Merge pull request #5 from lenianiva/chuyues

change poetry.lock
This commit is contained in:
LiviaSun 2024-06-03 09:41:39 -07:00 committed by GitHub
commit 16cf53b224
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 133 additions and 42 deletions

View File

@ -1,10 +1,82 @@
from pantograph.server import Server
from pantograph.server import Server, ServerError
from pantograph.expr import Variable, Goal, TacticCalc
import unittest
import sglang as sgl
LEAN4_INTRO = '''/-- A sequence `u` of real numbers converges to `l` if `∀ ε > 0, ∃ N, ∀ n ≥ N, |u_n - l| ≤ ε`.
This condition will be spelled `seq_limit u l`. -/
def seq_limit (u : ) (l : ) : Prop :=
ε > 0, N, n N, |u n - l| ε
/- In the above definition, note that the `n`-th term of the sequence `u` is denoted
simply by `u n`.
Similarly, in the next definition, `f x` is what we would write `f(x)` on paper.
Also note that implication is denoted by a single arrow (we'll explain why later). -/
/-- A function`f : ` is continuous at `x₀` if
` ε > 0, δ > 0, x, |x - x₀| δ |f(x) - f(x₀)| ε`.
This condition will be spelled `continuous_at f x₀`.-/
def continuous_at (f : ) (x₀ : ) : Prop :=
ε > 0, δ > 0, x, |x - x₀| δ |f x - f x₀| ε
/-- Now we claim that if `f` is continuous at `x₀` then it is sequentially continuous
at `x₀`: for any sequence `u` converging to `x₀`, the sequence `f u` converges
to `f x₀`. -/
example (f : ) (u : ) (x₀ : ) (hu : seq_limit u x₀) (hf : continuous_at f x₀) :
seq_limit (f u) (f x₀) := by { -- This `by` keyword marks the beginning of the proof
-- Put your text cursor here and watch the Lean InfoView panel to the right.
-- Then move your cursor from line to line in the proof while monitoring the Infoview.
-- Our goal is to prove that, for any positive `ε`, there exists a natural
-- number `N` such that, for any natural number `n` at least `N`,
-- `|f(u_n) - f(x₀)|` is at most `ε`.
unfold seq_limit
-- Fix a positive number `ε`.
intros ε
-- By assumption on `f` applied to this positive `ε`, we get a positive `δ`
-- such that, for all real number `x`, if `|x - x₀| δ` then `|f(x) - f(x₀)| ε` (1).
obtain δ, δ_pos, Hf : δ > 0, x, |x - x₀| δ |f x - f x₀| ε := hf ε
-- The assumption on `u` applied to this `δ` gives a natural number `N` such that
-- for every natural number `n`, if `n N` then `|u_n - x₀| δ` (2).
obtain N, Hu : N, n N, |u n - x₀| δ := hu δ δ_pos
-- Let's prove `N` is suitable.
use N
-- Fix `n` which is at least `N`. Let's prove `|f(u_n) - f(x₀)| ≤ ε`.
intros n hn
-- Thanks to (1) applied to `u_n`, it suffices to prove that `|u_n - x₀| δ`.
apply Hf
-- This follows from property (2) and our assumption on `n`.
exact Hu n hn
-- This finishes the proof!
}
/-
Now that this proof is over, you can use the file explorer to the
left of this panel to open the file `Exercises > 01Rewriting.lean`.
-/'''
LEAN4_REWRITE = '''Rewrite tactic tutorial:
example (a b c : Nat) : a + b + c = a + c + b := by
rw [Nat.add_assoc, Nat.add_comm b, Nat.add_assoc]
example (a b c : Nat) : a + b + c = a + c + b := by
rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm b]
example (a b c : Nat) : a + b + c = a + c + b := by
rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm _ b]
example (f : Nat Nat) (a : Nat) (h : a + 0 = 0) : f a = f 0 := by
rw [Nat.add_zero] at h
rw [h]
def Tuple (α : Type) (n : Nat) :=
{ as : List α // as.length = n }
example (n : Nat) (h : n = 0) (t : Tuple α n) : Tuple α 0 := by
rw [h] at t
exact t
'''
@sgl.function
def multi_turn_question(s, question_1, question_2):
@ -16,22 +88,37 @@ def multi_turn_question(s, question_1, question_2):
@sgl.function
def select_tactic(s, state):
def select_tactic(s, server, state, goal_id, feedback_turns = 5):
s += sgl.system("You are an expert in Lean. Choose the next one tactic to run given the current proof state and goals.")
s += sgl.user(LEAN4_REWRITE)
s += sgl.user("The current proof state: GoalState(state_id=0, goals=[Goal(variables=[], target='∀ (a b: Nat), (b = 2) -> 1 + a + 1 = a + b', name=None, is_conversion=False)])")
s += sgl.assistant("```intros a b h```")
s += sgl.user("The current proof state: GoalState(state_id=1, goals=[Goal(variables=[Variable(t='Nat', v=None, name='a'), Variable(t='Nat', v=None, name='b'), Variable(t='b = 2', v=None, name='h')], target='1 + a + 1 = a + b', name=None, is_conversion=False)])")
s += sgl.assistant('TacticCalc("1 + a + 1 = a + 1 + 1")')
s += sgl.user("The current proof state: " + str(state))
for i in range(feedback_turns):
with s.copy() as tmp:
tmp += sgl.assistant(sgl.gen("tactic", max_tokens=64))
print("==tmp===")
print(tmp["tactic"])
tactic = extract_code_from_llm_output(tmp["tactic"])
s += sgl.assistant("```"+tactic+"```")
return tactic
success, new_state = apply_tactic(server, state, goal_id, tactic)
if not success:
with s.user():
s += "This answer got Lean compile error:\n" + str(new_state) + "\n"
s += "Please try again by taking the Lean compiler feedback."
else:
return new_state
def apply_tactic(server, state, goal_id, tactic):
try:
new_state = server.goal_tactic(state, goal_id=goal_id, tactic=tactic)
except ServerError as e:
return False, e
return True, new_state
def extract_code_from_llm_output(reply):
i = reply.find("```lean")
@ -51,6 +138,7 @@ def extract_code_from_llm_output(reply):
class TestServerSGL(unittest.TestCase):
def test_conv_calc_sgl(self):
n_trails = 5
sgl.set_default_backend(sgl.OpenAI("gpt-4"))
server = Server()
@ -80,43 +168,46 @@ class TestServerSGL(unittest.TestCase):
target="a + 1 + 1 = a + b",
),
])
state = select_tactic.run(str(state2))
tactic = state.ret_value
state3 = None
for i in range(n_trails):
print(f"===============trail {str(i)}============")
try:
state = select_tactic.run(server, state2, goal_id = 1)
state3 = state.ret_value
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- tactic --\n", tactic)
print("\n-- new state --\n", state3)
break
except ServerError as e:
print(f"server error: {e}")
continue
state3 = server.goal_tactic(state2, goal_id=1, tactic=TacticCalc("_ = a + 2"))
state3 = server.goal_tactic(state2, goal_id=1, tactic=tactic)
print("==========state3============")
print(state3)
# state4 = server.goal_tactic(state3, goal_id=0, tactic="rw [Nat.add_assoc]")
# print("==========state4============")
# print(state4)
# self.assertTrue(state4.is_solved)
state4 = None
for i in range(n_trails):
print(f"===============trail {str(i)}============")
try:
state = select_tactic.run(server, state3, goal_id = 0)
state4 = state.ret_value
for m in state.messages():
print(m["role"], ":", m["content"])
print("\n-- new state --\n", state4)
break
# print("==========state2============")
# print(state2)
# state_c1 = server.goal_conv_begin(state2, goal_id=0)
# print("==========state c1============")
# print(state_c1)
# state_c2 = server.goal_tactic(state_c1, goal_id=0, tactic="rhs")
# print("==========state c2============")
# print(state_c2)
# state_c3 = server.goal_tactic(state_c2, goal_id=0, tactic="rw [Nat.add_comm]")
# print("==========state c3============")
# print(state_c3)
# state_c4 = server.goal_conv_end(state_c3)
# print("==========state c4============")
# print(state_c4)
except ServerError as e:
print(f"server error: {e}")
continue
# state_c5 = server.goal_tactic(state_c4, goal_id=0, tactic="rfl")
# print("==========state c5============")
# print(state_c5)
# self.assertTrue(state_c5.is_solved)
# print()
state4 = server.goal_tactic(state3, goal_id=0, tactic="rw [Nat.add_assoc]")
print("==========state4============")
print(state4)
self.assertTrue(state4.is_solved)
def test_sglang_openai(self):