Compare commits

..

No commits in common. "782ce38c872492f293838ea10912d1da940b66bb" and "f5ed87f7407feb9fd3858ab1841e977eb157bfa1" have entirely different histories.

8 changed files with 147 additions and 220 deletions

View File

@ -38,7 +38,6 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
| "options.print" => run options_print | "options.print" => run options_print
| "goal.start" => run goal_start | "goal.start" => run goal_start
| "goal.tactic" => run goal_tactic | "goal.tactic" => run goal_tactic
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete | "goal.delete" => run goal_delete
| "goal.print" => run goal_print | "goal.print" => run goal_print
| cmd => | cmd =>
@ -171,30 +170,6 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
return .error $ errorIndex s!"Invalid goal id index {goalId}" return .error $ errorIndex s!"Invalid goal id index {goalId}"
| .ok (.failure messages) => | .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages } return .ok { tacticErrors? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do
let state ← get
match state.goalStates.get? args.target with
| .none => return .error $ errorIndex s!"Invalid state index {args.target}"
| .some target => do
let nextState? ← match args.branch?, args.goals? with
| .some branchId, .none => do
match state.goalStates.get? branchId with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ target.continue branch
| .none, .some goals =>
let goals := goals.map (λ name => { name := str_to_name name })
pure $ target.resume goals
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied"
match nextState? with
| .error error => return .ok { error? := .some error }
| .ok nextGoalState =>
let (goalStates, nextStateId) := state.goalStates.insert nextGoalState
set { state with goalStates }
let goals ← nextGoalState.serializeGoals (parent := .some target) (options := state.options)
return .ok {
nextStateId? := .some nextStateId,
goals? := .some goals,
}
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do
let state ← get let state ← get
let goalStates := args.stateIds.foldl (λ map id => map.remove id) state.goalStates let goalStates := args.stateIds.foldl (λ map id => map.remove id) state.goalStates

View File

@ -169,36 +169,27 @@ protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String
return .failure #[← exception.toMessageData.toString] return .failure #[← exception.toMessageData.toString]
tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
/-- /-- After finishing one branch of a proof (`graftee`), pick up from the point where the proof was left off (`target`) -/
Brings into scope a list of goals protected def GoalState.continue (target: GoalState) (graftee: GoalState): Except String GoalState :=
-/ if target.root != graftee.root then
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState := .error s!"Roots of two continued goal states do not match: {target.root.name} != {graftee.root.name}"
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then -- Ensure goals are not dangling
.error s!"Goals not in scope" else if ¬ (target.goals.all (λ goal => graftee.mvars.contains goal)) then
.error s!"Some goals in target are not present in the graftee"
else else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic. -- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal => let unassigned := target.goals.filter (λ goal =>
let mctx := state.mctx let mctx := graftee.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal)) ¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok { .ok {
state with
savedState := { savedState := {
term := state.savedState.term, term := graftee.savedState.term,
tactic := { goals := unassigned }, tactic := { goals := unassigned },
}, },
root := target.root,
newMVars := graftee.newMVars,
} }
/--
Brings into scope all goals from `branch`
-/
protected def GoalState.continue (target: GoalState) (branch: GoalState): Except String GoalState :=
if !target.goals.isEmpty then
.error s!"Target state has unresolved goals"
else if target.root != branch.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {branch.root.name}"
else
target.resume (goals := branch.goals)
protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := protected def GoalState.rootExpr? (goalState: GoalState): Option Expr :=
let expr := goalState.mctx.eAssignment.find! goalState.root let expr := goalState.mctx.eAssignment.find! goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr) let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)

View File

@ -163,21 +163,6 @@ structure GoalTacticResult where
-- Existence of this field shows the tactic parsing has failed -- Existence of this field shows the tactic parsing has failed
parseError?: Option String := .none parseError?: Option String := .none
deriving Lean.ToJson deriving Lean.ToJson
structure GoalContinue where
-- State from which the continuation acquires the context
target: Nat
-- One of the following must be supplied
-- The state which is an ancestor of `target` where goals will be extracted from
branch?: Option Nat := .none
-- Or, the particular goals that should be brought back into scope
goals?: Option (List String) := .none
deriving Lean.FromJson
structure GoalContinueResult where
error?: Option String := .none
nextStateId?: Option Nat := .none
goals?: Option (Array Goal) := .none
deriving Lean.ToJson
-- Remove goal states -- Remove goal states
structure GoalDelete where structure GoalDelete where

View File

@ -1,5 +1,5 @@
namespace Pantograph namespace Pantograph
def version := "0.2.8" def version := "0.2.7"
end Pantograph end Pantograph

View File

@ -1,6 +1,4 @@
import Pantograph.Protocol import Pantograph.Protocol
import Pantograph.Goal
import LSpec
namespace Pantograph namespace Pantograph
@ -17,19 +15,6 @@ def Goal.devolatilize (goal: Goal): Goal :=
v with v with
name := "" name := ""
} }
deriving instance DecidableEq, Repr for Expression
deriving instance DecidableEq, Repr for Variable
deriving instance DecidableEq, Repr for Goal
end Protocol end Protocol
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
end Pantograph end Pantograph

View File

@ -1,28 +1,31 @@
import LSpec import LSpec
import Pantograph.Goal import Pantograph.Goal
import Pantograph.Serial import Pantograph.Serial
import Test.Common
namespace Pantograph.Test.Holes namespace Pantograph.Test.Holes
open Pantograph open Pantograph
open Lean open Lean
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M) abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Commands.Options M)
def addTest (test: LSpec.TestSeq): TestM Unit := do deriving instance DecidableEq, Repr for Commands.Expression
deriving instance DecidableEq, Repr for Commands.Variable
deriving instance DecidableEq, Repr for Commands.Goal
def add_test (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test set $ (← get) ++ test
def startProof (expr: String): TestM (Option GoalState) := do def start_goal (hole: String): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv let env ← Lean.MonadEnv.getEnv
let syn? := syntax_from_str env expr let syn? := syntax_from_str env hole
addTest $ LSpec.check s!"Parsing {expr}" (syn?.isOk) add_test $ LSpec.check s!"Parsing {hole}" (syn?.isOk)
match syn? with match syn? with
| .error error => | .error error =>
IO.println error IO.println error
return Option.none return Option.none
| .ok syn => | .ok syn =>
let expr? ← syntax_to_expr_type syn let expr? ← syntax_to_expr syn
addTest $ LSpec.check s!"Elaborating" expr?.isOk add_test $ LSpec.check s!"Elaborating" expr?.isOk
match expr? with match expr? with
| .error error => | .error error =>
IO.println error IO.println error
@ -31,21 +34,40 @@ def startProof (expr: String): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr) let goal ← GoalState.create (expr := expr)
return Option.some goal return Option.some goal
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal := def assert_unreachable (message: String): LSpec.TestSeq := LSpec.check message false
def build_goal (nameType: List (String × String)) (target: String): Commands.Goal :=
{ {
userName?,
target := { pp? := .some target}, target := { pp? := .some target},
vars := (nameType.map fun x => ({ vars := (nameType.map fun x => ({
userName := x.fst, name := x.fst,
type? := .some { pp? := .some x.snd }, type? := .some { pp? := .some x.snd },
isInaccessible? := .some false isInaccessible? := .some false
})).toArray })).toArray
} }
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do -- Like `build_goal` but allow certain variables to be elided.
def build_goal_selective (nameType: List (String × Option String)) (target: String): Commands.Goal :=
{
target := { pp? := .some target},
vars := (nameType.map fun x => ({
name := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
def construct_sigma: TestM Unit := do
let goal? ← start_goal "∀ (n m: Nat), n + m = m + n"
add_test $ LSpec.check "Start goal" goal?.isSome
if let .some goal := goal? then
return ()
def proof_runner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context := { let coreContext: Lean.Core.Context := {
currNamespace := Name.append .anonymous "Aniva", currNamespace := str_to_name "Aniva",
openDecls := [], -- No 'open' directives needed openDecls := [], -- No 'open' directives needed
fileName := "<Pantograph>", fileName := "<Pantograph>",
fileMap := { source := "", positions := #[0], lines := #[1] } fileMap := { source := "", positions := #[0], lines := #[1] }
@ -61,141 +83,17 @@ def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq :=
| .ok (_, a) => | .ok (_, a) =>
return a return a
/-- M-coupled goals -/
def test_m_couple: TestM Unit := do
let state? ← startProof "(2: Nat) ≤ 5"
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone
let state1b ← match state2.continue state1 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 3", .some "3 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
return ()
def test_proposition_generation: TestM Unit := do
let state? ← startProof "Σ' p:Prop, p"
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply PSigma.mk" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [] "?fst" (userName? := .some "snd"),
buildGoal [] "Prop" (userName? := .some "fst")
])
if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
return ()
def test_partial_continuation: TestM Unit := do
let state? ← startProof "(2: Nat) ≤ 5"
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.execute (goalId := 2) (tactic := "apply Nat.succ") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.succ" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat"])
-- Execute a partial continuation
let coupled_goals := state1.goals ++ state2.goals
let state1b ← match state2.resume (goals := coupled_goals) with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ Nat.succ ?m", .some "Nat.succ ?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
-- Continuation should fail if the state does not exist:
match state0.resume coupled_goals with
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Goals not in scope")
| .ok _ => addTest $ assertUnreachable "(continuation failure)"
-- Continuation should fail if some goals have not been solved
match state2.continue state1 with
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Target state has unresolved goals")
| .ok _ => addTest $ assertUnreachable "(continuation failure)"
return ()
def suite: IO LSpec.TestSeq := do def suite: IO LSpec.TestSeq := do
let env: Lean.Environment ← Lean.importModules let env: Lean.Environment ← Lean.importModules
(imports := #["Init"].map (λ str => { module := str_to_name str, runtimeOnly := false })) (imports := #["Init"].map (λ str => { module := str_to_name str, runtimeOnly := false }))
(opts := {}) (opts := {})
(trustLevel := 1) (trustLevel := 1)
let tests := [ let tests := [
("2 < 5", test_m_couple), ("Σ'", construct_sigma)
("Proposition Generation", test_proposition_generation),
("Partial Continuation", test_partial_continuation)
] ]
let tests ← tests.foldlM (fun acc tests => do let tests ← tests.foldlM (fun acc tests => do
let (name, tests) := tests let (name, tests) := tests
let tests ← proofRunner env tests let tests ← proof_runner env tests
return acc ++ (LSpec.group name tests)) LSpec.TestSeq.done return acc ++ (LSpec.group name tests)) LSpec.TestSeq.done
return LSpec.group "Holes" tests return LSpec.group "Holes" tests

View File

@ -1,5 +1,5 @@
import LSpec import LSpec
import Test.Holes --import Test.Holes
import Test.Integration import Test.Integration
import Test.Proofs import Test.Proofs
import Test.Serial import Test.Serial
@ -11,7 +11,7 @@ unsafe def main := do
Lean.initSearchPath (← Lean.findSysroot) Lean.initSearchPath (← Lean.findSysroot)
let suites := [ let suites := [
Holes.suite, --Holes.suite,
Integration.suite, Integration.suite,
Proofs.suite, Proofs.suite,
Serial.suite Serial.suite

View File

@ -6,6 +6,17 @@ import Pantograph.Goal
import Pantograph.Serial import Pantograph.Serial
import Test.Common import Test.Common
namespace Pantograph
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
end Pantograph
namespace Pantograph.Test.Proofs namespace Pantograph.Test.Proofs
open Pantograph open Pantograph
open Lean open Lean
@ -16,6 +27,10 @@ inductive Start where
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M) abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options M)
deriving instance DecidableEq, Repr for Protocol.Expression
deriving instance DecidableEq, Repr for Protocol.Variable
deriving instance DecidableEq, Repr for Protocol.Goal
def addTest (test: LSpec.TestSeq): TestM Unit := do def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test set $ (← get) ++ test
@ -49,6 +64,8 @@ def startProof (start: Start): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr) let goal ← GoalState.create (expr := expr)
return Option.some goal return Option.some goal
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal := def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal :=
{ {
userName?, userName?,
@ -253,7 +270,7 @@ def proof_or_comm: TestM Unit := do
addTest $ LSpec.check " assumption" state4_2.goals.isEmpty addTest $ LSpec.check " assumption" state4_2.goals.isEmpty
addTest $ LSpec.check "(4_2 root)" state4_2.rootExpr?.isNone addTest $ LSpec.check "(4_2 root)" state4_2.rootExpr?.isNone
-- Ensure the proof can continue from `state4_2`. -- Ensure the proof can continue from `state4_2`.
let state2b ← match state4_2.continue state2 with let state2b ← match state2.continue state4_2 with
| .error msg => do | .error msg => do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
return () return ()
@ -286,6 +303,80 @@ def proof_or_comm: TestM Unit := do
] ]
} }
/-- M-coupled goals -/
def proof_m_couple: TestM Unit := do
let state? ← startProof (.expr "(2: Nat) ≤ 5")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone
let state1b ← match state1.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 3", .some "3 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
return ()
def proof_proposition_generation: TestM Unit := do
let state? ← startProof (.expr "Σ' p:Prop, p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply PSigma.mk" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [] "?fst" (userName? := .some "snd"),
buildGoal [] "Prop" (userName? := .some "fst")
])
if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
return ()
def suite: IO LSpec.TestSeq := do def suite: IO LSpec.TestSeq := do
let env: Lean.Environment ← Lean.importModules let env: Lean.Environment ← Lean.importModules
@ -297,7 +388,9 @@ def suite: IO LSpec.TestSeq := do
("Nat.add_comm manual", proof_nat_add_comm true), ("Nat.add_comm manual", proof_nat_add_comm true),
("Nat.add_comm delta", proof_delta_variable), ("Nat.add_comm delta", proof_delta_variable),
("arithmetic", proof_arith), ("arithmetic", proof_arith),
("Or.comm", proof_or_comm) ("Or.comm", proof_or_comm),
("2 < 5", proof_m_couple),
("Proposition Generation", proof_proposition_generation)
] ]
let tests ← tests.foldlM (fun acc tests => do let tests ← tests.foldlM (fun acc tests => do
let (name, tests) := tests let (name, tests) := tests