From 155c26e9834cff18bebcf364dbdca9471c1ba905 Mon Sep 17 00:00:00 2001 From: Chuyue Sun Date: Sun, 2 Jun 2024 18:53:23 -0700 Subject: [PATCH] revert poetry.lock; add rw tutorial --- pantograph/gen_tactic.py | 70 ++++++++++++++++++++++++++++++++++++++-- poetry.lock | 2 +- 2 files changed, 68 insertions(+), 4 deletions(-) diff --git a/pantograph/gen_tactic.py b/pantograph/gen_tactic.py index 1d98fd1..6db1fb8 100644 --- a/pantograph/gen_tactic.py +++ b/pantograph/gen_tactic.py @@ -3,8 +3,69 @@ from pantograph.expr import Variable, Goal, TacticCalc import unittest import sglang as sgl +LEAN4_INTRO = '''/-- A sequence `u` of real numbers converges to `l` if `∀ ε > 0, ∃ N, ∀ n ≥ N, |u_n - l| ≤ ε`. +This condition will be spelled `seq_limit u l`. -/ +def seq_limit (u : ℕ → ℝ) (l : ℝ) : Prop := +∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| ≤ ε +/- In the above definition, note that the `n`-th term of the sequence `u` is denoted +simply by `u n`. +Similarly, in the next definition, `f x` is what we would write `f(x)` on paper. +Also note that implication is denoted by a single arrow (we'll explain why later). -/ + +/-- A function`f : ℝ → ℝ` is continuous at `x₀` if +`∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| ≤ δ ⇒ |f(x) - f(x₀)| ≤ ε`. +This condition will be spelled `continuous_at f x₀`.-/ +def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) : Prop := +∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| ≤ δ → |f x - f x₀| ≤ ε + +/-- Now we claim that if `f` is continuous at `x₀` then it is sequentially continuous +at `x₀`: for any sequence `u` converging to `x₀`, the sequence `f ∘ u` converges +to `f x₀`. -/ +example (f : ℝ → ℝ) (u : ℕ → ℝ) (x₀ : ℝ) (hu : seq_limit u x₀) (hf : continuous_at f x₀) : + seq_limit (f ∘ u) (f x₀) := by { -- This `by` keyword marks the beginning of the proof + -- Put your text cursor here and watch the Lean InfoView panel to the right. + -- Then move your cursor from line to line in the proof while monitoring the Infoview. + + -- Our goal is to prove that, for any positive `ε`, there exists a natural + -- number `N` such that, for any natural number `n` at least `N`, + -- `|f(u_n) - f(x₀)|` is at most `ε`. + unfold seq_limit + -- Fix a positive number `ε`. + intros ε hε + -- By assumption on `f` applied to this positive `ε`, we get a positive `δ` + -- such that, for all real number `x`, if `|x - x₀| ≤ δ` then `|f(x) - f(x₀)| ≤ ε` (1). + obtain ⟨δ, δ_pos, Hf⟩ : ∃ δ > 0, ∀ x, |x - x₀| ≤ δ → |f x - f x₀| ≤ ε := hf ε hε + -- The assumption on `u` applied to this `δ` gives a natural number `N` such that + -- for every natural number `n`, if `n ≥ N` then `|u_n - x₀| ≤ δ` (2). + obtain ⟨N, Hu⟩ : ∃ N, ∀ n ≥ N, |u n - x₀| ≤ δ := hu δ δ_pos + -- Let's prove `N` is suitable. + use N + -- Fix `n` which is at least `N`. Let's prove `|f(u_n) - f(x₀)| ≤ ε`. + intros n hn + -- Thanks to (1) applied to `u_n`, it suffices to prove that `|u_n - x₀| ≤ δ`. + apply Hf + -- This follows from property (2) and our assumption on `n`. + exact Hu n hn + -- This finishes the proof! + } + +/- +Now that this proof is over, you can use the file explorer to the +left of this panel to open the file `Exercises > 01Rewriting.lean`. +-/''' + +LEAN4_REWRITE = ''' +example (a b c : Nat) : a + b + c = a + c + b := by + rw [Nat.add_assoc, Nat.add_comm b, ← Nat.add_assoc] + +example (a b c : Nat) : a + b + c = a + c + b := by + rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm b] + +example (a b c : Nat) : a + b + c = a + c + b := by + rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm _ b] +''' @sgl.function def multi_turn_question(s, question_1, question_2): @@ -16,15 +77,16 @@ def multi_turn_question(s, question_1, question_2): @sgl.function -def select_tactic(s, server, state, goal_id, n_tries = 5): +def select_tactic(s, server, state, goal_id, feedback_turns = 5): s += sgl.system("You are an expert in Lean. Choose the next one tactic to run given the current proof state and goals.") + s += sgl.user(LEAN4_REWRITE) s += sgl.user("The current proof state: GoalState(state_id=0, goals=[Goal(variables=[], target='∀ (a b: Nat), (b = 2) -> 1 + a + 1 = a + b', name=None, is_conversion=False)])") s += sgl.assistant("```intros a b h```") s += sgl.user("The current proof state: GoalState(state_id=1, goals=[Goal(variables=[Variable(t='Nat', v=None, name='a'), Variable(t='Nat', v=None, name='b'), Variable(t='b = 2', v=None, name='h')], target='1 + a + 1 = a + b', name=None, is_conversion=False)])") s += sgl.assistant('TacticCalc("1 + a + 1 = a + 1 + 1")') s += sgl.user("The current proof state: " + str(state)) - for i in range(n_tries): + for i in range(feedback_turns): with s.copy() as tmp: tmp += sgl.assistant(sgl.gen("tactic", max_tokens=64)) print("==tmp===") @@ -99,7 +161,7 @@ class TestServerSGL(unittest.TestCase): for i in range(n_trails): print(f"===============trail {str(i)}============") try: - state = select_tactic.run(server, state2, goal_id = 1) + state = select_tactic.run(server, state2, goal_id = 0) state3 = state.ret_value for m in state.messages(): print(m["role"], ":", m["content"]) @@ -109,6 +171,8 @@ class TestServerSGL(unittest.TestCase): except ServerError as e: print(f"server error: {e}") continue + state3 = server.goal_tactic(state2, goal_id=0, tactic="rw [Nat.add_assoc]") + print("==========state3============") print(state3) diff --git a/poetry.lock b/poetry.lock index f4c20f5..0d47380 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "pexpect"