test: Separate mvar coupling tests

This commit is contained in:
Leni Aniva 2023-11-04 15:00:51 -07:00
parent f5ed87f740
commit dc2cc5be77
Signed by: aniva
GPG Key ID: 4D9B1C8D10EA4C50
5 changed files with 116 additions and 136 deletions

View File

@ -170,15 +170,18 @@ protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String
tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
/-- After finishing one branch of a proof (`graftee`), pick up from the point where the proof was left off (`target`) -/ /-- After finishing one branch of a proof (`graftee`), pick up from the point where the proof was left off (`target`) -/
protected def GoalState.continue (target: GoalState) (graftee: GoalState): Except String GoalState := protected def GoalState.continue (target: GoalState) (graftee: GoalState) (goals: Option (List MVarId) := .none): Except String GoalState :=
let goals := match goals with
| .some goals => goals
| .none => target.goals
if target.root != graftee.root then if target.root != graftee.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {graftee.root.name}" .error s!"Roots of two continued goal states do not match: {target.root.name} != {graftee.root.name}"
-- Ensure goals are not dangling -- Ensure goals are not dangling
else if ¬ (target.goals.all (λ goal => graftee.mvars.contains goal)) then else if ¬ (goals.all (λ goal => graftee.mvars.contains goal)) then
.error s!"Some goals in target are not present in the graftee" .error s!"Some goals in target are not present in the graftee"
else else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic. -- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := target.goals.filter (λ goal => let unassigned := goals.filter (λ goal =>
let mctx := graftee.mctx let mctx := graftee.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal)) ¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok { .ok {

View File

@ -1,4 +1,6 @@
import Pantograph.Protocol import Pantograph.Protocol
import Pantograph.Goal
import LSpec
namespace Pantograph namespace Pantograph
@ -15,6 +17,19 @@ def Goal.devolatilize (goal: Goal): Goal :=
v with v with
name := "" name := ""
} }
deriving instance DecidableEq, Repr for Expression
deriving instance DecidableEq, Repr for Variable
deriving instance DecidableEq, Repr for Goal
end Protocol end Protocol
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
end Pantograph end Pantograph

View File

@ -1,31 +1,28 @@
import LSpec import LSpec
import Pantograph.Goal import Pantograph.Goal
import Pantograph.Serial import Pantograph.Serial
import Test.Common
namespace Pantograph.Test.Holes namespace Pantograph.Test.Holes
open Pantograph open Pantograph
open Lean open Lean
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Commands.Options M) abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M)
deriving instance DecidableEq, Repr for Commands.Expression def addTest (test: LSpec.TestSeq): TestM Unit := do
deriving instance DecidableEq, Repr for Commands.Variable
deriving instance DecidableEq, Repr for Commands.Goal
def add_test (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test set $ (← get) ++ test
def start_goal (hole: String): TestM (Option GoalState) := do def startProof (expr: String): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv let env ← Lean.MonadEnv.getEnv
let syn? := syntax_from_str env hole let syn? := syntax_from_str env expr
add_test $ LSpec.check s!"Parsing {hole}" (syn?.isOk) addTest $ LSpec.check s!"Parsing {expr}" (syn?.isOk)
match syn? with match syn? with
| .error error => | .error error =>
IO.println error IO.println error
return Option.none return Option.none
| .ok syn => | .ok syn =>
let expr? ← syntax_to_expr syn let expr? ← syntax_to_expr_type syn
add_test $ LSpec.check s!"Elaborating" expr?.isOk addTest $ LSpec.check s!"Elaborating" expr?.isOk
match expr? with match expr? with
| .error error => | .error error =>
IO.println error IO.println error
@ -34,40 +31,21 @@ def start_goal (hole: String): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr) let goal ← GoalState.create (expr := expr)
return Option.some goal return Option.some goal
def assert_unreachable (message: String): LSpec.TestSeq := LSpec.check message false def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal :=
def build_goal (nameType: List (String × String)) (target: String): Commands.Goal :=
{ {
userName?,
target := { pp? := .some target}, target := { pp? := .some target},
vars := (nameType.map fun x => ({ vars := (nameType.map fun x => ({
name := x.fst, userName := x.fst,
type? := .some { pp? := .some x.snd }, type? := .some { pp? := .some x.snd },
isInaccessible? := .some false isInaccessible? := .some false
})).toArray })).toArray
} }
-- Like `build_goal` but allow certain variables to be elided. def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
def build_goal_selective (nameType: List (String × Option String)) (target: String): Commands.Goal :=
{
target := { pp? := .some target},
vars := (nameType.map fun x => ({
name := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
def construct_sigma: TestM Unit := do
let goal? ← start_goal "∀ (n m: Nat), n + m = m + n"
add_test $ LSpec.check "Start goal" goal?.isSome
if let .some goal := goal? then
return ()
def proof_runner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context := { let coreContext: Lean.Core.Context := {
currNamespace := str_to_name "Aniva", currNamespace := Name.append .anonymous "Aniva",
openDecls := [], -- No 'open' directives needed openDecls := [], -- No 'open' directives needed
fileName := "<Pantograph>", fileName := "<Pantograph>",
fileMap := { source := "", positions := #[0], lines := #[1] } fileMap := { source := "", positions := #[0], lines := #[1] }
@ -83,17 +61,94 @@ def proof_runner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq :
| .ok (_, a) => | .ok (_, a) =>
return a return a
/-- M-coupled goals -/
def test_m_couple: TestM Unit := do
let state? ← startProof "(2: Nat) ≤ 5"
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone
let state1b ← match state1.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 3", .some "3 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
return ()
def test_proposition_generation: TestM Unit := do
let state? ← startProof "Σ' p:Prop, p"
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply PSigma.mk" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [] "?fst" (userName? := .some "snd"),
buildGoal [] "Prop" (userName? := .some "fst")
])
if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
return ()
def suite: IO LSpec.TestSeq := do def suite: IO LSpec.TestSeq := do
let env: Lean.Environment ← Lean.importModules let env: Lean.Environment ← Lean.importModules
(imports := #["Init"].map (λ str => { module := str_to_name str, runtimeOnly := false })) (imports := #["Init"].map (λ str => { module := str_to_name str, runtimeOnly := false }))
(opts := {}) (opts := {})
(trustLevel := 1) (trustLevel := 1)
let tests := [ let tests := [
("Σ'", construct_sigma) ("2 < 5", test_m_couple),
("Proposition Generation", test_proposition_generation)
] ]
let tests ← tests.foldlM (fun acc tests => do let tests ← tests.foldlM (fun acc tests => do
let (name, tests) := tests let (name, tests) := tests
let tests ← proof_runner env tests let tests ← proofRunner env tests
return acc ++ (LSpec.group name tests)) LSpec.TestSeq.done return acc ++ (LSpec.group name tests)) LSpec.TestSeq.done
return LSpec.group "Holes" tests return LSpec.group "Holes" tests

View File

@ -1,5 +1,5 @@
import LSpec import LSpec
--import Test.Holes import Test.Holes
import Test.Integration import Test.Integration
import Test.Proofs import Test.Proofs
import Test.Serial import Test.Serial
@ -11,7 +11,7 @@ unsafe def main := do
Lean.initSearchPath (← Lean.findSysroot) Lean.initSearchPath (← Lean.findSysroot)
let suites := [ let suites := [
--Holes.suite, Holes.suite,
Integration.suite, Integration.suite,
Proofs.suite, Proofs.suite,
Serial.suite Serial.suite

View File

@ -6,17 +6,6 @@ import Pantograph.Goal
import Pantograph.Serial import Pantograph.Serial
import Test.Common import Test.Common
namespace Pantograph
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
end Pantograph
namespace Pantograph.Test.Proofs namespace Pantograph.Test.Proofs
open Pantograph open Pantograph
open Lean open Lean
@ -27,10 +16,6 @@ inductive Start where
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M) abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M)
deriving instance DecidableEq, Repr for Protocol.Expression
deriving instance DecidableEq, Repr for Protocol.Variable
deriving instance DecidableEq, Repr for Protocol.Goal
def addTest (test: LSpec.TestSeq): TestM Unit := do def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test set $ (← get) ++ test
@ -64,8 +49,6 @@ def startProof (start: Start): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr) let goal ← GoalState.create (expr := expr)
return Option.some goal return Option.some goal
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal := def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal :=
{ {
userName?, userName?,
@ -303,80 +286,6 @@ def proof_or_comm: TestM Unit := do
] ]
} }
/-- M-coupled goals -/
def proof_m_couple: TestM Unit := do
let state? ← startProof (.expr "(2: Nat) ≤ 5")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone
let state1b ← match state1.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 3", .some "3 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
return ()
def proof_proposition_generation: TestM Unit := do
let state? ← startProof (.expr "Σ' p:Prop, p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply PSigma.mk" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [] "?fst" (userName? := .some "snd"),
buildGoal [] "Prop" (userName? := .some "fst")
])
if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
return ()
def suite: IO LSpec.TestSeq := do def suite: IO LSpec.TestSeq := do
let env: Lean.Environment ← Lean.importModules let env: Lean.Environment ← Lean.importModules
@ -388,9 +297,7 @@ def suite: IO LSpec.TestSeq := do
("Nat.add_comm manual", proof_nat_add_comm true), ("Nat.add_comm manual", proof_nat_add_comm true),
("Nat.add_comm delta", proof_delta_variable), ("Nat.add_comm delta", proof_delta_variable),
("arithmetic", proof_arith), ("arithmetic", proof_arith),
("Or.comm", proof_or_comm), ("Or.comm", proof_or_comm)
("2 < 5", proof_m_couple),
("Proposition Generation", proof_proposition_generation)
] ]
let tests ← tests.foldlM (fun acc tests => do let tests ← tests.foldlM (fun acc tests => do
let (name, tests) := tests let (name, tests) := tests