fix: Remove barrier that halts problem iter
This commit is contained in:
parent
3b76080495
commit
1fde034dce
|
@ -188,8 +188,7 @@ def prove(
|
|||
result = agent.search(server, state)
|
||||
print(colored(f"Result: {result}", "blue"))
|
||||
|
||||
raise RuntimeError("Not implemented")
|
||||
return
|
||||
return result
|
||||
|
||||
# -- DSP for Lean
|
||||
|
||||
|
@ -219,7 +218,8 @@ def full_proof_search_dsp_lean(
|
|||
# -- Proof search by DSP over all eval data
|
||||
for datum in tqdm(data, total=len(data), desc='DSP proof loop per data point in benchmark.'):
|
||||
print("Problem:", colored(datum.id, "cyan"))
|
||||
flag = single_proof_search_dsp_lean(eng, server, datum)
|
||||
result = single_proof_search_dsp_lean(eng, server, datum)
|
||||
print(result)
|
||||
#server.gc()
|
||||
return
|
||||
|
||||
|
|
|
@ -166,9 +166,11 @@ def extract_lean_code(
|
|||
|
||||
if line.rstrip() == WALL:
|
||||
if is_walled_lean:
|
||||
# found wall
|
||||
code = "\n".join(curr) + "\n"
|
||||
code = code.replace("ℕ", "Nat").replace(placeholder, "sorry")
|
||||
lean_codes.append(code)
|
||||
curr = []
|
||||
is_walled = False
|
||||
is_walled_lean = False
|
||||
continue
|
||||
|
@ -186,8 +188,13 @@ class TestPrompts(unittest.TestCase):
|
|||
sketch = "```lean\nimport Mathlib.Data.Nat.Basic\nimport Aesop\n\ntheorem n_plus_zero : ∀ n : ℕ, n + 0 = n := by\n -- Consider any natural number n. We need to show that n + 0 = n.\n -- Use the fact that adding zero to any natural number does not change its value.\n have h_nat_add_zero: ∀ n : ℕ, n + 0 = n := <TODO_PROOF_OR_HAMMER>\n -- Combine facts to close goal\n <TODO_PROOF_OR_HAMMER>\n```"
|
||||
codes = extract_lean_code(sketch)
|
||||
self.assertEqual(codes, [
|
||||
"import Mathlib.Data.Nat.Basic\nimport Aesop\n\ntheorem n_plus_zero : ∀ n : Nat, n + 0 = n := by\n -- Consider any natural number n. We need to show that n + 0 = n.\n -- Use the fact that adding zero to any natural number does not change its value.\n have h_nat_add_zero: ∀ n : Nat, n + 0 = n := sorry\n -- Combine facts to close goal\n sorry\n"
|
||||
"\ntheorem n_plus_zero : ∀ n : Nat, n + 0 = n := by\n -- Consider any natural number n. We need to show that n + 0 = n.\n -- Use the fact that adding zero to any natural number does not change its value.\n have h_nat_add_zero: ∀ n : Nat, n + 0 = n := sorry\n -- Combine facts to close goal\n sorry\n"
|
||||
])
|
||||
|
||||
def test_extract_sketch_minif2f(self):
|
||||
sketch = "To solve the problem formally in Lean 4, we will sketch the proof by breaking down the steps of the informal solution, leveraging Lean 4 tactics and possibly automated theorem proving. Here's how the formal sketch might look:\n\n```lean\nimport Mathlib.Data.Complex.Basic\nimport Aesop\n\n-- Define the complex number z\ndef z : ℂ := (1 + Complex.i) / Real.sqrt 2\n\ntheorem complex_problem_solution : \n (∑ i in finset.range 12, z ^ (i + 1) ^ 2) * \n (∑ i in finset.range 12, z ^ -((i + 1) ^ 2)) = 36 := by\n -- We first compute z as a complex number with a modulus of 1.\n -- Thus, powers of z represent rotations in the complex plane.\n have h_mod_z : Complex.abs z = 1 := <TODO_PROOF_OR_HAMMER>\n -- Recognize that each term z^(k^2) and its reciprocal are conjugates due to modulus 1.\n have h_conjugates : ∀ k : ℕ, z^(k^2) * (z^(-k^2)) = 1 := <TODO_PROOF_OR_HAMMER>\n -- The product (z^(1^2) + z^(2^2) + ... + z^(12^2)) * (z^(-1^2) + z^(-2^2) + ... + z^(-12^2))\n -- simplifies as a result of this conjugate pair property.\n have h_sum_conjugates : ∑ i in finset.range 12, z ^ (i + 1) ^ 2 = 0 := <TODO_PROOF_OR_HAMMER>\n have h_sum_reciprocals : ∑ i in finset.range 12, z ^ -((i + 1) ^ 2) = 0 := <TODO_PROOF_OR_HAMMER>\n -- Combine all the contributions, where non-zero terms contribute to the total sum\n -- to ensure the final product is 36 based on the angle and distribution of terms.\n have h_final_sum_product : (∑ i in finset.range 12, z ^ (i + 1) ^ 2) *\n (∑ i in finset.range 12, z ^ -((i + 1) ^ 2)) = 36 := <TODO_PROOF_OR_HAMMER>\n -- Conclude the proof with the calculated product.\n exact h_final_sum_product\n```\n\nIn this sketch:\n- We define \\( z \\) as the complex number \\(\\frac{1+i}{\\sqrt{2}}\\).\n- We use properties of complex numbers with modulus 1, recognizing rotational symmetry and conjugate pair relations.\n- We use automated tactics (`<TODO_PROOF_OR_HAMMER>`) to handle calculations involving sums, products, and properties of the complex exponentials.\n- Finally, we show that the structure of these complex exponentials simplifies the product to yield the desired result of 36."
|
||||
codes = extract_lean_code(sketch)
|
||||
self.assertEqual(len(codes), 1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue