fix: Argument passing in dsp
This commit is contained in:
parent
c91024f201
commit
f1e996baae
|
@ -1,162 +0,0 @@
|
|||
"""
|
||||
core part of data for prompt for dsp:
|
||||
"nl_problem": ..., # x*_nl
|
||||
"nl_solution": ..., # y*_nl = draft*
|
||||
"fl_problem": ..., # x*_fl
|
||||
"fl_partial_sketch": ..., # z_fl example = sketch
|
||||
"src_header_fl_problem": ..., #src_header_x*_fl
|
||||
"fl_header_sketch": ..., # hz_fl suggested header
|
||||
"""
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
# just an example of stop tokens from the MATH eval code
|
||||
# STOP_TOKENS: list[str] = ["Solution:", "Problem:", "Question:", "USER:", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
|
||||
|
||||
default_path_2_examples = '~/gold-ai-olympiad/data/debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json'
|
||||
|
||||
# -- Prompt draft (P_draft) for Lean 4
|
||||
"""
|
||||
Draft an informal solution similar to the one below.
|
||||
The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant.
|
||||
Here are some examples:
|
||||
|
||||
Informal:
|
||||
(*### Problem\n\n
|
||||
[...nl/i problem text...]\n\n
|
||||
### Solution\n\n
|
||||
[...nl/i solution/draft text...]\n\n
|
||||
*)\n\n
|
||||
|
||||
Informal:
|
||||
(*### Problem\n\n
|
||||
{nl_problem}
|
||||
### Solution\n\n
|
||||
[...Model Completion...]
|
||||
"""
|
||||
SYSTEM_PROMPT_DRAFT_V0 = 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.'
|
||||
STOP_TOKENS_DRAFT_V0: list[str] = ['Informal:', '(*### Problem']
|
||||
prompt_draft_template_lean4_v0 = ("Draft an informal solution similar to the one below. "
|
||||
"The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. "
|
||||
"Here are some examples of informal problem solutions pairs:\n")
|
||||
def get_prompt_draft_template_4_lean_v0(
|
||||
path_2_examples: str = default_path_2_examples,
|
||||
start: int = 0,
|
||||
end: int = sys.maxsize,
|
||||
prompt_draft_template_4_lean: Optional[str] = prompt_draft_template_lean4_v0,
|
||||
verbose: bool = False,
|
||||
):
|
||||
path_2_examples = Path(path_2_examples).expanduser()
|
||||
# load json file with list of dicts from file in one line
|
||||
with open(path_2_examples, 'r') as f:
|
||||
examples: list[dict] = json.load(f)
|
||||
print(f'{len(examples)=}') if verbose else None
|
||||
examples = examples[start:end]
|
||||
# -- Create prompt by appending few shot examples
|
||||
for example in examples:
|
||||
nl_problem = example['nl_problem']
|
||||
new_few_shot_example = "\nInformal:\n(*### Problem\n\n" + ' '.join(nl_problem)
|
||||
nl_solution_sketch = example['nl_solution_sketch']
|
||||
new_few_shot_example += "\n\n### Solution\n\n" + ' '.join(nl_solution_sketch) + "*)\n"
|
||||
prompt_draft_template_4_lean += new_few_shot_example
|
||||
# Add part to elicit model to do task
|
||||
prompt_draft_template_4_lean += "\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n"
|
||||
# Return
|
||||
print(prompt_draft_template_4_lean) if verbose else None
|
||||
return prompt_draft_template_4_lean
|
||||
prompt_draft_template_lean4_v0 = get_prompt_draft_template_4_lean_v0()
|
||||
|
||||
# -- Prompt sketch (P_sketch) for Lean 4
|
||||
"""
|
||||
[... Translate informal draft to a formal sketch in Lean 4. Here are some examples: ...]
|
||||
Informal:\n
|
||||
(*### Problem\n\n
|
||||
[...nl/i problem text...]\n\n
|
||||
### Solution\n\n
|
||||
[...nl/i solution/draft text...]\n\n
|
||||
*)\n\n
|
||||
Formal:\n
|
||||
[...fl/i problem text...]
|
||||
[...fl/i partial sketch text...]
|
||||
\n\n
|
||||
|
||||
Informal:\n
|
||||
(*### Problem\n\n
|
||||
{nl_problem}
|
||||
### Solution\n\n
|
||||
{nl_solution}
|
||||
*)\n\n
|
||||
Formal:\n
|
||||
{fl_problem}
|
||||
[...Model Completion...]
|
||||
"""
|
||||
# tasks is mostly writing lean but perhaps making it think it's good at maths is also good? we could later test just focusing system prompting it to be good at Lean 4.
|
||||
SYSTEM_PROMPT_SKETCH_V0 = 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.'
|
||||
STOP_TOKENS_SKETCH_V0: list[str] = ['Informal:', '(*### Problem', '###Solution', 'Formal:']
|
||||
prompt_sketch_template_lean4_v0 = ("Translate the informal solution into a sketch in the "
|
||||
"formal Lean 4 proof. Add <TODO_PROOF_OR_HAMMER> in the formal sketch whenever possible. "
|
||||
"<TODO_PROOF_OR_HAMMER> will be used to call a automated theorem prover or tactic in Lean 4. "
|
||||
"Here are some examples:\n"
|
||||
)
|
||||
def get_prompt_sketch_template_4_lean_v0(
|
||||
path_2_examples: str = default_path_2_examples,
|
||||
start: int = 0,
|
||||
end: int = sys.maxsize,
|
||||
prompt_sketch_template_4_lean: Optional[str] = prompt_sketch_template_lean4_v0,
|
||||
autoformalize_prob_in_prompt: Optional[bool] = False,
|
||||
verbose: bool = False,
|
||||
):
|
||||
path_2_examples = Path(path_2_examples).expanduser()
|
||||
# load json file with list of dicts from file in one line
|
||||
with open(path_2_examples, 'r') as f:
|
||||
examples: list[dict] = json.load(f)
|
||||
print(f'{len(examples)=}') if verbose else None
|
||||
examples = examples[start:end]
|
||||
# -- Create prompt by appending few shot examples
|
||||
for example in examples:
|
||||
# TODO: might need to figure out the header thing
|
||||
nl_problem = example['nl_problem']
|
||||
new_few_shot_example = "\nInformal:\n(*### Problem\n\n" + ' '.join(nl_problem)
|
||||
nl_solution_sketch = example['nl_solution_sketch']
|
||||
new_few_shot_example += "\n\n### Solution\n\n" + ' '.join(nl_solution_sketch) + "*)\n"
|
||||
fl_problem = example['fl_problem']
|
||||
fl_header_sketch = example['fl_header_sketch']
|
||||
fl_header_sketch = '\n'.join(fl_header_sketch) + '\n\n'
|
||||
new_few_shot_example += "\nFormal:\n"+ fl_header_sketch + ' '.join(fl_problem)
|
||||
fl_partial_sketch = example['fl_partial_sketch']
|
||||
new_few_shot_example += ' '.join(fl_partial_sketch)
|
||||
prompt_sketch_template_4_lean += new_few_shot_example
|
||||
# Add part to elicit model to do task
|
||||
if autoformalize_prob_in_prompt:
|
||||
prompt_sketch_template_4_lean += "\nInformal:\n(*### Problem\n\n{nl_problem}\n\n### Solution\n\n{nl_solution}*)\n\nFormal:\n"
|
||||
else:
|
||||
prompt_sketch_template_4_lean += "\nInformal:\n(*### Problem\n\n{nl_problem}\n\n### Solution\n\n{nl_solution}*)\n\nFormal:\n{fl_problem}"
|
||||
# Return
|
||||
print(prompt_sketch_template_4_lean) if verbose else None
|
||||
return prompt_sketch_template_4_lean
|
||||
prompt_sketch_template_lean4_v0 = get_prompt_sketch_template_4_lean_v0()
|
||||
|
||||
# -- Main
|
||||
|
||||
def main(
|
||||
verbose: bool = True,
|
||||
):
|
||||
# -- Print Prompt Draft
|
||||
# print('-- Prompt Draft --')
|
||||
# print(prompt_draft_template_lean4_v0)
|
||||
|
||||
# -- Print Prompt Sketch
|
||||
print('-- Prompt Sketch --')
|
||||
sketch_prompt: str = get_prompt_sketch_template_4_lean_v0(verbose=verbose)
|
||||
# print(prompt_sketch_template_lean4_v0)
|
||||
print(sketch_prompt)
|
||||
|
||||
if __name__ == '__main__':
|
||||
import time
|
||||
start = time.time()
|
||||
# fire.Fire()
|
||||
main()
|
||||
end = time.time()
|
||||
print(f'Time elapsed: {end - start} seconds, or {(end - start) / 60} minutes, or {(end - start) / 3600} hours.')
|
|
@ -1,4 +1,4 @@
|
|||
import sys, os, json, argparse
|
||||
import sys, os, json
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Union, Any
|
||||
|
@ -218,25 +218,10 @@ experiment_dir = Path(__file__).resolve().parent
|
|||
|
||||
# -- Main
|
||||
|
||||
def main(
|
||||
path_2_eval_dataset: str = experiment_dir / 'debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json',
|
||||
# model: str = 'deepseek-ai/deepseek-math-7b-instruct',
|
||||
# model: str = 'gpt2',
|
||||
# model: str = 'gpt-3.5-turbo',
|
||||
model: str = 'gpt-4o',
|
||||
start: int = 0,
|
||||
end: int = sys.maxsize,
|
||||
# end: int = 10, # do 10 so enough boxed qs are there
|
||||
batch_size: int = 10, # putnam has 348
|
||||
n_samples: int = 1, # num seqs to return for given prompt
|
||||
max_tokens: int = 2048,
|
||||
top_p: float = 0.95,
|
||||
temperature: float = 0.8,
|
||||
**kwargs,
|
||||
):
|
||||
def main(args):
|
||||
import time
|
||||
start_time = time.time()
|
||||
path_2_eval_dataset = Path(path_2_eval_dataset).expanduser()
|
||||
path_2_eval_dataset = Path(args.eval_dataset).expanduser()
|
||||
print(f'{path_2_eval_dataset=}')
|
||||
|
||||
server = Server()
|
||||
|
@ -255,10 +240,22 @@ def main(
|
|||
|
||||
# - Run DSP for Lean
|
||||
api_key = os.environ['OPENAI_API_KEY']
|
||||
draft_sampling_params = SamplingParams(n=n_samples, max_tokens=max_tokens, top_p=top_p, temperature=temperature, stop=STOP_TOKENS_DRAFT_V0)
|
||||
sketch_sampling_params = SamplingParams(n=n_samples, max_tokens=max_tokens, top_p=top_p, temperature=temperature, stop=STOP_TOKENS_SKETCH_V0)
|
||||
draft_sampling_params = SamplingParams(
|
||||
n=args.n_samples,
|
||||
max_tokens=args.max_tokens,
|
||||
top_p=args.top_p,
|
||||
temperature=args.temperature,
|
||||
stop=STOP_TOKENS_DRAFT_V0,
|
||||
)
|
||||
sketch_sampling_params = SamplingParams(
|
||||
n=args.n_samples,
|
||||
max_tokens=args.max_tokens,
|
||||
top_p=args.top_p,
|
||||
temperature=args.temperature,
|
||||
stop=STOP_TOKENS_SKETCH_V0,
|
||||
)
|
||||
eng: OpenAI_DSP_Engine = OpenAI_DSP_Engine(
|
||||
model=model,
|
||||
model=args.model,
|
||||
api_key=api_key,
|
||||
verbose_init=True,
|
||||
draft_sampling_params=draft_sampling_params,
|
||||
|
@ -276,9 +273,12 @@ def main(
|
|||
# run.finish()
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
prog='DSP',
|
||||
description="Draft-Sketch-Prove on Lean code"
|
||||
description="Draft-Sketch-Prove on Lean code",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
'mode',
|
||||
|
@ -290,19 +290,19 @@ if __name__ == "__main__":
|
|||
help="Evaluation dataset path",
|
||||
default=experiment_dir / 'debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json',
|
||||
)
|
||||
parser.add_argument("--model", help="Model", default="gpt-4o")
|
||||
parser.add_argument("--model", help="Model", default="gpt-4o", choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct"])
|
||||
parser.add_argument("--start", default=0)
|
||||
parser.add_argument("--end", default=sys.maxsize)
|
||||
parser.add_argument("--batchsize", default=10)
|
||||
parser.add_argument("--n-samples", default=1)
|
||||
parser.add_argument("--max-tokens", default=2048)
|
||||
parser.add_argument("--top-p", default=0.95)
|
||||
parser.add_argument("--temperature", default=0.8)
|
||||
parser.add_argument("--batchsize", default=10, help="putnam has 348")
|
||||
parser.add_argument("--n-samples", default=1, help="num seqs to return for given prompt")
|
||||
parser.add_argument("--max-tokens", default=2048, help="Maximum number of tokens in one sample")
|
||||
parser.add_argument("--top-p", default=0.95, help="Sampling top p")
|
||||
parser.add_argument("--temperature", default=0.8, help="Sampling temperature")
|
||||
parser.add_argument("--verbose", action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.mode == "eval":
|
||||
main(**args)
|
||||
main(args)
|
||||
elif args.mode == "prompts":
|
||||
prompt = get_prompt_sketch_template_4_lean_v0(verbose=args.verbose)
|
||||
print(prompt)
|
||||
|
|
2
src
2
src
|
@ -1 +1 @@
|
|||
Subproject commit 143cd289bbc4ea93f0889cf05737c3b6f90a51df
|
||||
Subproject commit 10cb32e03f43e9306203d1c4a3852573ec55c4f2
|
Loading…
Reference in New Issue