → q p := by\n",
" intro p q h\n",
" -- Here are some comments\n",
" cases h\n",
" . apply Or.inr\n",
" assumption\n",
" . apply Or.inl\n",
" assumption\n",
"\n",
"==== Invocations ====\n",
"α : Sort ?u.7\n",
"⊢ αα\n",
"aesop\n",
"\n",
"\n",
"⊢ ∀ (p q : Prop), p q → q p\n",
"intro p q h\n",
"p q : Prop\n",
"h : p q\n",
"⊢ q p\n",
"\n",
"p q : Prop\n",
"h : p q\n",
"⊢ q p\n",
"cases h\n",
"case inl\n",
"p q : Prop\n",
"h✝ : p\n",
"⊢ q p\n",
"case inr p q : Prop h✝ : q ⊢ q p\n",
"\n",
"case inl\n",
"p q : Prop\n",
"h✝ : p\n",
"⊢ q p\n",
"apply Or.inr\n",
"case inl.h\n",
"p q : Prop\n",
"h✝ : p\n",
"⊢ p\n",
"\n",
"case inl.h\n",
"p q : Prop\n",
"h✝ : p\n",
"⊢ p\n",
"assumption\n",
"\n",
"\n",
"case inr\n",
"p q : Prop\n",
"h✝ : q\n",
"⊢ q p\n",
"apply Or.inl\n",
"case inr.h\n",
"p q : Prop\n",
"h✝ : q\n",
"⊢ q\n",
"\n",
"case inr.h\n",
"p q : Prop\n",
"h✝ : q\n",
"⊢ q\n",
"assumption\n",
"\n",
"\n"
]
}
],
"source": [
"project_path = Path(os.getcwd()).parent.resolve() / 'examples/Example'\n",
"print(f\"$PWD: {project_path}\")\n",
"server = Server(imports=['Example'], project_path=project_path)\n",
"units, invocations = server.tactic_invocations(project_path / \"Example.lean\")\n",
"for i, u in enumerate(units):\n",
" print(f\"==== #{i} ====\")\n",
" print(u)\n",
"print(\"==== Invocations ====\")\n",
"for i in invocations:\n",
" print(f\"{i.before}\\n{i.tactic}\\n{i.after}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51f5398b-5416-4dc1-81cd-6d2514758232",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}