all worked, added pytorch and vllm test

This commit is contained in:
Brando Miranda 2024-04-29 12:53:54 -07:00
parent b20c95760a
commit 3df41c19cd
2 changed files with 89 additions and 3 deletions

View File

@ -33,22 +33,52 @@ The tests in `pantograph/server.py` also serve as simple interaction examples
# install Lean4 manually (elan and lake) # install Lean4 manually (elan and lake)
curl -sSf https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh | sh -s -- -y curl -sSf https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh | sh -s -- -y
# make sure Lean4 tools (lean, lake) are available
export PATH="$HOME/.elan/bin:$PATH"
echo 'export PATH="$HOME/.elan/bin:$PATH"' >> ~/.bashrc
bash
elan
lake
# create and activate the right python env (this is needed so that poetry build works) # create and activate the right python env (this is needed so that poetry build works)
conda create -n pypantograph_env python=3.11 -y conda create -n pypantograph_env python=3.11 -y
conda activate pypantograph_env conda activate pypantograph_env
# install poetry with python venv (needs seperate install so poetry & your projs deps don't crash)
mkdir $HOME/.virtualenvs
export VENV_PATH=$HOME/.virtualenvs/venv_for_poetry
export PATH="$VENV_PATH/bin:$PATH"
echo 'export VENV_PATH=$HOME/.virtualenvs/venv_for_poetry' >> ~/.bashrc
echo 'export PATH="$VENV_PATH/bin:$PATH"' >> ~/.bashrc
bash
python3 -m venv $VENV_PATH
$VENV_PATH/bin/pip install -U pip setuptools
$VENV_PATH/bin/pip install poetry
poetry
# build the PyPantograph proj (build the py distribution, py deps and custom (lean4) installs) # build the PyPantograph proj (build the py distribution, py deps and custom (lean4) installs)
ln -s $AFS/PyPantograph $HOME/PyPantograph
cd $HOME/PyPantograph cd $HOME/PyPantograph
poetry build poetry build
# install pypantograph in editable mode (only pyproject.toml needed! Assuming your at the proj root) # install pypantograph in editable mode (only pyproject.toml (or setup.py!) needed! Assuming your at the proj root)
pip install -e . pip install -e .
# confirm intalls # confirm intalls
pip list | grep pantograph pip list | grep pantograph
pip list | grep vllm pip list | grep vllm
pip list | greo torch pip list | grep torch
# select freeiest GPU wrt vRAM
export CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.used --format=csv,nounits,noheader | awk '{print NR-1 " " $1}' | sort -nk2 | head -n1 | cut -d' ' -f1)
echo $CUDA_VISIBLE_DEVICES
# make sure the PyPantrograph server tests by Leni work # make sure the PyPantrograph server tests by Leni work
python -m server.py # python -m server.py
python $HOME/PyPantograph/pantograph/server.py
python $HOME/PyPantograph/test_vllm.py
``` ```

56
test_vllm.py Normal file
View File

@ -0,0 +1,56 @@
# copy pasted from https://docs.vllm.ai/en/latest/getting_started/quickstart.html
# do export VLLM_USE_MODELSCOPE=True
import vllm
from vllm import LLM, SamplingParams
import torch
def test_pytorch():
print('\n----- Test PyTorch ---')
# Print the PyTorch version and CUDA version
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA version: {torch.version.cuda}")
# Perform a matrix multiplication on CUDA and print the result
result = torch.randn(2, 4).cuda() @ torch.randn(4, 1).cuda()
print(f"Matrix multiplication result: {result}")
# Check CUDA availability and device details
print(f'Number of CUDA devices: {torch.cuda.device_count()}')
if torch.cuda.device_count() > 0:
print(f'Device name: {torch.cuda.get_device_name(0)}')
else:
print("No CUDA devices available.")
def test_vllm():
print('\n----- Test vLLM ---')
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")
# llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.1")
outputs: iter = llm.generate(prompts, sampling_params)
print(f'{type(outputs)=}')
print(f'{type(outputs[0])=}')
# Print the outputs.
output: vllm.outputs.RequestOutput
for output in outputs:
prompt: str = output.prompt
generated_text: str = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == "__main__":
import time
start_time = time.time()
test_pytorch()
test_vllm()
print(f"Time taken: {time.time() - start_time:.2f} seconds, or {(time.time() - start_time) / 60:.2f} minutes, or {(time.time() - start_time) / 3600:.2f} hours.\a")