Merge pull request #21 from lenianiva/experiments/dsp

experiment: DSP with GPT-4o and o1-preview
This commit is contained in:
Leni Aniva 2024-10-12 15:51:26 -07:00 committed by GitHub
commit bc512a6ae2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 1112 additions and 297 deletions

View File

@ -13,7 +13,7 @@ lake build
```
Then run `main.py`
``` sh
python3 experiments/dsp/main.py -h
python3 main.py -h
```
The main command for running DSP is `eval`. Due to the multitude of data format
@ -21,7 +21,19 @@ out there, use the `--format` flag to specify the data format. For example,
running DSP on minif2f is:
``` sh
python3 experiments/dsp/main.py eval --dataset ../minif2f/valid.jsonl --format minif2f
python3 main.py eval \
--dataset ../minif2f/valid.jsonl \
--format minif2f \
--output results-minif2f-valid
```
Then, use `plot.py` to generate the plots
``` sh
python3 plot.py \
--result results-minif2f-{valid,test} \
--names valid test \
--plot-output output-plot
```
## Related work

View File

@ -1,186 +0,0 @@
examples_for_dsp_draft_prompt_original = [
{"tag": "aimeI_2000_p7", "category": "algebra", "metadata": {}, "prompt": "Informal:\n(*### Problem\n\nSuppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz = 1,$ $x + \\frac {1}{z} = 5,$ and $y + \\frac {1}{x} = 29.$ Then $z + \\frac {1}{y} = \\frac {m}{n},$ where $m$ and $n$ are [[relatively prime]] positive integers. Find $m + n$. Show that it is 5.\n\n\nnote: this is the type of problem that makes you think symmetry, but actually can be solved easily with substitution, and other normal technniques\n\n### Solution\n\nWe can rewrite $xyz=1$ as $\\frac{1}{z}=xy$.\n\nSubstituting into one of the given equations, we have \n$x+xy=5$\n$x(1+y)=5$\n$\\frac{1}{x}=\\frac{1+y}{5}.$\n\nWe can substitute back into $y+\\frac{1}{x}=29$ to obtain\n$y+\\frac{1+y}{5}=29$\n$5y+1+y=145$\n$y=24.$\n\nWe can then substitute once again to get\n$x=\\frac15$\n$z=\\frac{5}{24}.$\nThus, $z+\\frac1y=\\frac{5}{24}+\\frac{1}{24}=\\frac{1}{4}$, so $m+n=005$.*)\n\nFormal:\ntheorem\n fixes x y z :: real\n and p :: rat\n assumes \"0 < x \\<and> 0 < y \\<and> 0 < z\"\n and \"x * y * z = 1\"\n and \"x + 1 / z = 5\"\n and \"y + 1 / x = 29\"\n and \"z + 1 / y = p\"\n and \"0 < p\" \n shows \"let (m,n) = quotient_of p in m + n = 5\"\nproof -\n (* We can rewrite $xyz=1$ as $\\frac{1}{z}=xy$. *)\n have c0: \"z = 1 / (x*y)\"\n sledgehammer\n (* Substituting into one of the given equations, we have \n $x+xy=5$\n $x(1+y)=5$\n $\\frac{1}{x}=\\frac{1+y}{5}.$ *)\n have c1: \"1 / x = (1+y) / 5\" \n proof -\n have \"x + x * y = 5\" using assms(3) unfolding c0\n sledgehammer\n then have \"x * (1 + y) = 5\"\n sledgehammer\n then have t1: \"x = 5 / (1+y)\"\n sledgehammer\n then show ?thesis\n sledgehammer\n qed\n (* We can substitute back into $y+\\frac{1}{x}=29$ to obtain\n $y+\\frac{1+y}{5}=29$\n $5y+1+y=145$\n $y=24.$ *)\n have \"y + (1+y)/5 = 29\" using assms(4) unfolding c1 sledgehammer\n then have \"5* (y + (1+y)/5) = 5 * 29\" sledgehammer\n also have \"... = 145\" sledgehammer\n finally have c2_1: \"5* (y + (1+y)/5) = 145\" sledgehammer\n have \"5* (y + (1+y)/5) = 5*y + (1+y)\" sledgehammer\n also have \"... = 6*y + 1\" sledgehammer\n finally have c2_2: \"5* (y + (1+y)/5) = 6*y + 1\" sledgehammer\n have \"6*y + 1 = 145\" using c2_1 c2_2 sledgehammer\n then have c2: \"y = 24\" sledgehammer\n (* We can then substitute once again to get\n $x=\\frac15$\n $z=\\frac{5}{24}.$ *)\n have \"1/x = 5\" using c1 unfolding c2 sledgehammer\n then have c3: \"x = 1/5\"\n sledgehammer\n then have c4: \"z = 5/24\"\n sledgehammer\n (* Thus, $z+\\frac1y=\\frac{5}{24}+\\frac{1}{24}=\\frac{1}{4}$, so $m+n=005$. *)\n have \"p = z + 1/y\" using assms(5) sledgehammer\n also have \"... = 5/24 + 1/24\" unfolding c2 c4 sledgehammer\n also have \"... = 1/4\" sledgehammer\n finally have c5: \"p = 1/4\"\n sledgehammer\n have \"quotient_of p = (1, 4)\" unfolding c5 sledgehammer\n then show ?thesis sledgehammer\nqed"},
{"tag": "algebra_2rootsintpoly_am10tap11eqasqpam110", "category": "algebra", "metadata": {}, "prompt": "Informal:\n(*### Problem\n\nShow that for any complex number a, $(a-10)(a+11) = a^2 + a - 110$.\n\n### Solution\n\nWe first expand all terms of the left hand side to get $a^2 - 10a + 11a - 10*11$.\nThis equals $a^2 + a - 10*11 = a^2 + a - 110$.*)\n\nFormal:\ntheorem\n fixes a :: complex\n shows \"(a-10) * (a+11) = a^2 + a -110\"\nproof -\n (* We first expand all terms of the left hand side to get $a^2 - 10a + 11a - 10*11$. *)\n have \"(a-10) * (a+11) = a^2 - 10*a + 11*a - 10 *11\"\n sledgehammer\n (* This equals $a^2 + a - 10*11 = a^2 + a - 110$. *)\n also have \"\\<dots> = a^2 + a - 10 * 11\"\n sledgehammer\n also have \"\\<dots> = a^2 + a - 110\"\n sledgehammer\n finally show ?thesis\n sledgehammer\nqed"},
{"tag": "mathd_numbertheory_335", "category": "number_theory", "metadata": {}, "prompt": "Informal:\n(*### Problem\n\nWhen Rachel divides her favorite number by 7, she gets a remainder of 5. What will the remainder be if she multiplies her favorite number by 5 and then divides by 7? Show that it is 4.\n\n### Solution\n\nLet $n$ be Rachel's favorite number. \nThen $n \\equiv 5 \\pmod{7}$, so $5n \\equiv 5 \\cdot 5 \\equiv 25 \\equiv 4 \\pmod{7}$.\n*)\n\nFormal:\ntheorem\n fixes n :: nat\n assumes h0 : \"n mod 7 = 5\"\n shows \"(5 * n) mod 7 = 4\"\nproof -\n (* Then $n \\equiv 5 \\pmod{7}$, so $5n \\equiv 5 \\cdot 5 \\equiv 25 \\equiv 4 \\pmod{7}$. *)\n have c0:\"(5 * n) mod 7 = (5 * 5) mod 7\" using h0\n sledgehammer\n then have \"\\<dots> = 4\" sledgehammer\n then have \"(5 * n) mod 7 = 4\" using c0 sledgehammer\n then show ?thesis sledgehammer\nqed"}
]
examples_for_dsp_draft_prompt_template = [
{
"tag": "aimeI_2000_p7",
"category": "algebra",
"metadata": {},
"prompt": (
"Informal:\n"
"(*### Problem\n\n"
"Suppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz = 1,$ "
"$x + \\frac {1}{z} = 5,$ and $y + \\frac {1}{x} = 29.$ Then $z + \\frac {1}{y} = \\frac {m}{n},$ "
"where $m$ and $n$ are [[relatively prime]] positive integers. Find $m + n$. Show that it is 5.\n\n"
"note: this is the type of problem that makes you think symmetry, but actually can be solved easily "
"with substitution, and other normal technniques\n\n"
"### Solution\n\n"
"We can rewrite $xyz=1$ as $\\frac{1}{z}=xy$.\n\n"
"Substituting into one of the given equations, we have \n$x+xy=5$\n$x(1+y)=5$\n$\\frac{1}{x}=\\frac{1+y}{5}.$\n\n"
"We can substitute back into $y+\\frac{1}{x}=29$ to obtain\n"
"$y+\\frac{1+y}{5}=29$\n$5y+1+y=145$\n$y=24.$\n\n"
"We can then substitute once again to get\n$x=\\frac15$\n$z=\\frac{5}{24}.$\n"
"Thus, $z+\\frac1y=\\frac{5}{24}+\\frac{1}{24}=\\frac{1}{4}$, so $m+n=005$.*)\n\n"
"Formal:\n"
"theorem\n"
" fixes x y z :: real\n"
" and p :: rat\n"
" assumes \"0 < x \\<and> 0 < y \\<and> 0 < z\"\n"
" and \"x * y * z = 1\"\n"
" and \"x + 1 / z = 5\"\n"
" and \"y + 1 / x = 29\"\n"
" and \"z + 1 / y = p\"\n"
" and \"0 < p\" \n"
" shows \"let (m,n) = quotient_of p in m + n = 5\"\n"
"proof -\n"
" (* We can rewrite $xyz=1$ as $\\frac{1}{z}=xy$. *)\n"
" have c0: \"z = 1 / (x*y)\"\n"
" sledgehammer\n"
" (* Substituting into one of the given equations, we have \n"
" $x+xy=5$\n"
" $x(1+y)=5$\n"
" $\\frac{1}{x}=\\frac{1+y}{5}.$ *)\n"
" have c1: \"1 / x = (1+y) / 5\" \n"
" proof -\n"
" have \"x + x * y = 5\" using assms(3) unfolding c0\n"
" sledgehammer\n"
" then have \"x * (1 + y) = 5\"\n"
" sledgehammer\n"
" then have t1: \"x = 5 / (1+y)\"\n"
" sledgehammer\n"
" then show ?thesis\n"
" sledgehammer\n"
" qed\n"
" (* We can substitute back into $y+\\frac{1}{x}=29$ to obtain\n"
" $y+\\frac{1+y}{5}=29$\n"
" $5y+1+y=145$\n"
" $y=24.$ *)\n"
" have \"y + (1+y)/5 = 29\" using assms(4) unfolding c1 sledgehammer\n"
" then have \"5* (y + (1+y)/5) = 5 * 29\" sledgehammer\n"
" also have \"... = 145\" sledgehammer\n"
" finally have c2_1: \"5* (y + (1+y)/5) = 145\" sledgehammer\n"
" have \"5* (y + (1+y)/5) = 5*y + (1+y)\" sledgehammer\n"
" also have \"... = 6*y + 1\" sledgehammer\n"
" finally have c2_2: \"5* (y + (1+y)/5) = 6*y + 1\" sledgehammer\n"
" have \"6*y + 1 = 145\" using c2_1 c2_2 sledgehammer\n"
" then have c2: \"y = 24\" sledgehammer\n"
" (* We can then substitute once again to get\n"
" $x=\\frac15$\n"
" $z=\\frac{5}{24}.$ *)\n"
" have \"1/x = 5\" using c1 unfolding c2 sledgehammer\n"
" then have c3: \"x = 1/5\"\n"
" sledgehammer\n"
" then have c4: \"z = 5/24\"\n"
" sledgehammer\n"
" (* Thus, $z+\\frac1y=\\frac{5}{24}+\\frac{1}{24}=\\frac{1}{4}$, so $m+n=005$. *)\n"
" have \"p = z + 1/y\" using assms(5) sledgehammer\n"
" also have \"... = 5/24 + 1/24\" unfolding c2 c4 sledgehammer\n"
" also have \"... = 1/4\" sledgehammer\n"
" finally have c5: \"p = 1/4\"\n"
" sledgehammer\n"
" have \"quotient_of p = (1, 4)\" unfolding c5 sledgehammer\n"
" then show ?thesis sledgehammer\n"
"qed"
),
},
{
"tag": "algebra_2rootsintpoly_am10tap11eqasqpam110",
"category": "algebra",
"metadata": {},
"prompt": (
"Informal:\n"
"(*### Problem\n\n"
"Show that for any complex number a, $(a-10)(a+11) = a^2 + a - 110$.\n\n"
"### Solution\n\n"
"We first expand all terms of the left hand side to get $a^2 - 10a + 11a - 10*11$.\n"
"This equals $a^2 + a - 10*11 = a^2 + a - 110$.*)\n\n"
"Formal:\n"
"theorem\n"
" fixes a :: complex\n"
" shows \"(a-10) * (a+11) = a^2 + a -110\"\n"
"proof -\n"
" (* We first expand all terms of the left hand side to get $a^2 - 10a + 11a - 10*11$. *)\n"
" have \"(a-10) * (a+11) = a^2 - 10*a + 11*a - 10 *11\"\n"
" sledgehammer\n"
" (* This equals $a^2 + a - 10*11 = a^2 + a - 110$. *)\n"
" also have \"\\<dots> = a^2 + a - 10 * 11\"\n"
" sledgehammer\n"
" also have \"\\<dots> = a^2 + a - 110\"\n"
" sledgehammer\n"
" finally show ?thesis\n"
" sledgehammer\n"
"qed"
),
},
{
"tag": "mathd_numbertheory_335",
"category": "number_theory",
"metadata": {},
"prompt": (
"Informal:\n"
"(*### Problem\n\n"
"When Rachel divides her favorite number by 7, she gets a remainder of 5. What will the remainder be if she "
"multiplies her favorite number by 5 and then divides by 7? Show that it is 4.\n\n"
"### Solution\n\n"
"Let $n$ be Rachel's favorite number. \n"
"Then $n \\equiv 5 \\pmod{7}$, so $5n \\equiv 5 \\cdot 5 \\equiv 25 \\equiv 4 \\pmod{7}$.\n*)\n\n"
"Formal:\n"
"theorem\n"
" fixes n :: nat\n"
" assumes h0 : \"n mod 7 = 5\"\n"
" shows \"(5 * n) mod 7 = 4\"\n"
"proof -\n"
" (* Then $n \\equiv 5 \\pmod{7}$, so $5n \\equiv 5 \\cdot 5 \\equiv 25 \\equiv 4 \\pmod{7}$. *)\n"
" have c0:\"(5 * n) mod 7 = (5 * 5) mod 7\" using h0\n"
" sledgehammer\n"
" then have \"\\<dots> = 4\" sledgehammer\n"
" then have \"(5 * n) mod 7 = 4\" using c0 sledgehammer\n"
" then show ?thesis sledgehammer\n"
"qed"
),
}
]
# -- Prompts for generating (informal) drafts (basically informal/natural language solution strings, that contain less details than a formal proof, hence why they are called "drafts")
prompt_draft_template_4_isabelle = """Draft an informal solution similar to the one below.
The informal solution will be used to sketch a formal Isabelle proof.
Here are some examples: \n"""
for example in examples_for_dsp_draft_prompt_template:
# P_draft_isa_prompt_template += ("Example:\n" + x['prompt'][:x['prompt'].find('Formal:')] + "\n\n")
# - Extract the 'prompt' field from the current example
prompt_text = example['prompt']
# - Find the index where the 'Formal:' keyword starts
formal_index = prompt_text.find('Formal:')
# - Extract the part of the prompt before the 'Formal:' keyword
nl_prob_soln = prompt_text[:formal_index] # Append nl/i draft examples: prob_nl, soln_nl/draft_nl
# - Append this i draft example our prompt draft/P_draft
prompt_draft_template_4_isabelle += f"Example:\n{informal_part}\n\n"
# append the final part of the prompt template that prompts model to do prediction, we'd need to insert new nl problem text here before using it
prompt_draft_template_4_isabelle += """Informal:
(*### Problem
"""
# P_sketch isabelle, ref: https://github.com/brando90/ntptutorial-II/blob/main/partII_dsp/notebooks/II_dsp__part2_dsp.ipynb
prompt = """Translate the informal solution into a sketch of the
formal Isabelle proof. Add `sledgehammer` in the sketch whenever
possible. `sledgehammer` will be used to call the automated Sledgehammer prover.
Here are some examples:
"""
for x in examples:
prompt += (x['prompt'] + "\n\n")
prompt += """Informal:
(*### Problem
"""
xf = """theorem
fixes x :: int
assumes h0: "even x"
shows "odd (x+5)" """
zi = p.f(prompt, xi + '\n\n' + yi + '\n\n' + xf)
print(zi)

View File

@ -1,12 +1,13 @@
import sys, os, json, subprocess
from dataclasses import dataclass
import sys, os, json, subprocess, time, datetime
from pathlib import Path
from typing import Union, Any, Tuple
from dataclasses import asdict
from typing import Union, Any, Tuple, Optional
from tqdm import tqdm
from openai import OpenAI
import wandb
from tenacity import retry, stop_after_attempt, wait_exponential
from pantograph import Server
from pantograph import Server, ServerError, DEFAULT_CORE_OPTIONS
from pantograph.search import SearchResult
from termcolor import colored
from solve.prompts import (
@ -20,17 +21,16 @@ from solve.prompts import (
get_prompt_sketch_template_4_lean_v0,
)
from solve.prove import HammerAgent
from solve.data import Datum
from solve.data import (
Datum,
SamplingParams,
SketchParseFailure,
SearchFailure,
DatumResult,
)
# prompt_draft_template_lean4_v0 = "Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + 0 = n.\n\n### Solution\n\nConsider any natural number n. From properties of addition, adding zero does not change its values. Thus, n + 0 = n.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + (m + 1) = (n + m) + 1.\n\n### Solution\n\nConsider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n and m, n + m = m + n.\n\n### Solution\n\nConsider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m + (n + 1). Thus, by induction, n + m = m + n, qed.*)\n\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n"
@dataclass
class SamplingParams:
n: int
max_tokens: int
top_p: int
temperature: float
stop: str
class Engine:
def __init__(self):
@ -64,7 +64,7 @@ class OpenAI_DSP_Engine(Engine):
print(f'{base_url=}') if verbose_init else None
if not ('gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model):
if not ('gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model or model == "o1-preview"):
raise ValueError(f"Model {model=} not supported.")
self.model = model
self.api_key = api_key
@ -82,6 +82,41 @@ class OpenAI_DSP_Engine(Engine):
# Prove params
# ...TODO not sure if needed right now...
@property
def role_prompt(self) -> str:
return "assistant" if self.model.startswith("o1") else "system"
def sample_draft(self, prompt: str):
extra = {} if self.model.startswith("o1") else dict(
temperature=self.draft_sampling_params.temperature,
top_p=self.draft_sampling_params.top_p,
stop=self.draft_sampling_params.stop[:3],
)
return self.llm.chat.completions.create(
model=self.model,
messages=[
{"role": self.role_prompt, "content": self.draft_system_prompt},
{"role": "user", "content": prompt},
],
n=self.draft_sampling_params.n,
**extra,
)
def sample_sketch(self, prompt: str):
extra = {} if self.model.startswith("o1") else dict(
temperature=self.sketch_sampling_params.temperature,
top_p=self.sketch_sampling_params.top_p,
)
return self.llm.chat.completions.create(
model=self.model,
messages=[
{"role": self.role_prompt, "content": self.sketch_system_prompt},
{"role": "user", "content": prompt},
],
n=self.sketch_sampling_params.n,
**extra,
# stop=eng.sketch_sampling_params.stop[:3],
)
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def autoformalize_prob(
eng: Engine,
@ -91,8 +126,8 @@ def autoformalize_prob(
""" Autoformalize natural language problem to formal language problem. """
pass
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def draft(
#@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def step_draft(
eng: Engine,
datum: Datum,
verbose: bool = False,
@ -106,17 +141,7 @@ def draft(
prompt = eng.draft_prompt_template.replace('{nl_problem}', nl_problem)
# Get all **completions** to single prompt, one (in) -> many (out)
# ref: https://platform.openai.com/docs/api-reference/chat/object
response: Any = eng.llm.chat.completions.create(
model=eng.model,
messages=[
{"role": "system", "content": eng.draft_system_prompt},
{"role": "user", "content": prompt},
],
temperature=eng.draft_sampling_params.temperature,
top_p=eng.draft_sampling_params.top_p,
n=eng.draft_sampling_params.n,
stop=eng.draft_sampling_params.stop[:3],
)
response: Any = eng.sample_draft(prompt)
# Get all completions for single prompt
completions: list[str] = [
completion.message.content
@ -125,8 +150,8 @@ def draft(
drafts: list[str] = completions
return drafts
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def sketch(
#@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def step_sketch(
eng: Engine,
datum: Datum,
drafts: list[str],
@ -149,29 +174,19 @@ def sketch(
x_fl_problem = datum.fl_problem if datum.fl_problem else autoformalize_prob(eng, datum)
prompt = eng.sketch_prompt_template.replace('{fl_problem}', x_nl_problem).replace('{fl_problem}', y_nl_solution)
# Get all **completions** to single prompt, one (in) -> many (out), ref: https://platform.openai.com/docs/api-reference/chat/object
response: Any = eng.llm.chat.completions.create(
model=eng.model,
messages=[
{"role": "system", "content": eng.sketch_system_prompt},
{"role": "user", "content": prompt},
],
temperature=eng.sketch_sampling_params.temperature,
top_p=eng.sketch_sampling_params.top_p,
n=eng.sketch_sampling_params.n,
# stop=eng.sketch_sampling_params.stop[:3],
)
response: Any = eng.sample_sketch(prompt)
# Get all completions for single prompt
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
sketches: list[str] = completions
# Return
return sketches, x_fl_problem
def prove(
def step_prove(
eng: Engine,
server: Server,
fl_prob: str,
fl_sketch: list[str],
):
fl_sketch: str,
) -> Union[SketchParseFailure, SearchFailure, SearchResult]:
"""
Complete formal sketch and check if it proves the theorem.
@ -182,62 +197,134 @@ def prove(
"""
# If this throws index out of bound errors it means the source doesn't contain walled off Lean sections.
print(colored("Sketch:", "yellow"), fl_sketch)
lean_code, = [extract_lean_code(sketch)[0] for sketch in fl_sketch]
print(colored("Lean code:", "light_grey"), lean_code)
states = server.load_sorry(lean_code)
lean_code = "\n".join(extract_lean_code(fl_sketch))
print(colored("Lean code:", "light_grey", attrs=["bold"]), lean_code)
try:
states = server.load_sorry(lean_code)
except ServerError as e:
msg = f"Encountered exception: {e}"
print(colored(msg, "red"))
return SketchParseFailure(
sketch=fl_sketch,
error=msg,
)
if len(states) != 1:
print(colored("Model must output one compilation unit", "red"))
raise NotImplemented
return SketchParseFailure(
sketch=fl_sketch,
error="Model must output one compilation unit",
)
state = states[0]
if isinstance(state, list) and len(state) > 0:
print(colored("Sketch failed:", "red"), "\n".join(state))
# what should we do?
raise NotImplemented
# This means `state` contains error messages
msg = "\n".join(state)
print(colored("Sketch failed:", "red"), msg)
return SketchParseFailure(
sketch=fl_sketch,
error=f"Sketch failed: {msg}",
)
agent = HammerAgent()
result = agent.search(server, state)
print(colored(f"Result: {result}", "blue"))
try:
result = agent.search(
server,
state,
max_steps=1000,
max_trials_per_goal=len(agent.tactics) + 1,
)
print(colored(f"Result: {result}", "blue"))
return result
return result
except Exception as e:
return SearchFailure(
error=f"Server threw exception",
sketch=fl_sketch,
message=str(e),
)
# -- DSP for Lean
def single_proof_search_dsp_lean(
eng: Engine,
server: Server,
server_func,
datum: Datum,
) -> bool:
) -> DatumResult:
start_time = time.time()
# -- Draft: [y_nl_pred_draft]_n ~ draft(eng, x_nl_prob, P_draft)
y_nl_pred_drafts = draft(eng, datum)
y_nl_pred_drafts = step_draft(eng, datum)
# -- Sketch: z_fl_pred_sketch ~ sketch(eng, x_nl_prob, [y_nl_pred_draft]_n, x_fl_prob, P_sketch)
z_fl_pred_sketches, x_fl_prob = sketch(eng, datum, y_nl_pred_drafts)
z_fl_pred_sketches, x_fl_prob = step_sketch(eng, datum, y_nl_pred_drafts)
# -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches)
result: bool = prove(eng, server, x_fl_prob, z_fl_pred_sketches)
assert len(z_fl_pred_sketches) == eng.sketch_sampling_params.n
# -- Return
return result
results = []
success = False
for i_sketch, sketch in enumerate(z_fl_pred_sketches):
if len(z_fl_pred_sketches):
print(colored(f"Sketch {1+i_sketch}/{len(z_fl_pred_sketches)}", attrs=["bold", "underline"]))
try:
server = server_func()
except Exception as e:
print(colored("Failed to create server: {e}", "red"))
return DatumResult(
name=str(datum),
error=str(e),
)
# -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches)
prove_result = step_prove(eng, server, x_fl_prob, sketch)
results.append(prove_result)
if isinstance(prove_result, SearchResult) and prove_result.success:
success = True
break
duration = time.time() - start_time
return DatumResult(
name=str(datum),
success=success,
proves=results,
duration=duration,
)
def full_proof_search_dsp_lean(
eng: Engine,
server: Server,
server_func,
data: list[Datum],
path_output: Path,
):
print(colored(f"DSP on {len(data)} points", "blue", attrs=["bold", "underline"]))
n_success = 0
n_tried = 0
# -- Proof search by DSP over all eval data
for i, datum in tqdm(enumerate(data), total=len(data), desc='DSP proof loop per data point in benchmark.'):
print(f"Problem {i}:", colored(str(datum), "cyan"))
result = single_proof_search_dsp_lean(eng, server, datum)
file_name = path_output / f"{i:03}.json"
with open(file_name, 'w') as f:
json.dump({ 'name': str(datum), 'success': result.success, 'steps': result.steps }, f)
output_path = path_output / f"{i:03}.json"
key = str(datum)
# Detect if file exists
if output_path.is_file():
obj = json.load(open(output_path, "r"))
if obj['name'] != key:
print(colored(f"Existing datum name {obj['name']} does not match dataset {key}. The output directory may be wrong"))
return
print(f"Skipped {output_path.name}:", colored(key, "green"))
continue
n_tried += 1
print(f"Problem {output_path.name}:", colored(key, "cyan"))
result = single_proof_search_dsp_lean(eng, server_func, datum)
with open(output_path, 'w') as f:
json.dump(asdict(result), f)
if result.success:
n_success += 1
#server.gc()
return
print(f"Proved {n_success}/{n_tried} problems")
experiment_dir = Path(__file__).resolve().parent
@ -269,7 +356,6 @@ def load_data(args) -> list[Datum]:
# -- Main
def main(args):
import time, datetime
start_time = time.time()
# Setup paths and data
@ -279,11 +365,13 @@ def main(args):
# Start server
project_path, lean_path = get_project_and_lean_path()
server = Server(
imports=["Mathlib", "Aesop"],
project_path=project_path,
lean_path=lean_path,
)
def server_func():
return Server(
imports=["Mathlib", "Aesop"],
project_path=project_path,
lean_path=lean_path,
core_options=DEFAULT_CORE_OPTIONS,
)
# - Start wandb run
# print(f'\n\n-- Setup params')
@ -300,7 +388,7 @@ def main(args):
# - Run DSP for Lean
api_key = os.environ['OPENAI_API_KEY']
draft_sampling_params = SamplingParams(
n=args.n_samples,
n=1, #args.n_samples,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
@ -321,8 +409,11 @@ def main(args):
sketch_sampling_params=sketch_sampling_params,
)
print(colored(f"DSP on {len(data_eval)} points", "blue", attrs=["bold", "underline"]))
print(f"Draft={draft_sampling_params}")
print(f"Sketch={sketch_sampling_params}")
# - Full proof search with DSP
full_proof_search_dsp_lean(eng, server, data_eval, path_output)
full_proof_search_dsp_lean(eng, server_func, data_eval, path_output)
dt = datetime.timedelta(seconds=time.time() - start_time)
print(colored(f"Time elapsed: {dt}", "magenta"))
@ -332,6 +423,26 @@ def main(args):
# print(f"{wandb.config=}")
# run.finish()
def check(args):
path_output = Path(args.output)
data = load_data(args)
n_success = 0
n_tried = 0
for i, datum in tqdm(enumerate(data), total=len(data), desc='DSP proof loop per data point in benchmark.'):
file_name = path_output / f"{i:03}.json"
key = str(datum)
# Detect if file exists
obj = json.load(open(file_name, "r"))
if obj['name'] != key:
print(colored(f"Existing datum name {obj['name']} does not match dataset {key}. The output directory may be wrong", "red"))
return
n_tried += 1
if obj['success']:
n_success += 1
print(f"Proved {n_success}/{n_tried} problems")
if __name__ == "__main__":
import argparse
@ -343,7 +454,7 @@ if __name__ == "__main__":
parser.add_argument(
'mode',
help="Function",
choices=['eval', 'prompts'],
choices=['prompts', 'eval', 'check'],
)
parser.add_argument(
"--dataset",
@ -359,7 +470,7 @@ if __name__ == "__main__":
"--model",
help="Model",
default="gpt-4o",
choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct"],
choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct", "o1-preview"],
)
parser.add_argument(
"--format",
@ -369,18 +480,40 @@ if __name__ == "__main__":
)
parser.add_argument("--start", default=0)
parser.add_argument("--end", default=sys.maxsize)
parser.add_argument("--batchsize", default=10, help="putnam has 348")
parser.add_argument("--n-samples", default=1, help="num seqs to return for given prompt")
parser.add_argument("--max-tokens", default=2048, help="Maximum number of tokens in one sample")
parser.add_argument("--top-p", default=0.95, help="Sampling top p")
parser.add_argument("--temperature", default=0.8, help="Sampling temperature")
parser.add_argument(
"--batchsize",
default=10, type=int,
help="putnam has 348",
)
parser.add_argument(
"--n-samples",
default=1, type=int,
help="Number of sketch samples for a draft",
)
parser.add_argument(
"--max-tokens",
default=2048, type=int,
help="Maximum number of tokens in one sample",
)
parser.add_argument(
"--top-p",
default=0.95, type=float,
help="Sampling top p via nucleus sampling",
)
parser.add_argument(
"--temperature",
default=0.8, type=float,
help="Sampling temperature",
)
parser.add_argument("--verbose", action='store_true')
args = parser.parse_args()
if args.mode == "eval":
main(args)
elif args.mode == "prompts":
if args.mode == "prompts":
prompt = get_prompt_sketch_template_4_lean_v0(verbose=args.verbose)
print(prompt)
elif args.mode == "eval":
main(args)
elif args.mode == 'check':
check(args)
else:
raise ValueError(f"Unknown mode: {args.mode}")

143
experiments/dsp/plot.py Normal file
View File

@ -0,0 +1,143 @@
import json
from pathlib import Path
from matplotlib import pyplot
from typing import Callable, Optional
from tqdm import tqdm
import seaborn
import pandas
from termcolor import colored
from solve.data import (
Datum,
SamplingParams,
SketchParseFailure,
SearchFailure,
DatumResult,
)
experiment_dir = Path(__file__).resolve().parent
def read_data(name: str, result_path: Path):
assert result_path.is_dir(), f"Result path is not a directory: {result_path}"
objs = [
DatumResult.parse(json.load(open(file_name, "r")))
for file_name in tqdm(result_path.glob("*"), desc="Reading results")
]
print(colored(f"{name}", attrs=["underline"]))
# Calculate the metrics
successes = sum(obj.success for obj in objs)
success_rate = successes / len(objs)
print(f"Success rate: {successes} / {len(objs)} = {success_rate:.3f}")
# Calculate hammer rates
hammer_invocations = [
obj.hammer_invocations
for obj in objs
if obj.hammer_invocations
]
if hammer_invocations:
avg_hammer_invocation = sum(hammer_invocations) / len(hammer_invocations)
print(f"Hammer invocations: {avg_hammer_invocation:.3f}")
else:
print("Hammer invocations cannot be calculated")
durations = [obj.duration for obj in objs if obj.duration and obj.duration > 0]
if durations:
avg_duration = sum(durations) / len(durations)
print(f"Durations: {avg_duration:.3f}")
else:
print("Durations cannot be calculated")
return objs
def differentiated_histogram(
path: Path,
data: dict[str, list[dict]],
key: str,
key_func: Callable[[DatumResult], Optional[float]],
xticks: list[float] = None,
**kwargs,
):
"""
Map objects using `key_func`, filtering o
"""
dfs = [
pandas.DataFrame({ 'name': name, key: [ key_func(obj) for obj in objs ]})
for name, objs in data.items()
]
df = pandas.concat(dfs).reset_index()
fig, ax = pyplot.subplots(figsize=(6,4))
seaborn.histplot(
df,
ax=ax,
x=key, hue="name",
multiple="stack",
**kwargs,
)
if xticks:
ax.set_xticks(xticks, labels=[str(t) for t in xticks])
fig.savefig(path, dpi=300)
def plot(args):
assert len(args.result) == len(args.names), "Names must have a 1-1 correspondence with results"
print(colored("Reading data ...", color="blue"))
data = {
name: read_data(name, Path(result_path))
for name, result_path in zip(args.names, args.result)
}
path_plot_output = Path(args.plot_output)
path_plot_output.mkdir(exist_ok=True, parents=True)
# Generate plots
differentiated_histogram(
path_plot_output / "hammer.jpg",
data,
key="Hammered Goals",
key_func=lambda obj: obj.hammer_invocations)
differentiated_histogram(
path_plot_output / "runtime.jpg",
data,
key="Runtime (s)",
key_func=lambda obj: obj.duration if obj.duration > 0.0 else None,
log_scale=True,
xticks=[5, 10, 20, 40, 80, 160, 320],
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
prog='DSP Plot',
description="Generates plots for DSP",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--result",
help="Result directory",
nargs="+",
default=experiment_dir / 'result',
)
parser.add_argument(
"--names",
help="Experiment names",
nargs="+",
default=["unnamed"],
)
parser.add_argument(
"--plot-output",
help="Plot generation directory",
default=experiment_dir / 'result-plot',
)
parser.add_argument(
"--palette",
help="Colour palette",
default="Paired",
)
args = parser.parse_args()
seaborn.set_palette(args.palette)
plot(args)

View File

@ -1,6 +1,6 @@
import json
from typing import Union, Optional
from dataclasses import dataclass
from dataclasses import dataclass, field
from pantograph.search import SearchResult
@dataclass
class Datum:
@ -68,3 +68,67 @@ class Datum:
return Datum.load_minif2f(obj)
else:
raise ValueError(f"Invalid data format {data_format}")
@dataclass
class SamplingParams:
n: int
max_tokens: int
top_p: int
temperature: float
stop: str
@dataclass(frozen=True)
class SketchParseFailure:
error: str
sketch: str
@dataclass(frozen=True)
class SearchFailure:
error: str
sketch: str
message: str
@dataclass(frozen=True)
class DatumResult:
"""
Result from one DSP data point
"""
name: str
error: Optional[str] = None
duration: float = -1.0
success: Optional[bool] = False
proves: list[Union[SearchResult, SearchFailure, SketchParseFailure]] = field(default_factory=list)
@staticmethod
def parse_result(obj: dict):
if "message" in obj:
return SearchFailure(**obj)
if "error" in obj:
return SketchParseFailure(**obj)
return SearchResult(**obj)
@staticmethod
def parse(obj: dict):
return DatumResult(
name=obj['name'],
error=obj.get('error'),
duration=obj.get('duration'),
success=obj['success'],
proves=[DatumResult.parse_result(o) for o in obj['proves']]
)
@property
def hammer_invocations(self) -> Optional[float]:
"""
Average number of hammer invocations required
"""
li = [
sr.n_goals_root
for sr in self.proves
if isinstance(sr, SearchResult)
]
if not li:
return None
return sum(li)

View File

@ -143,13 +143,21 @@ prompt_sketch_template_lean4_v0 = get_prompt_sketch_template_4_lean_v0()
WALL = "```"
def postprocess_lean(
code,
placeholder: str = TOKEN_PLACEHOLDER,
):
return code.replace("", "Nat").replace(placeholder, "sorry")
def extract_lean_code(
sketch: str,
placeholder: str = TOKEN_PLACEHOLDER,
strip_imports: bool = True) -> list[str]:
lines = sketch.split("\n")
# find backtick markers ```
if WALL not in sketch:
# No walls found. The whole thing must be code
lines = [line for line in lines if not line.startswith("import ")]
return [postprocess_lean("\n".join(lines))]
lean_codes = []
curr = []
is_walled = False
@ -168,8 +176,7 @@ def extract_lean_code(
if is_walled_lean:
# found wall
code = "\n".join(curr) + "\n"
code = code.replace("", "Nat").replace(placeholder, "sorry")
lean_codes.append(code)
lean_codes.append(postprocess_lean(code))
curr = []
is_walled = False
is_walled_lean = False
@ -196,5 +203,12 @@ class TestPrompts(unittest.TestCase):
codes = extract_lean_code(sketch)
self.assertEqual(len(codes), 1)
def test_extract_sketch_no_wall(self):
payload = f"example : forall (n: Prop), n -> n := {TOKEN_PLACEHOLDER}"
payload1 = f"\nexample : forall (n: Prop), n -> n := sorry"
sketch = f"import Mathlib\n\n{payload}"
codes = extract_lean_code(sketch)
self.assertEqual(codes, [payload1])
if __name__ == '__main__':
unittest.main()

View File

@ -28,3 +28,6 @@ class HammerAgent(Agent):
self.goal_tactic_id_map[key] = i + 1
return self.tactics[i]
def reset(self):
self.goal_tactic_id_map = collections.defaultdict(lambda : 0)

View File

@ -1 +1 @@
from pantograph.server import Server
from pantograph.server import Server, ServerError, DEFAULT_CORE_OPTIONS

View File

@ -1,9 +1,10 @@
from abc import abstractmethod
import time
from dataclasses import dataclass
from typing import Optional
import collections, unittest
from pantograph.server import Server, TacticFailure
from pantograph.server import Server, TacticFailure, ServerError
from pantograph.expr import Expr, Tactic, GoalState
@ -38,6 +39,8 @@ class SearchState:
@dataclass(frozen=True)
class SearchResult:
n_goals_root: int
duration: float
success: bool
steps: int
@ -77,10 +80,14 @@ class Agent:
max_trials_per_goal: int = 5,
verbose: bool = False) -> SearchResult:
"""
Searches using th
Executes proof search on this state
"""
assert server.is_automatic(), "Search must be run in automatic mode"
n_goals_root = len(goal_state.goals)
time_start = time.time()
initial_state = SearchState(
state=goal_state,
parent=None,
@ -88,9 +95,6 @@ class Agent:
priorities=[0.0 for _ in goal_state.goals]
)
search_stack = [initial_state]
"""
Executes proof search on this state
"""
for i_step in range(max_steps):
assert search_stack, "No states in search stack"
@ -101,7 +105,12 @@ class Agent:
assert isinstance(search_state, SearchState)
if search_state.is_solved:
return SearchResult(success=True, steps=i_step)
return SearchResult(
n_goals_root=n_goals_root,
duration=time.time() - time_start,
success=True,
steps=i_step,
)
# Find the unsolved goal with the highest priority
goal_id = search_state.next_goal_id
@ -124,7 +133,12 @@ class Agent:
if verbose:
print("Search stack has been exhausted")
self.reset()
return SearchResult(success=False, steps=i_step)
return SearchResult(
n_goals_root=n_goals_root,
duration=time.time() - time_start,
success=False,
steps=i_step,
)
continue
try:
@ -151,12 +165,19 @@ class Agent:
print(f"Tactic failed: {t}")
self.tactic_feedback = str(t)
# try the next tactic. this one failed
except ServerError as e:
raise RuntimeError(f"While executing tactic: {tactic}") from e
if verbose:
print("Search iteration limit exhausted")
self.reset()
return SearchResult(success=False, steps=max_steps)
return SearchResult(
n_goals_root=n_goals_root,
duration=time.time() - time_start,
success=False,
steps=max_steps,
)
class DumbAgent(Agent):

View File

@ -19,7 +19,7 @@ class TacticFailure(Exception):
class ServerError(Exception):
pass
DEFAULT_CORE_OPTIONS=["maxHeartbeats=0", "maxRecDepth=10000"]
DEFAULT_CORE_OPTIONS=["maxHeartbeats=0", "maxRecDepth=100000"]
class Server:
@ -31,7 +31,7 @@ class Server:
# Set `{ "automaticMode" : False }` to handle resumption by yourself.
options={},
core_options=DEFAULT_CORE_OPTIONS,
timeout=60,
timeout=120,
maxread=1000000):
"""
timeout: Amount of time to wait for execution
@ -72,8 +72,11 @@ class Server:
env=env,
)
self.proc.setecho(False) # Do not send any command before this.
ready = self.proc.readline() # Reads the "ready."
assert ready == "ready.\r\n", f"Server failed to emit ready signal: {ready}; Maybe the project needs to be rebuilt"
try:
ready = self.proc.readline() # Reads the "ready."
assert ready.rstrip() == "ready.", f"Server failed to emit ready signal: {ready}; Maybe the project needs to be rebuilt"
except pexpect.exceptions.TIMEOUT as exc:
raise RuntimeError("Server failed to emit ready signal in time") from exc
if self.options:
self.run("options.set", self.options)
@ -84,16 +87,25 @@ class Server:
"""
Runs a raw JSON command. Preferably use one of the commands below.
"""
assert self.proc
s = json.dumps(payload)
self.proc.sendline(f"{cmd} {s}")
try:
line = self.proc.readline()
try:
return json.loads(line)
obj = json.loads(line)
if obj.get("error") == "io":
# The server is dead
self.proc = None
return obj
except Exception as e:
raise ServerError(f"Cannot decode: {line}") from e
self.proc.sendeof()
remainder = self.proc.read()
self.proc = None
raise RuntimeError(f"Cannot decode: {line}\n{remainder}") from e
except pexpect.exceptions.TIMEOUT as exc:
raise exc
self.proc = None
return {"error": "timeout", "message": str(exc)}
def gc(self):
"""

600
poetry.lock generated
View File

@ -455,6 +455,105 @@ traitlets = ">=4"
[package.extras]
test = ["pytest"]
[[package]]
name = "contourpy"
version = "1.3.0"
description = "Python library for calculating contours of 2D quadrilateral grids"
optional = false
python-versions = ">=3.9"
files = [
{file = "contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7"},
{file = "contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42"},
{file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7"},
{file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab"},
{file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589"},
{file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41"},
{file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d"},
{file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223"},
{file = "contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f"},
{file = "contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b"},
{file = "contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad"},
{file = "contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49"},
{file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66"},
{file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081"},
{file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1"},
{file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d"},
{file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c"},
{file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb"},
{file = "contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c"},
{file = "contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67"},
{file = "contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f"},
{file = "contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6"},
{file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639"},
{file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c"},
{file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06"},
{file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09"},
{file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd"},
{file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35"},
{file = "contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb"},
{file = "contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b"},
{file = "contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3"},
{file = "contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7"},
{file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84"},
{file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0"},
{file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b"},
{file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da"},
{file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14"},
{file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8"},
{file = "contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294"},
{file = "contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087"},
{file = "contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8"},
{file = "contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b"},
{file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973"},
{file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18"},
{file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8"},
{file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6"},
{file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2"},
{file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927"},
{file = "contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8"},
{file = "contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c"},
{file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca"},
{file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f"},
{file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc"},
{file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2"},
{file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e"},
{file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800"},
{file = "contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5"},
{file = "contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843"},
{file = "contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c"},
{file = "contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779"},
{file = "contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4"},
{file = "contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0"},
{file = "contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102"},
{file = "contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb"},
{file = "contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4"},
]
[package.dependencies]
numpy = ">=1.23"
[package.extras]
bokeh = ["bokeh", "selenium"]
docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"]
mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"]
test = ["Pillow", "contourpy[test-no-images]", "matplotlib"]
test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"]
[[package]]
name = "cycler"
version = "0.12.1"
description = "Composable style cycles"
optional = false
python-versions = ">=3.8"
files = [
{file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"},
{file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"},
]
[package.extras]
docs = ["ipython", "matplotlib", "numpydoc", "sphinx"]
tests = ["pytest", "pytest-cov", "pytest-xdist"]
[[package]]
name = "debugpy"
version = "1.8.6"
@ -605,6 +704,77 @@ files = [
six = "*"
termcolor = "*"
[[package]]
name = "fonttools"
version = "4.54.1"
description = "Tools to manipulate font files"
optional = false
python-versions = ">=3.8"
files = [
{file = "fonttools-4.54.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7ed7ee041ff7b34cc62f07545e55e1468808691dddfd315d51dd82a6b37ddef2"},
{file = "fonttools-4.54.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41bb0b250c8132b2fcac148e2e9198e62ff06f3cc472065dff839327945c5882"},
{file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7965af9b67dd546e52afcf2e38641b5be956d68c425bef2158e95af11d229f10"},
{file = "fonttools-4.54.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:278913a168f90d53378c20c23b80f4e599dca62fbffae4cc620c8eed476b723e"},
{file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0e88e3018ac809b9662615072dcd6b84dca4c2d991c6d66e1970a112503bba7e"},
{file = "fonttools-4.54.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:4aa4817f0031206e637d1e685251ac61be64d1adef111060df84fdcbc6ab6c44"},
{file = "fonttools-4.54.1-cp310-cp310-win32.whl", hash = "sha256:7e3b7d44e18c085fd8c16dcc6f1ad6c61b71ff463636fcb13df7b1b818bd0c02"},
{file = "fonttools-4.54.1-cp310-cp310-win_amd64.whl", hash = "sha256:dd9cc95b8d6e27d01e1e1f1fae8559ef3c02c76317da650a19047f249acd519d"},
{file = "fonttools-4.54.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5419771b64248484299fa77689d4f3aeed643ea6630b2ea750eeab219588ba20"},
{file = "fonttools-4.54.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:301540e89cf4ce89d462eb23a89464fef50915255ece765d10eee8b2bf9d75b2"},
{file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ae5091547e74e7efecc3cbf8e75200bc92daaeb88e5433c5e3e95ea8ce5aa7"},
{file = "fonttools-4.54.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82834962b3d7c5ca98cb56001c33cf20eb110ecf442725dc5fdf36d16ed1ab07"},
{file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d26732ae002cc3d2ecab04897bb02ae3f11f06dd7575d1df46acd2f7c012a8d8"},
{file = "fonttools-4.54.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:58974b4987b2a71ee08ade1e7f47f410c367cdfc5a94fabd599c88165f56213a"},
{file = "fonttools-4.54.1-cp311-cp311-win32.whl", hash = "sha256:ab774fa225238986218a463f3fe151e04d8c25d7de09df7f0f5fce27b1243dbc"},
{file = "fonttools-4.54.1-cp311-cp311-win_amd64.whl", hash = "sha256:07e005dc454eee1cc60105d6a29593459a06321c21897f769a281ff2d08939f6"},
{file = "fonttools-4.54.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:54471032f7cb5fca694b5f1a0aaeba4af6e10ae989df408e0216f7fd6cdc405d"},
{file = "fonttools-4.54.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fa92cb248e573daab8d032919623cc309c005086d743afb014c836636166f08"},
{file = "fonttools-4.54.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a911591200114969befa7f2cb74ac148bce5a91df5645443371aba6d222e263"},
{file = "fonttools-4.54.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93d458c8a6a354dc8b48fc78d66d2a8a90b941f7fec30e94c7ad9982b1fa6bab"},
{file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5eb2474a7c5be8a5331146758debb2669bf5635c021aee00fd7c353558fc659d"},
{file = "fonttools-4.54.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c9c563351ddc230725c4bdf7d9e1e92cbe6ae8553942bd1fb2b2ff0884e8b714"},
{file = "fonttools-4.54.1-cp312-cp312-win32.whl", hash = "sha256:fdb062893fd6d47b527d39346e0c5578b7957dcea6d6a3b6794569370013d9ac"},
{file = "fonttools-4.54.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4564cf40cebcb53f3dc825e85910bf54835e8a8b6880d59e5159f0f325e637e"},
{file = "fonttools-4.54.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6e37561751b017cf5c40fce0d90fd9e8274716de327ec4ffb0df957160be3bff"},
{file = "fonttools-4.54.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:357cacb988a18aace66e5e55fe1247f2ee706e01debc4b1a20d77400354cddeb"},
{file = "fonttools-4.54.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e953cc0bddc2beaf3a3c3b5dd9ab7554677da72dfaf46951e193c9653e515a"},
{file = "fonttools-4.54.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:58d29b9a294573d8319f16f2f79e42428ba9b6480442fa1836e4eb89c4d9d61c"},
{file = "fonttools-4.54.1-cp313-cp313-win32.whl", hash = "sha256:9ef1b167e22709b46bf8168368b7b5d3efeaaa746c6d39661c1b4405b6352e58"},
{file = "fonttools-4.54.1-cp313-cp313-win_amd64.whl", hash = "sha256:262705b1663f18c04250bd1242b0515d3bbae177bee7752be67c979b7d47f43d"},
{file = "fonttools-4.54.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ed2f80ca07025551636c555dec2b755dd005e2ea8fbeb99fc5cdff319b70b23b"},
{file = "fonttools-4.54.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9dc080e5a1c3b2656caff2ac2633d009b3a9ff7b5e93d0452f40cd76d3da3b3c"},
{file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d152d1be65652fc65e695e5619e0aa0982295a95a9b29b52b85775243c06556"},
{file = "fonttools-4.54.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8583e563df41fdecef31b793b4dd3af8a9caa03397be648945ad32717a92885b"},
{file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:0d1d353ef198c422515a3e974a1e8d5b304cd54a4c2eebcae708e37cd9eeffb1"},
{file = "fonttools-4.54.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:fda582236fee135d4daeca056c8c88ec5f6f6d88a004a79b84a02547c8f57386"},
{file = "fonttools-4.54.1-cp38-cp38-win32.whl", hash = "sha256:e7d82b9e56716ed32574ee106cabca80992e6bbdcf25a88d97d21f73a0aae664"},
{file = "fonttools-4.54.1-cp38-cp38-win_amd64.whl", hash = "sha256:ada215fd079e23e060157aab12eba0d66704316547f334eee9ff26f8c0d7b8ab"},
{file = "fonttools-4.54.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f5b8a096e649768c2f4233f947cf9737f8dbf8728b90e2771e2497c6e3d21d13"},
{file = "fonttools-4.54.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4e10d2e0a12e18f4e2dd031e1bf7c3d7017be5c8dbe524d07706179f355c5dac"},
{file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:31c32d7d4b0958600eac75eaf524b7b7cb68d3a8c196635252b7a2c30d80e986"},
{file = "fonttools-4.54.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c39287f5c8f4a0c5a55daf9eaf9ccd223ea59eed3f6d467133cc727d7b943a55"},
{file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a7a310c6e0471602fe3bf8efaf193d396ea561486aeaa7adc1f132e02d30c4b9"},
{file = "fonttools-4.54.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d3b659d1029946f4ff9b6183984578041b520ce0f8fb7078bb37ec7445806b33"},
{file = "fonttools-4.54.1-cp39-cp39-win32.whl", hash = "sha256:e96bc94c8cda58f577277d4a71f51c8e2129b8b36fd05adece6320dd3d57de8a"},
{file = "fonttools-4.54.1-cp39-cp39-win_amd64.whl", hash = "sha256:e8a4b261c1ef91e7188a30571be6ad98d1c6d9fa2427244c545e2fa0a2494dd7"},
{file = "fonttools-4.54.1-py3-none-any.whl", hash = "sha256:37cddd62d83dc4f72f7c3f3c2bcf2697e89a30efb152079896544a93907733bd"},
{file = "fonttools-4.54.1.tar.gz", hash = "sha256:957f669d4922f92c171ba01bef7f29410668db09f6c02111e22b2bce446f3285"},
]
[package.extras]
all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"]
graphite = ["lz4 (>=1.7.4.2)"]
interpolatable = ["munkres", "pycairo", "scipy"]
lxml = ["lxml (>=4.0)"]
pathops = ["skia-pathops (>=0.5.0)"]
plot = ["matplotlib"]
repacker = ["uharfbuzz (>=0.23.0)"]
symfont = ["sympy"]
type1 = ["xattr"]
ufo = ["fs (>=2.2.0,<3)"]
unicode = ["unicodedata2 (>=15.1.0)"]
woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
[[package]]
name = "fqdn"
version = "1.5.1"
@ -1220,6 +1390,129 @@ docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pyd
openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"]
test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"]
[[package]]
name = "kiwisolver"
version = "1.4.7"
description = "A fast implementation of the Cassowary constraint solver"
optional = false
python-versions = ">=3.8"
files = [
{file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"},
{file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"},
{file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"},
{file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"},
{file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"},
{file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"},
{file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"},
{file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"},
{file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"},
{file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"},
{file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"},
{file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"},
{file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"},
{file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"},
{file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"},
{file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"},
{file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"},
{file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"},
{file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"},
{file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"},
{file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"},
{file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"},
{file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"},
{file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"},
{file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"},
{file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"},
{file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"},
{file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"},
{file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"},
{file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"},
{file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"},
{file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"},
{file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"},
{file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"},
{file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"},
{file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"},
{file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"},
{file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"},
{file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"},
{file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"},
{file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"},
{file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"},
{file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"},
{file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"},
{file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"},
{file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"},
{file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"},
{file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"},
{file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"},
{file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"},
{file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"},
{file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"},
{file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"},
{file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"},
{file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"},
{file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"},
{file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"},
{file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"},
{file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"},
{file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"},
{file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"},
{file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"},
{file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"},
{file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"},
{file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"},
{file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"},
{file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"},
{file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"},
{file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"},
{file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"},
{file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"},
{file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"},
{file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"},
{file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"},
{file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"},
{file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"},
{file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"},
{file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"},
{file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"},
{file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"},
{file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"},
{file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"},
{file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"},
{file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"},
{file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"},
{file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"},
{file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"},
{file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"},
{file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"},
{file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"},
{file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"},
{file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"},
{file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"},
{file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"},
{file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"},
{file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"},
{file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"},
{file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"},
{file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"},
]
[[package]]
name = "markupsafe"
version = "2.1.5"
@ -1289,6 +1582,69 @@ files = [
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "matplotlib"
version = "3.9.2"
description = "Python plotting package"
optional = false
python-versions = ">=3.9"
files = [
{file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"},
{file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"},
{file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"},
{file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"},
{file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"},
{file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"},
{file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"},
{file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"},
{file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"},
{file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"},
{file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"},
{file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"},
{file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"},
{file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"},
{file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"},
{file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"},
{file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"},
{file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"},
{file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"},
{file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"},
{file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"},
{file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"},
{file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"},
{file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"},
{file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"},
{file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"},
{file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"},
{file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"},
{file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"},
{file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"},
{file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"},
{file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"},
{file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"},
{file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"},
{file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"},
{file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"},
{file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"},
{file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"},
{file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"},
{file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"},
]
[package.dependencies]
contourpy = ">=1.0.1"
cycler = ">=0.10"
fonttools = ">=4.22.0"
kiwisolver = ">=1.3.1"
numpy = ">=1.23"
packaging = ">=20.0"
pillow = ">=8"
pyparsing = ">=2.3.1"
python-dateutil = ">=2.7"
[package.extras]
dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"]
[[package]]
name = "matplotlib-inline"
version = "0.1.7"
@ -1713,6 +2069,92 @@ files = [
{file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
]
[[package]]
name = "pandas"
version = "2.2.3"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.9"
files = [
{file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"},
{file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"},
{file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"},
{file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"},
{file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"},
{file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"},
{file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"},
{file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"},
{file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"},
{file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"},
{file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"},
{file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"},
{file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"},
{file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"},
{file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"},
{file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"},
{file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"},
{file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"},
{file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"},
{file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"},
{file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"},
{file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"},
{file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"},
{file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"},
{file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"},
{file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"},
{file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"},
{file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"},
{file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"},
{file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"},
{file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"},
{file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"},
{file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"},
{file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"},
{file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"},
{file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"},
{file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"},
{file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"},
{file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"},
{file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"},
{file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"},
{file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"},
]
[package.dependencies]
numpy = [
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
tzdata = ">=2022.7"
[package.extras]
all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"]
aws = ["s3fs (>=2022.11.0)"]
clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"]
compression = ["zstandard (>=0.19.0)"]
computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"]
consortium-standard = ["dataframe-api-compat (>=0.1.7)"]
excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"]
feather = ["pyarrow (>=10.0.1)"]
fss = ["fsspec (>=2022.11.0)"]
gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"]
hdf5 = ["tables (>=3.8.0)"]
html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"]
mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"]
output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"]
parquet = ["pyarrow (>=10.0.1)"]
performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"]
plot = ["matplotlib (>=3.6.3)"]
postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"]
pyarrow = ["pyarrow (>=10.0.1)"]
spss = ["pyreadstat (>=1.2.0)"]
sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"]
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
xml = ["lxml (>=4.9.2)"]
[[package]]
name = "pandocfilters"
version = "1.5.1"
@ -1753,6 +2195,103 @@ files = [
[package.dependencies]
ptyprocess = ">=0.5"
[[package]]
name = "pillow"
version = "10.4.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
{file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"},
{file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"},
{file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"},
{file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"},
{file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"},
{file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"},
{file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"},
{file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"},
{file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"},
{file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"},
{file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"},
{file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"},
{file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"},
{file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"},
{file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"},
{file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"},
{file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"},
{file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"},
{file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"},
{file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"},
{file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"},
{file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"},
{file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"},
{file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"},
{file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"},
{file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"},
{file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"},
{file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"},
{file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"},
{file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"},
{file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"},
{file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"},
{file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"},
{file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"},
{file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"},
{file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"},
{file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"},
{file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"},
{file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"},
{file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"},
{file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"},
{file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"},
{file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"},
{file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"},
{file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"},
{file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"},
{file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"},
{file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"},
{file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"},
{file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"},
{file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"},
{file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"},
{file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"},
{file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"},
{file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"},
{file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"},
{file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"},
{file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"},
{file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"},
{file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"},
{file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"},
{file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"},
{file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"},
{file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"},
{file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"},
{file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
typing = ["typing-extensions"]
xmp = ["defusedxml"]
[[package]]
name = "platformdirs"
version = "4.3.6"
@ -1897,8 +2436,8 @@ files = [
annotated-types = ">=0.6.0"
pydantic-core = "2.23.4"
typing-extensions = [
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
{version = ">=4.6.1", markers = "python_version < \"3.13\""},
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
]
[package.extras]
@ -2020,6 +2559,20 @@ files = [
[package.extras]
windows-terminal = ["colorama (>=0.4.6)"]
[[package]]
name = "pyparsing"
version = "3.1.4"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = false
python-versions = ">=3.6.8"
files = [
{file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"},
{file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"},
]
[package.extras]
diagrams = ["jinja2", "railroad-diagrams"]
[[package]]
name = "python-dateutil"
version = "2.9.0.post0"
@ -2045,6 +2598,17 @@ files = [
{file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"},
]
[[package]]
name = "pytz"
version = "2024.2"
description = "World timezone definitions, modern and historical"
optional = false
python-versions = "*"
files = [
{file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"},
{file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"},
]
[[package]]
name = "pywin32"
version = "307"
@ -2546,6 +3110,27 @@ files = [
{file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"},
]
[[package]]
name = "seaborn"
version = "0.13.2"
description = "Statistical data visualization"
optional = false
python-versions = ">=3.8"
files = [
{file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"},
{file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"},
]
[package.dependencies]
matplotlib = ">=3.4,<3.6.1 || >3.6.1"
numpy = ">=1.20,<1.24.0 || >1.24.0"
pandas = ">=1.2"
[package.extras]
dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"]
docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"]
stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"]
[[package]]
name = "send2trash"
version = "1.8.3"
@ -3125,6 +3710,17 @@ files = [
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]
name = "tzdata"
version = "2024.2"
description = "Provider of IANA time zone data"
optional = false
python-versions = ">=2"
files = [
{file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"},
{file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"},
]
[[package]]
name = "uri-template"
version = "1.3.0"
@ -3254,4 +3850,4 @@ test = ["websockets"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "b198bb707b86539e6c8edfe2b7377d47387aaaf053bb68b135ccd15361736030"
content-hash = "24bc4bc85f985da47c5d432bbc29b6f859b409de794313d6f847cc3b9b3e7a28"

View File

@ -27,6 +27,9 @@ torch = "2.2.1"
wandb = "0.17.0"
termcolor = "^2.4.0"
# vllm = "0.4.1"
matplotlib = "^3.9.2"
seaborn = "^0.13.2"
pandas = "^2.2.3"
[build-system]
requires = ["poetry-core"]