Compare commits

..

No commits in common. "dev" and "parse/level" have entirely different histories.

49 changed files with 1626 additions and 4738 deletions

6
.gitignore vendored
View File

@ -1,4 +1,6 @@
.*
!.gitignore
*.[io]lean
/result
*.olean
/build
/lake-packages

190
LICENSE
View File

@ -1,190 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2024 Leni Aniva
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,15 +1,15 @@
import Lean.Data.Json
import Lean.Environment
import Pantograph.Version
import Pantograph.Library
import Pantograph
import Repl
-- Main IO functions
open Pantograph.Repl
open Pantograph.Protocol
open Pantograph
/-- Parse a command either in `{ "cmd": ..., "payload": ... }` form or `cmd { ... }` form. -/
def parseCommand (s: String): Except String Command := do
def parseCommand (s: String): Except String Protocol.Command := do
let s := s.trim
match s.get? 0 with
| .some '{' => -- Parse in Json mode
@ -29,20 +29,15 @@ partial def loop : MainM Unit := do
if command.trim.length = 0 then return ()
match parseCommand command with
| .error error =>
let error := Lean.toJson ({ error := "command", desc := error }: InteractionError)
let error := Lean.toJson ({ error := "command", desc := error }: Protocol.InteractionError)
-- Using `Lean.Json.compress` here to prevent newline
IO.println error.compress
| .ok command =>
try
let ret ← execute command
let str := match state.options.printJsonPretty with
| true => ret.pretty
| false => ret.compress
IO.println str
catch e =>
let message ← e.toMessageData.toString
let error := Lean.toJson ({ error := "main", desc := message }: InteractionError)
IO.println error.compress
let ret ← execute command
let str := match state.options.printJsonPretty with
| true => ret.pretty
| false => ret.compress
IO.println str
loop
@ -50,15 +45,15 @@ unsafe def main (args: List String): IO Unit := do
-- NOTE: A more sophisticated scheme of command line argument handling is needed.
-- Separate imports and options
if args == ["--version"] then do
IO.println s!"{Pantograph.version}"
println! s!"{version}"
return
Pantograph.initSearch ""
initSearch ""
let coreContext ← args.filterMap (λ s => if s.startsWith "--" then .some <| s.drop 2 else .none)
|>.toArray |> Pantograph.createCoreContext
|>.toArray |> createCoreContext
let imports:= args.filter (λ s => ¬ (s.startsWith "--"))
let coreState ← Pantograph.createCoreState imports.toArray
let coreState ← createCoreState imports.toArray
let context: Context := {
imports
}
@ -67,6 +62,5 @@ unsafe def main (args: List String): IO Unit := do
IO.println "ready."
discard <| coreM.toIO coreContext coreState
catch ex =>
let message := ex.toString
let error := Lean.toJson ({ error := "io", desc := message }: InteractionError)
IO.println error.compress
IO.println "Uncaught IO exception"
IO.println ex.toString

20
Makefile Normal file
View File

@ -0,0 +1,20 @@
LIB := ./.lake/build/lib/Pantograph.olean
EXE := ./.lake/build/bin/pantograph
SOURCE := $(wildcard Pantograph/*.lean) $(wildcard *.lean) lean-toolchain
TEST_EXE := ./.lake/build/bin/test
TEST_SOURCE := $(wildcard Test/*.lean)
$(LIB) $(EXE): $(SOURCE)
lake build pantograph
$(TEST_EXE): $(LIB) $(TEST_SOURCE)
lake build test
test: $(TEST_EXE)
$(TEST_EXE)
clean:
lake clean
.PHONY: test clean

View File

@ -1,9 +1,194 @@
import Pantograph.Delate
import Pantograph.Elab
import Pantograph.Environment
import Pantograph.Frontend
import Pantograph.Goal
import Pantograph.Library
import Pantograph.Protocol
import Pantograph.Serial
import Pantograph.Version
import Pantograph.Environment
import Pantograph.Library
import Lean.Data.HashMap
namespace Pantograph
structure Context where
imports: List String
/-- Stores state of the REPL -/
structure State where
options: Protocol.Options := {}
nextId: Nat := 0
goalStates: Lean.HashMap Nat GoalState := Lean.HashMap.empty
/-- Main state monad for executing commands -/
abbrev MainM := ReaderT Context (StateT State Lean.CoreM)
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables
-- certain monadic features in `MainM`
abbrev CR α := Except Protocol.InteractionError α
def execute (command: Protocol.Command): MainM Lean.Json := do
let run { α β: Type } [Lean.FromJson α] [Lean.ToJson β] (comm: α → MainM (CR β)): MainM Lean.Json :=
match Lean.fromJson? command.payload with
| .ok args => do
match (← comm args) with
| .ok result => return Lean.toJson result
| .error ierror => return Lean.toJson ierror
| .error error => return Lean.toJson $ errorCommand s!"Unable to parse json: {error}"
match command.cmd with
| "reset" => run reset
| "stat" => run stat
| "expr.echo" => run expr_echo
| "env.catalog" => run env_catalog
| "env.inspect" => run env_inspect
| "env.add" => run env_add
| "options.set" => run options_set
| "options.print" => run options_print
| "goal.start" => run goal_start
| "goal.tactic" => run goal_tactic
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete
| "goal.print" => run goal_print
| cmd =>
let error: Protocol.InteractionError :=
errorCommand s!"Unknown command {cmd}"
return Lean.toJson error
where
errorCommand := errorI "command"
errorIndex := errorI "index"
-- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
set { state with nextId := 0, goalStates := Lean.HashMap.empty }
return .ok { nGoals }
stat (_: Protocol.Stat): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
return .ok { nGoals }
env_catalog (args: Protocol.EnvCatalog): MainM (CR Protocol.EnvCatalogResult) := do
let result ← Environment.catalog args
return .ok result
env_inspect (args: Protocol.EnvInspect): MainM (CR Protocol.EnvInspectResult) := do
let state ← get
Environment.inspect args state.options
env_add (args: Protocol.EnvAdd): MainM (CR Protocol.EnvAddResult) := do
Environment.addDecl args
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do
let state ← get
exprEcho args.expr (expectedType? := args.type?) (levels := args.levels.getD #[]) (options := state.options)
options_set (args: Protocol.OptionsSet): MainM (CR Protocol.OptionsSetResult) := do
let state ← get
let options := state.options
set { state with
options := {
-- FIXME: This should be replaced with something more elegant
printJsonPretty := args.printJsonPretty?.getD options.printJsonPretty,
printExprPretty := args.printExprPretty?.getD options.printExprPretty,
printExprAST := args.printExprAST?.getD options.printExprAST,
printDependentMVars := args.printDependentMVars?.getD options.printDependentMVars,
noRepeat := args.noRepeat?.getD options.noRepeat,
printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls,
printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps
}
}
return .ok { }
options_print (_: Protocol.OptionsPrint): MainM (CR Protocol.OptionsPrintResult) := do
return .ok (← get).options
goal_start (args: Protocol.GoalStart): MainM (CR Protocol.GoalStartResult) := do
let state ← get
let env ← Lean.MonadEnv.getEnv
let expr?: Except _ GoalState ← runTermElabM (match args.expr, args.copyFrom with
| .some expr, .none => goalStartExpr expr (args.levels.getD #[])
| .none, .some copyFrom =>
(match env.find? <| copyFrom.toName with
| .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}"
| .some cInfo => return .ok (← GoalState.create cInfo.type))
| _, _ =>
return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied")
match expr? with
| .error error => return .error error
| .ok goalState =>
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return .ok { stateId, root := goalState.root.name.toString }
goal_tactic (args: Protocol.GoalTactic): MainM (CR Protocol.GoalTacticResult) := do
let state ← get
match state.goalStates.find? args.stateId with
| .none => return .error $ errorIndex s!"Invalid state index {args.stateId}"
| .some goalState => do
let nextGoalState?: Except _ GoalState ←
match args.tactic?, args.expr?, args.have?, args.calc?, args.conv? with
| .some tactic, .none, .none, .none, .none => do
pure ( Except.ok (← goalTactic goalState args.goalId tactic))
| .none, .some expr, .none, .none, .none => do
pure ( Except.ok (← goalAssign goalState args.goalId expr))
| .none, .none, .some type, .none, .none => do
let binderName := args.binderName?.getD ""
pure ( Except.ok (← goalHave goalState args.goalId binderName type))
| .none, .none, .none, .some pred, .none => do
pure ( Except.ok (← goalCalc goalState args.goalId pred))
| .none, .none, .none, .none, .some true => do
pure ( Except.ok (← goalConv goalState args.goalId))
| .none, .none, .none, .none, .some false => do
pure ( Except.ok (← goalConvExit goalState))
| _, _, _, _, _ => pure (Except.error <|
errorI "arguments" "Exactly one of {tactic, expr, have, calc, conv} must be supplied")
match nextGoalState? with
| .error error => return .error error
| .ok (.success nextGoalState) =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert state.nextId nextGoalState,
nextId := state.nextId + 1,
}
let goals ← nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run'
return .ok {
nextStateId? := .some nextStateId,
goals? := .some goals,
}
| .ok (.parseError message) =>
return .ok { parseError? := .some message }
| .ok (.indexError goalId) =>
return .error $ errorIndex s!"Invalid goal id index {goalId}"
| .ok (.invalidAction message) =>
return .error $ errorI "invalid" message
| .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do
let state ← get
match state.goalStates.find? args.target with
| .none => return .error $ errorIndex s!"Invalid state index {args.target}"
| .some target => do
let nextState? ← match args.branch?, args.goals? with
| .some branchId, .none => do
match state.goalStates.find? branchId with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ goalContinue target branch
| .none, .some goals =>
pure $ goalResume target goals
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied"
match nextState? with
| .error error => return .error <| errorI "structure" error
| .ok nextGoalState =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert nextStateId nextGoalState,
nextId := state.nextId + 1
}
let goals ← goalSerialize nextGoalState (options := state.options)
return .ok {
nextStateId,
goals,
}
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do
let state ← get
let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates
set { state with goalStates }
return .ok {}
goal_print (args: Protocol.GoalPrint): MainM (CR Protocol.GoalPrintResult) := do
let state ← get
match state.goalStates.find? args.stateId with
| .none => return .error $ errorIndex s!"Invalid state index {args.stateId}"
| .some goalState => runMetaM <| do
return .ok (← goalPrint goalState state.options)
end Pantograph

View File

@ -1,561 +0,0 @@
/-
This file handles "Delation": The conversion of Kernel view into Search view.
-/
import Lean
import Std.Data.HashMap
import Pantograph.Goal
import Pantograph.Protocol
open Lean
-- Symbol processing functions --
namespace Pantograph
structure ProjectionApplication where
projector: Name
numParams: Nat
inner: Expr
@[export pantograph_expr_proj_to_app]
def exprProjToApp (env: Environment) (e: Expr): ProjectionApplication :=
let (typeName, idx, inner) := match e with
| .proj typeName idx inner => (typeName, idx, inner)
| _ => panic! "Argument must be proj"
let ctor := getStructureCtor env typeName
let fieldName := getStructureFields env typeName |>.get! idx
let projector := getProjFnForField? env typeName fieldName |>.get!
{
projector,
numParams := ctor.numParams,
inner,
}
def _root_.Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _
/-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/
@[export pantograph_unfold_aux_lemmas]
def unfoldAuxLemmas (e : Expr) : CoreM Expr := do
Lean.Meta.deltaExpand e Lean.Name.isAuxLemma
/--
Force the instantiation of delayed metavariables even if they cannot be fully
instantiated. This is used during resumption to provide diagnostic data about
the current goal.
Since Lean 4 does not have an `Expr` constructor corresponding to delayed
metavariables, any delayed metavariables must be recursively handled by this
function to ensure that nested delayed metavariables can be properly processed.
The caveat is this recursive call will lead to infinite recursion if a loop
between metavariable assignment exists.
This function ensures any metavariable in the result is either
1. Delayed assigned with its pending mvar not assigned in any form
2. Not assigned (delay or not)
-/
partial def instantiateDelayedMVars (eOrig: Expr) : MetaM Expr := do
--let padding := String.join $ List.replicate level "│ "
--IO.println s!"{padding}Starting {toString eOrig}"
let mut result ← Meta.transform (← instantiateMVars eOrig)
(pre := fun e => e.withApp fun f args => do
let .mvar mvarId := f | return .continue
--IO.println s!"{padding}├V {e}"
let mvarDecl ← mvarId.getDecl
-- This is critical to maintaining the interdependency of metavariables.
-- Without setting `.syntheticOpaque`, Lean's metavariable elimination
-- system will not make the necessary delayed assigned mvars in case of
-- nested mvars.
mvarId.setKind .syntheticOpaque
mvarId.withContext do
let lctx ← MonadLCtx.getLCtx
if mvarDecl.lctx.any (λ decl => !lctx.contains decl.fvarId) then
let violations := mvarDecl.lctx.decls.foldl (λ acc decl? => match decl? with
| .some decl => if lctx.contains decl.fvarId then acc else acc ++ [decl.fvarId.name]
| .none => acc) []
panic! s!"In the context of {mvarId.name}, there are local context variable violations: {violations}"
if let .some assign ← getExprMVarAssignment? mvarId then
--IO.println s!"{padding}├A ?{mvarId.name}"
assert! !(← mvarId.isDelayedAssigned)
return .visit (mkAppN assign args)
else if let some { fvars, mvarIdPending } ← getDelayedMVarAssignment? mvarId then
--let substTableStr := String.intercalate ", " $ Array.zipWith fvars args (λ fvar assign => s!"{fvar.fvarId!.name} := {assign}") |>.toList
--IO.println s!"{padding}├MD ?{mvarId.name} := ?{mvarIdPending.name} [{substTableStr}]"
if args.size < fvars.size then
throwError "Not enough arguments to instantiate a delay assigned mvar. This is due to bad implementations of a tactic: {args.size} < {fvars.size}. Expr: {toString e}; Origin: {toString eOrig}"
--if !args.isEmpty then
--IO.println s!"{padding}├── Arguments Begin"
let args ← args.mapM self
--if !args.isEmpty then
--IO.println s!"{padding}├── Arguments End"
if !(← mvarIdPending.isAssignedOrDelayedAssigned) then
--IO.println s!"{padding}├T1"
let result := mkAppN f args
return .done result
let pending ← mvarIdPending.withContext do
let inner ← instantiateDelayedMVars (.mvar mvarIdPending) --(level := level + 1)
--IO.println s!"{padding}├Pre: {inner}"
pure <| (← inner.abstractM fvars).instantiateRev args
-- Tail arguments
let result := mkAppRange pending fvars.size args.size args
--IO.println s!"{padding}├MD {result}"
return .done result
else
assert! !(← mvarId.isAssigned)
assert! !(← mvarId.isDelayedAssigned)
--if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments Begin"
let args ← args.mapM self
--if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments End"
--IO.println s!"{padding}├M ?{mvarId.name}"
return .done (mkAppN f args))
--IO.println s!"{padding}└Result {result}"
return result
where
self e := instantiateDelayedMVars e --(level := level + 1)
/--
Convert an expression to an equiavlent form with
1. No nested delayed assigned mvars
2. No aux lemmas
3. No assigned mvars
-/
@[export pantograph_instantiate_all_m]
def instantiateAll (e: Expr): MetaM Expr := do
let e ← instantiateDelayedMVars e
let e ← unfoldAuxLemmas e
return e
structure DelayedMVarInvocation where
mvarIdPending: MVarId
args: Array (FVarId × (Option Expr))
-- Extra arguments applied to the result of this substitution
tail: Array Expr
-- The pending mvar of any delayed assigned mvar must not be assigned in any way.
@[export pantograph_to_delayed_mvar_invocation_m]
def toDelayedMVarInvocation (e: Expr): MetaM (Option DelayedMVarInvocation) := do
let .mvar mvarId := e.getAppFn | return .none
let .some decl ← getDelayedMVarAssignment? mvarId | return .none
let mvarIdPending := decl.mvarIdPending
let mvarDecl ← mvarIdPending.getDecl
-- Print the function application e. See Lean's `withOverApp`
let args := e.getAppArgs
assert! args.size ≥ decl.fvars.size
assert! !(← mvarIdPending.isAssigned)
assert! !(← mvarIdPending.isDelayedAssigned)
let fvarArgMap: Std.HashMap FVarId Expr := Std.HashMap.ofList $ (decl.fvars.map (·.fvarId!) |>.zip args).toList
let subst ← mvarDecl.lctx.foldlM (init := []) λ acc localDecl => do
let fvarId := localDecl.fvarId
let a := fvarArgMap[fvarId]?
return acc ++ [(fvarId, a)]
assert! decl.fvars.all (λ fvar => mvarDecl.lctx.findFVar? fvar |>.isSome)
return .some {
mvarIdPending,
args := subst.toArray,
tail := args.toList.drop decl.fvars.size |>.toArray,
}
-- Condensed representation
namespace Condensed
-- Mirrors Lean's LocalDecl
structure LocalDecl where
-- Default value is for testing
fvarId: FVarId := { name := .anonymous }
userName: Name
-- Normalized expression
type : Expr
value? : Option Expr := .none
structure Goal where
mvarId: MVarId := { name := .anonymous }
userName: Name := .anonymous
context: Array LocalDecl
target: Expr
@[export pantograph_goal_is_lhs]
def isLHS (g: Goal) : Bool := isLHSGoal? g.target |>.isSome
end Condensed
-- Get the list of visible (by default) free variables from a goal
@[export pantograph_visible_fvars_of_mvar]
protected def visibleFVarsOfMVar (mctx: MetavarContext) (mvarId: MVarId): Option (Array FVarId) := do
let mvarDecl ← mctx.findDecl? mvarId
let lctx := mvarDecl.lctx
return lctx.decls.foldl (init := #[]) fun r decl? => match decl? with
| some decl => if decl.isAuxDecl decl.isImplementationDetail then r else r.push decl.fvarId
| none => r
@[export pantograph_to_condensed_goal_m]
def toCondensedGoal (mvarId: MVarId): MetaM Condensed.Goal := do
let ppAuxDecls := Meta.pp.auxDecls.get (← getOptions)
let ppImplDetailHyps := Meta.pp.implementationDetailHyps.get (← getOptions)
let mvarDecl ← mvarId.getDecl
let lctx := mvarDecl.lctx
let lctx := lctx.sanitizeNames.run' { options := (← getOptions) }
Meta.withLCtx lctx mvarDecl.localInstances do
let ppVar (localDecl : LocalDecl) : MetaM Condensed.LocalDecl := do
match localDecl with
| .cdecl _ fvarId userName type _ _ =>
let type ← instantiate type
return { fvarId, userName, type }
| .ldecl _ fvarId userName type value _ _ => do
let userName := userName.simpMacroScopes
let type ← instantiate type
let value ← instantiate value
return { fvarId, userName, type, value? := .some value }
let vars ← lctx.foldlM (init := []) fun acc (localDecl : LocalDecl) => do
let skip := !ppAuxDecls && localDecl.isAuxDecl ||
!ppImplDetailHyps && localDecl.isImplementationDetail
if skip then
return acc
else
let var ← ppVar localDecl
return var::acc
return {
mvarId,
userName := mvarDecl.userName,
context := vars.reverse.toArray,
target := ← instantiate mvarDecl.type
}
where
instantiate := instantiateAll
@[export pantograph_goal_state_to_condensed_m]
protected def GoalState.toCondensed (state: GoalState):
CoreM (Array Condensed.Goal):= do
let metaM := do
let goals := state.goals.toArray
goals.mapM fun goal => do
match state.mctx.findDecl? goal with
| .some _ =>
let serializedGoal ← toCondensedGoal goal
pure serializedGoal
| .none => throwError s!"Metavariable does not exist in context {goal.name}"
metaM.run' (s := state.savedState.term.meta.meta)
def typeExprToBound (expr: Expr): MetaM Protocol.BoundExpression := do
Meta.forallTelescope expr fun arr body => do
let binders ← arr.mapM fun fvar => do
return (toString (← fvar.fvarId!.getUserName), toString (← Meta.ppExpr (← fvar.fvarId!.getType)))
return { binders, target := toString (← Meta.ppExpr body) }
def serializeName (name: Name) (sanitize: Bool := true): String :=
let internal := name.isInaccessibleUserName || name.hasMacroScopes
if sanitize && internal then "_"
else toString name |> addQuotes
where
addQuotes (n: String) :=
let quote := "\""
if n.contains Lean.idBeginEscape then s!"{quote}{n}{quote}" else n
/-- serialize a sort level. Expression is optimized to be compact e.g. `(+ u 2)` -/
partial def serializeSortLevel (level: Level) (sanitize: Bool): String :=
let k := level.getOffset
let u := level.getLevelOffset
let u_str := match u with
| .zero => "0"
| .succ _ => panic! "getLevelOffset should not return .succ"
| .max v w =>
let v := serializeSortLevel v sanitize
let w := serializeSortLevel w sanitize
s!"(:max {v} {w})"
| .imax v w =>
let v := serializeSortLevel v sanitize
let w := serializeSortLevel w sanitize
s!"(:imax {v} {w})"
| .param name =>
let name := serializeName name sanitize
s!"{name}"
| .mvar id =>
let name := serializeName id.name sanitize
s!"(:mv {name})"
match k, u with
| 0, _ => u_str
| _, .zero => s!"{k}"
| _, _ => s!"(+ {u_str} {k})"
/--
Completely serializes an expression tree. Json not used due to compactness
A `_` symbol in the AST indicates automatic deductions not present in the original expression.
-/
partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM String := do
self expr
where
delayedMVarToSexp (e: Expr): MetaM (Option String) := do
let .some invocation ← toDelayedMVarInvocation e | return .none
let callee ← self $ .mvar invocation.mvarIdPending
let sites ← invocation.args.mapM (λ (fvarId, arg) => do
let arg := match arg with
| .some arg => arg
| .none => .fvar fvarId
self arg
)
let tailArgs ← invocation.tail.mapM self
let sites := " ".intercalate sites.toList
let result := if tailArgs.isEmpty then
s!"(:subst {callee} {sites})"
else
let tailArgs := " ".intercalate tailArgs.toList
s!"((:subst {callee} {sites}) {tailArgs})"
return .some result
self (e: Expr): MetaM String := do
if let .some result ← delayedMVarToSexp e then
return result
match e with
| .bvar deBruijnIndex =>
-- This is very common so the index alone is shown. Literals are handled below.
-- The raw de Bruijn index should never appear in an unbound setting. In
-- Lean these are handled using a `#` prefix.
pure s!"{deBruijnIndex}"
| .fvar fvarId =>
let name := fvarId.name
pure s!"(:fv {name})"
| .mvar mvarId => do
let pref := if ← mvarId.isDelayedAssigned then "mvd" else "mv"
let name := mvarId.name
pure s!"(:{pref} {name})"
| .sort level =>
let level := serializeSortLevel level sanitize
pure s!"(:sort {level})"
| .const declName _ =>
-- The universe level of the const expression is elided since it should be
-- inferrable from surrounding expression
pure s!"(:c {declName})"
| .app _ _ => do
let fn' ← self e.getAppFn
let args := (← e.getAppArgs.mapM self) |>.toList
let args := " ".intercalate args
pure s!"({fn'} {args})"
| .lam binderName binderType body binderInfo => do
let binderName' := binderName.eraseMacroScopes
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:lambda {binderName'} {binderType'} {body'}{binderInfo'})"
| .forallE binderName binderType body binderInfo => do
let binderName' := binderName.eraseMacroScopes
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:forall {binderName'} {binderType'} {body'}{binderInfo'})"
| .letE name type value body _ => do
-- Dependent boolean flag diacarded
let name' := name.eraseMacroScopes
let type' ← self type
let value' ← self value
let body' ← self body
pure s!"(:let {name'} {type'} {value'} {body'})"
| .lit v =>
-- To not burden the downstream parser who needs to handle this, the literal
-- is wrapped in a :lit sexp.
let v' := match v with
| .natVal val => toString val
| .strVal val => s!"\"{val}\""
pure s!"(:lit {v'})"
| .mdata _ inner =>
-- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter
-- It may become necessary to incorporate the metadata.
self inner
| .proj _ _ _ => do
let env ← getEnv
let projApp := exprProjToApp env e
let autos := String.intercalate " " (List.replicate projApp.numParams "_")
let inner ← self projApp.inner
pure s!"((:c {projApp.projector}) {autos} {inner})"
-- Elides all unhygenic names
binderInfoSexp : Lean.BinderInfo → String
| .default => ""
| .implicit => " :implicit"
| .strictImplicit => " :strictImplicit"
| .instImplicit => " :instImplicit"
def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.Expression := do
let pp?: Option String ← match options.printExprPretty with
| true => pure $ .some $ toString $ ← Meta.ppExpr e
| false => pure $ .none
let sexp?: Option String ← match options.printExprAST with
| true => pure $ .some $ ← serializeExpressionSexp e
| false => pure $ .none
let dependentMVars? ← match options.printDependentMVars with
| true => pure $ .some $ (← Meta.getMVars e).map (λ mvarId => mvarId.name.toString)
| false => pure $ .none
return {
pp?,
sexp?
dependentMVars?,
}
/-- Adapted from ppGoal -/
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl := .none)
: MetaM Protocol.Goal := do
-- Options for printing; See Meta.ppGoal for details
let showLetValues := true
let ppAuxDecls := options.printAuxDecls
let ppImplDetailHyps := options.printImplementationDetailHyps
let lctx := mvarDecl.lctx
let lctx := lctx.sanitizeNames.run' { options := (← getOptions) }
Meta.withLCtx lctx mvarDecl.localInstances do
let ppVarNameOnly (localDecl: LocalDecl): MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName _ _ _ =>
return {
name := fvarId.name.toString,
userName:= ofName userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
| .ldecl _ fvarId userName _ _ _ _ => do
return {
name := fvarId.name.toString,
userName := toString userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
let ppVar (localDecl : LocalDecl) : MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName type _ _ =>
let userName := userName.simpMacroScopes
let type ← instantiate type
return {
name := fvarId.name.toString,
userName:= ofName userName,
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
}
| .ldecl _ fvarId userName type val _ _ => do
let userName := userName.simpMacroScopes
let type ← instantiate type
let value? ← if showLetValues then
let val ← instantiate val
pure $ .some (← serializeExpression options val)
else
pure $ .none
return {
name := fvarId.name.toString,
userName:= ofName userName,
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
value? := value?
}
let vars ← lctx.foldlM (init := []) fun acc (localDecl : LocalDecl) => do
let skip := !ppAuxDecls && localDecl.isAuxDecl ||
!ppImplDetailHyps && localDecl.isImplementationDetail
if skip then
return acc
else
let nameOnly := options.noRepeat && (parentDecl?.map
(λ decl => decl.lctx.find? localDecl.fvarId |>.isSome) |>.getD false)
let var ← match nameOnly with
| true => ppVarNameOnly localDecl
| false => ppVar localDecl
return var::acc
return {
name := goal.name.toString,
userName? := if mvarDecl.userName == .anonymous then .none else .some (ofName mvarDecl.userName),
isConversion := isLHSGoal? mvarDecl.type |>.isSome,
target := (← serializeExpression options (← instantiate mvarDecl.type)),
vars := vars.reverse.toArray
}
where
instantiate := instantiateAll
ofName (n: Name) := serializeName n (sanitize := false)
protected def GoalState.serializeGoals
(state: GoalState)
(parent: Option GoalState := .none)
(options: @&Protocol.Options := {}):
MetaM (Array Protocol.Goal):= do
state.restoreMetaM
let goals := state.goals.toArray
let parentDecl? := parent.bind (λ parentState => parentState.mctx.findDecl? state.parentMVar?.get!)
goals.mapM fun goal => do
match state.mctx.findDecl? goal with
| .some mvarDecl =>
let serializedGoal ← serializeGoal options goal mvarDecl (parentDecl? := parentDecl?)
pure serializedGoal
| .none => throwError s!"Metavariable does not exist in context {goal.name}"
/-- Print the metavariables in a readable format -/
@[export pantograph_goal_state_diag_m]
protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState := .none) (options: Protocol.GoalDiag := {}): CoreM String := do
let metaM: MetaM String := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
let result: String ← match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => pure s!">{root.name}: ??"
let resultGoals ← goals.filter (· != root) |>.mapM (fun mvarId =>
match mctx.decls.find? mvarId with
| .some decl => printMVar "⊢" mvarId decl
| .none => pure s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
let resultOthers ← mctx.decls.toList.filter (λ (mvarId, _) =>
!(goals.contains mvarId || mvarId == root) && options.printAll)
|>.mapM (fun (mvarId, decl) => do
let pref := if parentHasMVar mvarId then " " else "~"
printMVar pref mvarId decl
)
pure $ result ++ "\n" ++ (resultGoals.map (· ++ "\n") |> String.join) ++ (resultOthers.map (· ++ "\n") |> String.join)
metaM.run' {}
where
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): MetaM String := mvarId.withContext do
let resultFVars: List String ←
if options.printContext then
decl.lctx.fvarIdToDecl.toList.mapM (λ (fvarId, decl) =>
do pure $ (← printFVar fvarId decl) ++ "\n")
else
pure []
let type ← if options.instantiate
then instantiateAll decl.type
else pure $ decl.type
let type_sexp ← if options.printSexp then
let sexp ← serializeExpressionSexp type (sanitize := false)
pure <| " " ++ sexp
else
pure ""
let resultMain: String := s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}{type_sexp}"
let resultValue: String ←
if options.printValue then
if let .some value ← getExprMVarAssignment? mvarId then
let value ← if options.instantiate
then instantiateAll value
else pure $ value
pure s!"\n := {← Meta.ppExpr value}"
else if let .some { mvarIdPending, .. } ← getDelayedMVarAssignment? mvarId then
pure s!"\n ::= {mvarIdPending.name}"
else
pure ""
else
pure ""
pure $ (String.join resultFVars) ++ resultMain ++ resultValue
printFVar (fvarId: FVarId) (decl: LocalDecl): MetaM String := do
pure s!" | {fvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}"
userNameToString : Name → String
| .anonymous => ""
| other => s!"[{other}]"
parentHasMVar (mvarId: MVarId): Bool := parent?.map (λ state => state.mctx.decls.contains mvarId) |>.getD true
end Pantograph

View File

@ -1,40 +0,0 @@
import Lean
open Lean
namespace Pantograph
-- Functions for creating contexts and states
@[export pantograph_default_elab_context]
def defaultElabContext: Elab.Term.Context := {
errToSorry := false
}
/-- Read syntax object from string -/
def parseTerm (env: Environment) (s: String): Except String Syntax :=
Parser.runParserCategory
(env := env)
(catName := `term)
(input := s)
(fileName := "<stdin>")
def parseTermM [Monad m] [MonadEnv m] (s: String): m (Except String Syntax) := do
return Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := "<stdin>")
/-- Parse a syntax object. May generate additional metavariables! -/
def elabType (syn: Syntax): Elab.TermElabM (Except String Expr) := do
try
let expr ← Elab.Term.elabType syn
return .ok expr
catch ex => return .error (← ex.toMessageData.toString)
def elabTerm (syn: Syntax) (expectedType? : Option Expr := .none): Elab.TermElabM (Except String Expr) := do
try
let expr ← Elab.Term.elabTerm (stx := syn) expectedType?
return .ok expr
catch ex => return .error (← ex.toMessageData.toString)
end Pantograph

View File

@ -1,33 +1,21 @@
import Pantograph.Delate
import Pantograph.Elab
import Pantograph.Protocol
import Pantograph.Serial
import Lean.Environment
import Lean.Replay
import Lean
open Lean
open Pantograph
namespace Pantograph.Environment
@[export pantograph_is_name_internal]
def isNameInternal (n: Name): Bool :=
def isNameInternal (n: Lean.Name): Bool :=
-- Returns true if the name is an implementation detail which should not be shown to the user.
n.isAuxLemma n.hasMacroScopes
isLeanSymbol n (Lean.privateToUserName? n |>.map isLeanSymbol |>.getD false) n.isAuxLemma n.hasMacroScopes
where
isLeanSymbol (name: Lean.Name): Bool := match name.getRoot with
| .str _ name => name == "Lean"
| _ => true
/-- Catalog all the non-internal and safe names -/
@[export pantograph_environment_catalog]
def env_catalog (env: Environment): Array Name := env.constants.fold (init := #[]) (λ acc name _ =>
match isNameInternal name with
| false => acc.push name
| true => acc)
@[export pantograph_environment_module_of_name]
def module_of_name (env: Environment) (name: Name): Option Name := do
let moduleId ← env.getModuleIdxFor? name
return env.allImportedModuleNames.get! moduleId.toNat
def toCompactSymbolName (n: Name) (info: ConstantInfo): String :=
def toCompactSymbolName (n: Lean.Name) (info: Lean.ConstantInfo): String :=
let pref := match info with
| .axiomInfo _ => "a"
| .defnInfo _ => "d"
@ -64,22 +52,21 @@ def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Pr
| .some false, _ => .none
| .none, .defnInfo _ => info.value?
| .none, _ => .none
let type ← unfoldAuxLemmas info.type
let value? ← value?.mapM (λ v => unfoldAuxLemmas v)
-- Information common to all symbols
let core := {
type := ← (serializeExpression options type).run',
type := ← (serializeExpression options info.type).run',
isUnsafe := info.isUnsafe,
value? := ← value?.mapM (λ v => serializeExpression options v |>.run'),
publicName? := Lean.privateToUserName? name |>.map (·.toString),
-- BUG: Warning: getUsedConstants here will not include projections. This is a known bug.
typeDependency? := if args.dependency?.getD false
then .some <| type.getUsedConstants.map (λ n => serializeName n)
else .none,
valueDependency? := if args.dependency?.getD false
then value?.map (λ e =>
e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
then .some <| info.type.getUsedConstants.map (λ n => serializeName n)
else .none,
valueDependency? := ← if args.dependency?.getD false
then info.value?.mapM (λ e => do
let e ← unfoldAuxLemmas e
pure $ e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
else pure (.none),
module? := module?
}
let result ← match info with
@ -144,7 +131,7 @@ def addDecl (args: Protocol.EnvAdd): CoreM (Protocol.CR Protocol.EnvAddResult) :
(hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe)
(all := [])
let env' ← match env.addDecl (← getOptions) constant with
let env' ← match env.addDecl constant with
| .error e => do
let options ← Lean.MonadOptions.getOptions
let desc ← (e.toMessageData options).toString

View File

@ -1,4 +0,0 @@
import Pantograph.Frontend.Basic
import Pantograph.Frontend.Elab
import Pantograph.Frontend.InfoTree
import Pantograph.Frontend.MetaTranslate

View File

@ -1,127 +0,0 @@
import Lean.Parser
import Lean.Elab.Frontend
open Lean
namespace Lean.FileMap
/-- Extract the range of a `Syntax` expressed as lines and columns. -/
-- Extracted from the private declaration `Lean.Elab.formatStxRange`,
-- in `Lean.Elab.InfoTree.Main`.
@[export pantograph_frontend_stx_range]
protected def stxRange (fileMap : FileMap) (stx : Syntax) : Position × Position :=
let pos := stx.getPos?.getD 0
let endPos := stx.getTailPos?.getD pos
(fileMap.toPosition pos, fileMap.toPosition endPos)
end Lean.FileMap
namespace Lean.PersistentArray
/--
Drop the first `n` elements of a `PersistentArray`, returning the results as a `List`.
-/
-- We can't remove the `[Inhabited α]` hypotheses here until
-- `PersistentArray`'s `GetElem` instance also does.
protected def drop [Inhabited α] (t : PersistentArray α) (n : Nat) : List α :=
List.range (t.size - n) |>.map fun i => t.get! (n + i)
end Lean.PersistentArray
namespace Pantograph.Frontend
@[export pantograph_frontend_stx_byte_range]
def stxByteRange (stx : Syntax) : String.Pos × String.Pos :=
let pos := stx.getPos?.getD 0
let endPos := stx.getTailPos?.getD 0
(pos, endPos)
abbrev FrontendM := Elab.Frontend.FrontendM
structure CompilationStep where
fileName : String
fileMap : FileMap
src : Substring
stx : Syntax
before : Environment
after : Environment
msgs : List Message
trees : List Elab.InfoTree
namespace CompilationStep
@[export pantograph_frontend_compilation_step_message_strings_m]
def messageStrings (step: CompilationStep) : IO (Array String) := do
List.toArray <$> step.msgs.mapM (·.toString)
end CompilationStep
/--
Process one command, returning a `CompilationStep` and
`done : Bool`, indicating whether this was the last command.
-/
@[export pantograph_frontend_process_one_command_m]
def processOneCommand: FrontendM (CompilationStep × Bool) := do
let s := (← get).commandState
let before := s.env
let done ← Elab.Frontend.processCommand
let stx := (← get).commands.back
let src := (← read).inputCtx.input.toSubstring.extract (← get).cmdPos (← get).parserState.pos
let s' := (← get).commandState
let after := s'.env
let msgs := s'.messages.toList.drop s.messages.toList.length
let trees := s'.infoState.trees.drop s.infoState.trees.size
let ⟨_, fileName, fileMap⟩ := (← read).inputCtx
return ({ fileName, fileMap, src, stx, before, after, msgs, trees }, done)
partial def mapCompilationSteps { α } (f: CompilationStep → IO α) : FrontendM (List α) := do
let (cmd, done) ← processOneCommand
if done then
if cmd.src.isEmpty then
return []
else
return [← f cmd]
else
return (← f cmd) :: (← mapCompilationSteps f)
@[export pantograph_frontend_find_source_path_m]
def findSourcePath (module : Name) : IO System.FilePath := do
return System.FilePath.mk ((← findOLean module).toString.replace ".lake/build/lib/" "") |>.withExtension "lean"
/--
Use with
```lean
let m: FrontendM α := ...
let (context, state) ← createContextStateFromFile ...
m.run context |>.run' state
```
-/
@[export pantograph_frontend_create_context_state_from_file_m]
def createContextStateFromFile
(file : String) -- Content of the file
(fileName : String := "<anonymous>")
(env? : Option Lean.Environment := .none) -- If set to true, assume there's no header.
(opts : Options := {})
: IO (Elab.Frontend.Context × Elab.Frontend.State) := unsafe do
--let file ← IO.FS.readFile (← findSourcePath module)
let inputCtx := Parser.mkInputContext file fileName
let (env, parserState, messages) ← match env? with
| .some env => pure (env, {}, .empty)
| .none =>
let (header, parserState, messages) ← Parser.parseHeader inputCtx
let (env, messages) ← Elab.processHeader header opts messages inputCtx
pure (env, parserState, messages)
let commandState := Elab.Command.mkState env messages opts
let context: Elab.Frontend.Context := { inputCtx }
let state: Elab.Frontend.State := {
commandState := { commandState with infoState.enabled := true },
parserState,
cmdPos := parserState.pos
}
return (context, state)
end Pantograph.Frontend

View File

@ -1,182 +0,0 @@
import Lean.Elab.Import
import Lean.Elab.Command
import Lean.Elab.InfoTree
import Lean.DeclarationRange
import Pantograph.Frontend.Basic
import Pantograph.Frontend.MetaTranslate
import Pantograph.Goal
import Pantograph.Protocol
import Pantograph.Frontend.InfoTree
open Lean
namespace Pantograph.Frontend
-- Info tree filtering functions
/- Adapted from lean-training-data -/
structure TacticInvocation where
info : Elab.TacticInfo
ctx : Elab.ContextInfo
children : PersistentArray Elab.InfoTree
namespace TacticInvocation
/-- Return the range of the tactic, as a pair of file positions. -/
@[export pantograph_frontend_tactic_invocation_range]
protected def range (t : TacticInvocation) : Position × Position := t.ctx.fileMap.stxRange t.info.stx
/-- Pretty print a tactic. -/
protected def pp (t : TacticInvocation) : IO Format :=
t.ctx.runMetaM {} try
Lean.PrettyPrinter.ppTactic ⟨t.info.stx⟩
catch _ =>
pure "<failed to pretty print>"
/-- Run a tactic on the goals stored in a `TacticInvocation`. -/
protected def runMetaMGoalsBefore (t : TacticInvocation) (x : List MVarId → MetaM α) : IO α := do
t.ctx.runMetaM {} <| Meta.withMCtx t.info.mctxBefore <| x t.info.goalsBefore
/-- Run a tactic on the after goals stored in a `TacticInvocation`. -/
protected def runMetaMGoalsAfter (t : TacticInvocation) (x : List MVarId → MetaM α) : IO α := do
t.ctx.runMetaM {} <| Meta.withMCtx t.info.mctxAfter <| x t.info.goalsAfter
/-- Run a tactic on the main goal stored in a `TacticInvocation`. -/
protected def runMetaM (t : TacticInvocation) (x : MVarId → MetaM α) : IO α := do
match t.info.goalsBefore.head? with
| none => throw <| IO.userError s!"No goals at {← t.pp}"
| some g => t.runMetaMGoalsBefore fun _ => do g.withContext <| x g
protected def goalState (t : TacticInvocation) : IO (List Format) := do
t.runMetaMGoalsBefore (fun gs => gs.mapM fun g => do Meta.ppGoal g)
protected def goalStateAfter (t : TacticInvocation) : IO (List Format) := do
t.runMetaMGoalsAfter (fun gs => gs.mapM fun g => do Meta.ppGoal g)
protected def ppExpr (t : TacticInvocation) (e : Expr) : IO Format :=
t.runMetaM (fun _ => do Meta.ppExpr (← instantiateMVars e))
protected def usedConstants (t: TacticInvocation) : NameSet :=
let info := t.info
info.goalsBefore
|>.filterMap info.mctxAfter.getExprAssignmentCore?
|>.map Expr.getUsedConstantsAsSet
|>.foldl .union .empty
end TacticInvocation
/-- Return all `TacticInfo` nodes in an `InfoTree` corresponding to tactics,
each equipped with its relevant `ContextInfo`, and any children info trees. -/
private def collectTacticNodes (t : Elab.InfoTree) : List TacticInvocation :=
let infos := t.findAllInfo none false fun i => match i with
| .ofTacticInfo _ => true
| _ => false
infos.filterMap fun p => match p with
| (.ofTacticInfo i, some ctx, children) => .some ⟨i, ctx, children⟩
| _ => none
def collectTactics (t : Elab.InfoTree) : List TacticInvocation :=
collectTacticNodes t |>.filter fun i => i.info.isSubstantive
@[export pantograph_frontend_collect_tactics_from_compilation_step_m]
def collectTacticsFromCompilationStep (step : CompilationStep) : IO (List Protocol.InvokedTactic) := do
let tacticInfoTrees := step.trees.bind λ tree => tree.filter λ
| info@(.ofTacticInfo _) => info.isOriginal
| _ => false
let tactics := tacticInfoTrees.bind collectTactics
tactics.mapM λ invocation => do
let goalBefore := (Format.joinSep (← invocation.goalState) "\n").pretty
let goalAfter := (Format.joinSep (← invocation.goalStateAfter) "\n").pretty
let tactic ← invocation.ctx.runMetaM {} <| Meta.withMCtx invocation.info.mctxBefore do
return (← invocation.ctx.ppSyntax {} invocation.info.stx).pretty
-- FIXME: Why does this not work? There are problems with `term.pseudo.antiquot`
--PrettyPrinter.ppTactic ⟨invocation.info.stx⟩
--return t.pretty
let usedConstants := invocation.usedConstants.toArray.map λ n => n.toString
return {
goalBefore,
goalAfter,
tactic,
usedConstants,
}
structure InfoWithContext where
info: Elab.Info
context?: Option Elab.ContextInfo := .none
private def collectSorrysInTree (t : Elab.InfoTree) : IO (List InfoWithContext) := do
let infos ← t.findAllInfoM none fun i ctx? => match i with
| .ofTermInfo { expectedType?, expr, stx, lctx, .. } => do
let .some ctx := ctx? | return (false, true)
if expr.isSorry ∧ stx.isOfKind `Lean.Parser.Term.sorry then
if expectedType?.isNone then
throw $ .userError "Sorry of indeterminant type is not allowed"
return (true, false)
let .some expectedType := expectedType? | return (false, true)
let typeMatch ← ctx.runMetaM lctx do
let type ← Meta.inferType expr
Meta.isExprDefEqGuarded type expectedType
return match typeMatch, expr.hasSorry with
| false, true => (true, false) -- Types mismatch but has sorry -> collect, halt
| false, false => (true, false) -- Types mistmatch but no sorry -> collect, halt
| true, true => (false, true) -- Types match but has sorry -> continue
| true, false => (false, false) -- Types match but no sorries -> halt
| .ofTacticInfo { stx, goalsBefore, .. } =>
-- The `sorry` term is distinct from the `sorry` tactic
let isSorry := stx.isOfKind `Lean.Parser.Tactic.tacticSorry
return (isSorry ∧ !goalsBefore.isEmpty, ¬ isSorry)
| _ => return (false, true)
return infos.map fun (info, context?, _) => { info, context? }
-- NOTE: Plural deliberately not spelled "sorries"
@[export pantograph_frontend_collect_sorrys_m]
def collectSorrys (step: CompilationStep) : IO (List InfoWithContext) := do
return (← step.trees.mapM collectSorrysInTree).join
structure AnnotatedGoalState where
state : GoalState
srcBoundaries : List (String.Pos × String.Pos)
/--
Since we cannot directly merge `MetavarContext`s, we have to get creative. This
function duplicates frozen mvars in term and tactic info nodes, and add them to
the current `MetavarContext`.
-/
@[export pantograph_frontend_sorrys_to_goal_state_m]
def sorrysToGoalState (sorrys : List InfoWithContext) : MetaM AnnotatedGoalState := do
assert! !sorrys.isEmpty
let goalsM := sorrys.mapM λ i => do
match i.info with
| .ofTermInfo termInfo => do
let mvarId ← MetaTranslate.translateMVarFromTermInfo termInfo i.context?
return [(mvarId, stxByteRange termInfo.stx)]
| .ofTacticInfo tacticInfo => do
let mvarIds ← MetaTranslate.translateMVarFromTacticInfoBefore tacticInfo i.context?
let range := stxByteRange tacticInfo.stx
return mvarIds.map (·, range)
| _ => panic! "Invalid info"
let annotatedGoals := List.join (← goalsM.run {} |>.run' {})
let goals := annotatedGoals.map Prod.fst
let srcBoundaries := annotatedGoals.map Prod.snd
let root := match goals with
| [] => panic! "No MVars generated"
| [g] => g
| _ => { name := .anonymous }
let state ← GoalState.createFromMVars goals root
return { state, srcBoundaries }
@[export pantograph_frontend_collect_new_defined_constants_m]
def collectNewDefinedConstants (step : CompilationStep) : IO (List Name) := do
step.after.constants.map₂.foldlM (λ acc name _ => do
if step.before.contains name then
return acc
let coreM : CoreM Bool := Option.isSome <$> findDeclarationRanges? name
let hasRange ← coreM.run' { fileName := step.fileName, fileMap := step.fileMap } { env := step.after } |>.toBaseIO
match hasRange with
| .ok true => return name :: acc
| .ok false => return acc
| .error e => throw $ IO.userError (← e.toMessageData.toString)
) []
end Pantograph.Frontend

View File

@ -1,153 +0,0 @@
/- Adapted from lean-training-data -/
import Lean.Elab.InfoTree
import Lean.Parser.Term
import Lean.PrettyPrinter
open Lean
namespace Lean.Elab
private def elaboratorToString : Name → String
| .anonymous => ""
| n => s!"⟨{n}⟩ "
private def indent (s : String) : String := "\n".intercalate $ s.splitOn "\n" |>.map ("\t" ++ .)
/-- The `Syntax` for a `Lean.Elab.Info`, if there is one. -/
protected def Info.stx? : Info → Option Syntax
| .ofTacticInfo info => info.stx
| .ofTermInfo info => info.stx
| .ofCommandInfo info => info.stx
| .ofMacroExpansionInfo info => info.stx
| .ofOptionInfo info => info.stx
| .ofFieldInfo info => info.stx
| .ofCompletionInfo info => info.stx
| .ofUserWidgetInfo info => info.stx
| .ofCustomInfo info => info.stx
| .ofFVarAliasInfo _ => none
| .ofFieldRedeclInfo info => info.stx
| .ofOmissionInfo info => info.stx
/-- Is the `Syntax` for this `Lean.Elab.Info` original, or synthetic? -/
protected def Info.isOriginal (i : Info) : Bool :=
match i.stx? with
| none => true -- Somewhat unclear what to do with `FVarAliasInfo`, so be conservative.
| some stx => match stx.getHeadInfo with
| .original .. => true
| _ => false
def ContextInfo.ppExpr (ctx : ContextInfo) (lctx : LocalContext) (e : Expr) : IO Format :=
ctx.runMetaM lctx (do Meta.ppExpr (← instantiateMVars e))
def CommandInfo.toString (info : CommandInfo) (ctx : ContextInfo) : IO String := do
let stx := (← ctx.ppSyntax {} info.stx).pretty
return s!"{elaboratorToString info.elaborator}\n{stx}"
def TermInfo.toString (info : TermInfo) (ctx : ContextInfo) : IO String := do
let stx := (← ctx.ppSyntax info.lctx info.stx).pretty
let expectedType := (← info.expectedType?.mapM fun ty => do
pure s!": {(← ctx.ppExpr info.lctx ty).pretty}").getD ""
let expr := (← ctx.ppExpr info.lctx info.expr).pretty
return s!"{elaboratorToString info.elaborator}{expr}{expectedType}\n{stx}"
/-- Find the name for the outermost `Syntax` in this `TacticInfo`. -/
def TacticInfo.name? (t : TacticInfo) : Option Name :=
match t.stx with
| Syntax.node _ n _ => some n
| _ => none
/-- Decide whether a tactic is "substantive",
or is merely a tactic combinator (e.g. `by`, `;`, multiline tactics, parenthesized tactics). -/
def TacticInfo.isSubstantive (t : TacticInfo) : Bool :=
match t.name? with
| none => false
| some `null => false
| some ``cdot => false
| some ``cdotTk => false
| some ``Lean.Parser.Term.byTactic => false
| some ``Lean.Parser.Tactic.tacticSeq => false
| some ``Lean.Parser.Tactic.tacticSeq1Indented => false
| some ``Lean.Parser.Tactic.«tactic_<;>_» => false
| some ``Lean.Parser.Tactic.paren => false
| _ => true
def TacticInfo.pp (info : TacticInfo) (ctx : ContextInfo) : IO Format :=
ctx.runMetaM {} try
Lean.PrettyPrinter.ppTactic ⟨info.stx⟩
catch _ =>
pure "<failed to pretty print>"
def TacticInfo.toString (i : TacticInfo) (ctx : ContextInfo) : IO String := do
let name := i.name?
let stx := Format.pretty (← i.pp ctx)
return s!"{name}\n{stx}"
/--
Keep `.node` nodes and `.hole` nodes satisfying predicates.
Returns a `List InfoTree`, although in most situations this will be a singleton.
-/
partial def InfoTree.filter (p : Info → Bool) (m : MVarId → Bool := fun _ => false) :
InfoTree → List InfoTree
| .context ctx tree => tree.filter p m |>.map (.context ctx)
| .node info children =>
if p info then
[.node info (children.toList.map (filter p m)).join.toPArray']
else
(children.toList.map (filter p m)).join
| .hole mvar => if m mvar then [.hole mvar] else []
/-- Analogue of `Lean.Elab.InfoTree.findInfo?`, but that returns a list of all results. -/
partial def InfoTree.findAllInfo
(t : InfoTree)
(context?: Option Elab.ContextInfo)
(haltOnMatch : Bool := false)
(pred : Elab.Info → Bool)
: List (Elab.Info × Option Elab.ContextInfo × PersistentArray Elab.InfoTree) :=
match t with
| .context inner t => findAllInfo t (inner.mergeIntoOuter? context?) haltOnMatch pred
| .node i children =>
let head := if pred i then [(i, context?, children)] else []
let tail := if haltOnMatch ∧ !head.isEmpty then [] else children.toList.bind (fun t => findAllInfo t context? haltOnMatch pred)
head ++ tail
| _ => []
/-- Monadic analogue of `findAllInfo`, but predicate controls whether to recurse. -/
partial def InfoTree.findAllInfoM [Monad m]
(t : InfoTree)
(context?: Option Elab.ContextInfo)
(pred : Elab.Info → Option Elab.ContextInfo → m (Bool × Bool))
: m (List (Elab.Info × Option Elab.ContextInfo × PersistentArray Elab.InfoTree)) := do
match t with
| .context inner t => t.findAllInfoM (inner.mergeIntoOuter? context?) pred
| .node i children =>
let (flagCollect, flagRecurse) ← pred i context?
let head := if flagCollect then [(i, context?, children)] else []
let tail := if ¬ flagRecurse then pure [] else children.toList.mapM (fun t => t.findAllInfoM context? pred)
return head ++ (← tail).join
| _ => return []
@[export pantograph_infotree_to_string_m]
partial def InfoTree.toString (t : InfoTree) (ctx?: Option Elab.ContextInfo := .none) : IO String := do
match t with
| .context ctx t => t.toString (ctx.mergeIntoOuter? ctx?)
| .node info children =>
if let some ctx := ctx? then
let node : String ← match info with
| .ofTermInfo info => pure s!"[term] {(← info.toString ctx)}"
| .ofCommandInfo info => pure s!"[command] {(← info.toString ctx)}"
| .ofTacticInfo info => pure s!"[tactic] {(← info.toString ctx)}"
| .ofMacroExpansionInfo _ => pure "[macro_exp]"
| .ofOptionInfo _ => pure "[option]"
| .ofFieldInfo _ => pure "[field]"
| .ofCompletionInfo _ => pure "[completion]"
| .ofUserWidgetInfo _ => pure "[user_widget]"
| .ofCustomInfo _ => pure "[custom]"
| .ofFVarAliasInfo _ => pure "[fvar]"
| .ofFieldRedeclInfo _ => pure "[field_redecl]"
| .ofOmissionInfo _ => pure "[omission]"
let children := "\n".intercalate (← children.toList.mapM λ t' => do pure $ indent $ ← t'.toString ctx)
return s!"{node}\n{children}"
else throw <| IO.userError "No `ContextInfo` available."
| .hole mvarId =>
if let some ctx := ctx? then
let payload := (← ctx.runMetaM {} (do Meta.ppGoal mvarId)).pretty
return s!"[hole] {payload}"
else throw <| IO.userError "No `ContextInfo` available."
end Lean.Elab

View File

@ -1,164 +0,0 @@
import Lean.Meta
import Std.Data.HashMap
open Lean
namespace Pantograph.Frontend
namespace MetaTranslate
structure Context where
sourceMCtx : MetavarContext := {}
sourceLCtx : LocalContext := {}
abbrev FVarMap := Std.HashMap FVarId FVarId
structure State where
-- Stores mapping from old to new mvar/fvars
mvarMap: Std.HashMap MVarId MVarId := {}
fvarMap: Std.HashMap FVarId FVarId := {}
/-
Monadic state for translating a frozen meta state. The underlying `MetaM`
operates in the "target" context and state.
-/
abbrev MetaTranslateM := ReaderT Context StateRefT State MetaM
def getSourceLCtx : MetaTranslateM LocalContext := do pure (← read).sourceLCtx
def getSourceMCtx : MetaTranslateM MetavarContext := do pure (← read).sourceMCtx
def addTranslatedFVar (src dst: FVarId) : MetaTranslateM Unit := do
modifyGet λ state => ((), { state with fvarMap := state.fvarMap.insert src dst })
def addTranslatedMVar (src dst: MVarId) : MetaTranslateM Unit := do
modifyGet λ state => ((), { state with mvarMap := state.mvarMap.insert src dst })
def saveFVarMap : MetaTranslateM FVarMap := do
return (← get).fvarMap
def restoreFVarMap (map: FVarMap) : MetaTranslateM Unit := do
modifyGet λ state => ((), { state with fvarMap := map })
def resetFVarMap : MetaTranslateM Unit := do
modifyGet λ state => ((), { state with fvarMap := {} })
mutual
private partial def translateLevel (srcLevel: Level) : MetaTranslateM Level := do
let sourceMCtx ← getSourceMCtx
let (_, level) := instantiateLevelMVarsImp sourceMCtx srcLevel
match level with
| .zero => return .zero
| .succ inner => do
let inner' ← translateLevel inner
return .succ inner'
| .max l1 l2 => do
let l1' ← translateLevel l1
let l2' ← translateLevel l2
return .max l1' l2'
| .imax l1 l2 => do
let l1' ← translateLevel l1
let l2' ← translateLevel l2
return .imax l1' l2'
| .param p => return .param p
| .mvar _ =>
Meta.mkFreshLevelMVar
private partial def translateExpr (srcExpr: Expr) : MetaTranslateM Expr := do
let sourceMCtx ← getSourceMCtx
-- We want to create as few mvars as possible
let (srcExpr, _) := instantiateMVarsCore (mctx := sourceMCtx) srcExpr
--IO.println s!"Transform src: {srcExpr}"
let result ← Core.transform srcExpr λ e => do
let state ← get
match e with
| .fvar fvarId =>
let .some fvarId' := state.fvarMap[fvarId]? | panic! s!"FVar id not registered: {fvarId.name}"
assert! (← getLCtx).contains fvarId'
return .done $ .fvar fvarId'
| .mvar mvarId => do
-- Must not be assigned
assert! !(sourceMCtx.eAssignment.contains mvarId)
match state.mvarMap[mvarId]? with
| .some mvarId' => do
return .done $ .mvar mvarId'
| .none => do
-- Entering another LCtx, must save the current one
let fvarMap ← saveFVarMap
let mvarId' ← translateMVarId mvarId
restoreFVarMap fvarMap
return .done $ .mvar mvarId'
| .sort level => do
let level' ← translateLevel level
return .done $ .sort level'
| _ => return .continue
Meta.check result
return result
partial def translateLocalInstance (srcInstance: LocalInstance) : MetaTranslateM LocalInstance := do
return {
className := srcInstance.className,
fvar := ← translateExpr srcInstance.fvar
}
partial def translateLocalDecl (srcLocalDecl: LocalDecl) : MetaTranslateM LocalDecl := do
let fvarId ← mkFreshFVarId
addTranslatedFVar srcLocalDecl.fvarId fvarId
match srcLocalDecl with
| .cdecl index _ userName type bi kind => do
--IO.println s!"[CD] {userName} {toString type}"
return .cdecl index fvarId userName (← translateExpr type) bi kind
| .ldecl index _ userName type value nonDep kind => do
--IO.println s!"[LD] {toString type} := {toString value}"
return .ldecl index fvarId userName (← translateExpr type) (← translateExpr value) nonDep kind
partial def translateLCtx : MetaTranslateM LocalContext := do
resetFVarMap
let lctx ← MonadLCtx.getLCtx
assert! lctx.isEmpty
(← getSourceLCtx).foldlM (λ lctx srcLocalDecl => do
let localDecl ← Meta.withLCtx lctx #[] do
translateLocalDecl srcLocalDecl
pure $ lctx.addDecl localDecl
) lctx
partial def translateMVarId (srcMVarId: MVarId) : MetaTranslateM MVarId := do
if let .some mvarId' := (← get).mvarMap[srcMVarId]? then
return mvarId'
let mvarId' ← Meta.withLCtx .empty #[] do
let srcDecl := (← getSourceMCtx).findDecl? srcMVarId |>.get!
withTheReader Context (λ ctx => { ctx with sourceLCtx := srcDecl.lctx }) do
let lctx' ← translateLCtx
let localInstances' ← srcDecl.localInstances.mapM translateLocalInstance
Meta.withLCtx lctx' localInstances' do
let target' ← translateExpr srcDecl.type
let mvar' ← Meta.mkFreshExprMVar target' srcDecl.kind srcDecl.userName
let mvarId' := mvar'.mvarId!
if let .some { fvars, mvarIdPending }:= (← getSourceMCtx).getDelayedMVarAssignmentExp srcMVarId then
-- Map the fvars in the pending context.
let mvarIdPending' ← translateMVarId mvarIdPending
let fvars' ← mvarIdPending'.withContext $ fvars.mapM translateExpr
assignDelayedMVar mvarId' fvars' mvarIdPending'
pure mvarId'
addTranslatedMVar srcMVarId mvarId'
return mvarId'
end
def translateMVarFromTermInfo (termInfo : Elab.TermInfo) (context? : Option Elab.ContextInfo)
: MetaTranslateM MVarId := do
withTheReader Context (λ ctx => { ctx with
sourceMCtx := context?.map (·.mctx) |>.getD {},
sourceLCtx := termInfo.lctx,
}) do
let type := termInfo.expectedType?.get!
let lctx' ← translateLCtx
let mvar ← Meta.withLCtx lctx' #[] do
let type' ← translateExpr type
Meta.mkFreshExprSyntheticOpaqueMVar type'
return mvar.mvarId!
def translateMVarFromTacticInfoBefore (tacticInfo : Elab.TacticInfo) (_context? : Option Elab.ContextInfo)
: MetaTranslateM (List MVarId) := do
withTheReader Context (λ ctx => { ctx with sourceMCtx := tacticInfo.mctxBefore }) do
tacticInfo.goalsBefore.mapM translateMVarId
end MetaTranslate
export MetaTranslate (MetaTranslateM)
end Pantograph.Frontend

View File

@ -3,13 +3,20 @@ Functions for handling metavariables
All the functions starting with `try` resume their inner monadic state.
-/
import Pantograph.Tactic
import Pantograph.Protocol
import Lean
def Lean.MessageLog.getErrorMessages (log : MessageLog) : MessageLog :=
{
msgs := log.msgs.filter fun m => match m.severity with | MessageSeverity.error => true | _ => false
}
namespace Pantograph
open Lean
def filename: String := "<pantograph>"
/--
Represents an interconnected set of metavariables, or a state in proof search
-/
@ -18,213 +25,78 @@ structure GoalState where
-- The root hole which is the search target
root: MVarId
-- New metavariables acquired in this state
newMVars: SSet MVarId
-- Parent state metavariable source
parentMVar?: Option MVarId
-- Existence of this field shows that we are currently in `conv` mode.
-- (convRhs, goal, dormant)
convMVar?: Option (MVarId × MVarId × List MVarId) := .none
convMVar?: Option (MVarId × MVarId) := .none
-- Previous RHS for calc, so we don't have to repeat it every time
-- WARNING: If using `state with` outside of `calc`, this must be set to `.none`
calcPrevRhs?: Option (MVarId × Expr) := .none
calcPrevRhs?: Option Expr := .none
@[export pantograph_goal_state_create_m]
protected def GoalState.create (expr: Expr): Elab.TermElabM GoalState := do
-- May be necessary to immediately synthesise all metavariables if we need to leave the elaboration context.
-- See https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Unknown.20universe.20metavariable/near/360130070
--Elab.Term.synthesizeSyntheticMVarsNoPostponing
--let expr ← instantiateMVars expr
let root ← Meta.mkFreshExprMVar expr (kind := MetavarKind.synthetic) (userName := .anonymous)
let goal ← Meta.mkFreshExprMVar expr (kind := MetavarKind.synthetic) (userName := .anonymous)
let savedStateMonad: Elab.Tactic.TacticM Elab.Tactic.SavedState := MonadBacktrack.saveState
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [root.mvarId!]}
return {
root := root.mvarId!,
savedState,
parentMVar? := .none,
}
@[export pantograph_goal_state_create_from_mvars_m]
protected def GoalState.createFromMVars (goals: List MVarId) (root: MVarId): MetaM GoalState := do
let savedStateMonad: Elab.Tactic.TacticM Elab.Tactic.SavedState := MonadBacktrack.saveState
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals } |>.run' {}
let root := goal.mvarId!
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [root]}
return {
root,
savedState,
newMVars := SSet.insert .empty root,
parentMVar? := .none,
}
@[export pantograph_goal_state_is_conv]
protected def GoalState.isConv (state: GoalState): Bool :=
state.convMVar?.isSome
protected def GoalState.goals (state: GoalState): List MVarId :=
state.savedState.tactic.goals
@[export pantograph_goal_state_goals]
protected def GoalState.goalsArray (state: GoalState): Array MVarId := state.goals.toArray
protected def GoalState.mctx (state: GoalState): MetavarContext :=
state.savedState.term.meta.meta.mctx
protected def GoalState.env (state: GoalState): Environment :=
state.savedState.term.meta.core.env
@[export pantograph_goal_state_meta_context_of_goal]
protected def GoalState.metaContextOfGoal (state: GoalState) (mvarId: MVarId): Option Meta.Context := do
let mvarDecl ← state.mctx.findDecl? mvarId
return { lctx := mvarDecl.lctx, localInstances := mvarDecl.localInstances }
protected def GoalState.metaState (state: GoalState): Meta.State :=
state.savedState.term.meta.meta
protected def GoalState.coreState (state: GoalState): Core.SavedState :=
state.savedState.term.meta.core
protected def GoalState.withContext (state: GoalState) (mvarId: MVarId) (m: MetaM α): MetaM α := do
mvarId.withContext m |>.run' (← read) state.metaState
protected def GoalState.withParentContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.parentMVar?.get!
protected def GoalState.withRootContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.root
private def GoalState.mvars (state: GoalState): SSet MVarId :=
state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k
protected def GoalState.restoreMetaM (state: GoalState): MetaM Unit :=
state.savedState.term.meta.restore
protected def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit :=
private def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit :=
state.savedState.term.restore
private def GoalState.restoreTacticM (state: GoalState) (goal: MVarId): Elab.Tactic.TacticM Unit := do
state.savedState.restore
Elab.Tactic.setGoals [goal]
@[export pantograph_goal_state_focus]
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId
return {
state with
savedState := {
state.savedState with
tactic := { goals := [goal] },
},
calcPrevRhs? := .none,
}
/-- Immediately bring all parent goals back into scope. Used in automatic mode -/
@[export pantograph_goal_state_immediate_resume_parent]
protected def GoalState.immediateResume (state: GoalState) (parent: GoalState): GoalState :=
-- Prune parents solved goals
let mctx := state.mctx
let parentGoals := parent.goals.filter $ λ goal => mctx.eAssignment.contains goal
{
state with
savedState := {
state.savedState with
tactic := { goals := state.goals ++ parentGoals },
},
}
/--
Brings into scope a list of goals
-/
@[export pantograph_goal_state_resume]
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState :=
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then
let invalid_goals := goals.filter (λ goal => ¬ state.mvars.contains goal) |>.map (·.name.toString)
.error s!"Goals {invalid_goals} are not in scope"
else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal =>
let mctx := state.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok {
state with
savedState := {
term := state.savedState.term,
tactic := { goals := unassigned },
},
}
/--
Brings into scope all goals from `branch`
-/
@[export pantograph_goal_state_continue]
protected def GoalState.continue (target: GoalState) (branch: GoalState): Except String GoalState :=
if !target.goals.isEmpty then
.error s!"Target state has unresolved goals"
else if target.root != branch.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {branch.root.name}"
else
target.resume (goals := branch.goals)
@[export pantograph_goal_state_root_expr]
protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := do
if goalState.root.name == .anonymous then
.none
let expr ← goalState.mctx.eAssignment.find? goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
if expr.hasExprMVar then
-- Must not assert that the goal state is empty here. We could be in a branch goal.
--assert! ¬goalState.goals.isEmpty
.none
else
assert! goalState.goals.isEmpty
return expr
@[export pantograph_goal_state_parent_expr]
protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do
let parent ← goalState.parentMVar?
let expr := goalState.mctx.eAssignment.find! parent
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
@[export pantograph_goal_state_get_mvar_e_assignment]
protected def GoalState.getMVarEAssignment (goalState: GoalState) (mvarId: MVarId): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? mvarId
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
--- Tactic execution functions ---
-- Mimics `Elab.Term.logUnassignedUsingErrorInfos`
private def collectAllErroredMVars (src : MVarId) : Elab.TermElabM (List MVarId) := do
-- These descendants serve as "seed" mvars. If a MVarError's mvar is related
-- to one of these seed mvars, it means an error has occurred when a tactic
-- was executing on `src`. `evalTactic`, will not capture these mvars, so we
-- need to manually find them and save them into the goal list.
let descendants ← Meta.getMVars $ ← instantiateMVars (.mvar src)
--let _ ← Elab.Term.logUnassignedUsingErrorInfos descendants
let mut alreadyVisited : MVarIdSet := {}
let mut result : MVarIdSet := {}
for { mvarId, .. } in (← get).mvarErrorInfos do
unless alreadyVisited.contains mvarId do
alreadyVisited := alreadyVisited.insert mvarId
/- The metavariable `mvarErrorInfo.mvarId` may have been assigned or
delayed assigned to another metavariable that is unassigned. -/
let mvarDeps ← Meta.getMVars (.mvar mvarId)
if mvarDeps.any descendants.contains then do
result := mvarDeps.foldl (·.insert ·) result
return result.toList
private def mergeMVarLists (li1 li2 : List MVarId) : List MVarId :=
let li2' := li2.filter (¬ li1.contains ·)
li1 ++ li2'
/--
Set `guardMVarErrors` to true to capture mvar errors. Lean will not
automatically collect mvars from text tactics (vide
`test_tactic_failure_synthesize_placeholder`)
-/
protected def GoalState.step (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit) (guardMVarErrors : Bool := false)
: Elab.TermElabM GoalState := do
unless (← getMCtx).decls.contains goal do
throwError s!"Goal is not in context: {goal.name}"
goal.checkNotAssigned `GoalState.step
let (_, { goals }) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
let nextElabState ← MonadBacktrack.saveState
Elab.Term.synthesizeSyntheticMVarsNoPostponing
let goals ← if guardMVarErrors then
pure $ mergeMVarLists goals (← collectAllErroredMVars goal)
private def newMVarSet (mctxOld: @&MetavarContext) (mctxNew: @&MetavarContext): SSet MVarId :=
mctxNew.decls.foldl (fun acc mvarId mvarDecl =>
if let .some prevMVarDecl := mctxOld.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
acc
else
pure goals
return {
state with
savedState := { term := nextElabState, tactic := { goals }, },
parentMVar? := .some goal,
calcPrevRhs? := .none,
}
acc.insert mvarId
) SSet.empty
/-- Inner function for executing tactic on goal state -/
def executeTactic (state: Elab.Tactic.SavedState) (goal: MVarId) (tactic: Syntax) :
Elab.TermElabM (Except (Array String) Elab.Tactic.SavedState):= do
let tacticM (stx: Syntax): Elab.Tactic.TacticM (Except (Array String) Elab.Tactic.SavedState) := do
state.restore
Elab.Tactic.setGoals [goal]
try
Elab.Tactic.evalTactic stx
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map (·.data)).mapM fun md => md.toString
return .error errors
else
return .ok (← MonadBacktrack.saveState)
catch exception =>
return .error #[← exception.toMessageData.toString]
tacticM tactic { elaborator := .anonymous } |>.run' state.tactic
/-- Response for executing a tactic -/
inductive TacticResult where
@ -234,103 +106,233 @@ inductive TacticResult where
| failure (messages: Array String)
-- Could not parse tactic
| parseError (message: String)
-- The goal index is out of bounds
| indexError (goalId: Nat)
-- The given action cannot be executed in the state
| invalidAction (message: String)
/-- Executes a `TacticM` monad on this `GoalState`, collecting the errors as necessary -/
protected def GoalState.tryTacticM (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit) (guardMVarErrors : Bool := false):
Elab.TermElabM TacticResult := do
try
let nextState ← state.step goal tacticM guardMVarErrors
-- Check if error messages have been generated in the core.
let newMessages ← (← Core.getMessageLog).toList.drop state.coreState.messages.toList.length
|>.filterMapM λ m => do
if m.severity == .error then
return .some $ ← m.toString
else
return .none
Core.resetMessageLog
if ¬ newMessages.isEmpty then
return .failure newMessages.toArray
return .success nextState
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Execute a string tactic on given state. Restores TermElabM -/
@[export pantograph_goal_state_try_tactic_m]
protected def GoalState.tryTactic (state: GoalState) (goal: MVarId) (tactic: String):
/-- Execute tactic on given state -/
protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure $ goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.tryTactic
let tactic ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := if state.isConv then `conv else `tactic)
(input := tactic)
(fileName := ← getFileName) with
(fileName := filename) with
| .ok stx => pure $ stx
| .error error => return .parseError error
state.tryTacticM goal (Elab.Tactic.evalTactic tactic) true
match ← executeTactic (state := state.savedState) (goal := goal) (tactic := tactic) with
| .error errors =>
return .failure errors
| .ok nextSavedState =>
-- Assert that the definition of metavariables are the same
let nextMCtx := nextSavedState.term.meta.meta.mctx
let prevMCtx := state.mctx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
return .success {
state with
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
calcPrevRhs? := .none,
}
protected def GoalState.tryAssign (state: GoalState) (goal: MVarId) (expr: String):
/-- Assumes elabM has already been restored. Assumes expr has already typechecked -/
protected def GoalState.assign (state: GoalState) (goal: MVarId) (expr: Expr):
Elab.TermElabM TacticResult := do
let goalType ← goal.getType
try
-- For some reason this is needed. One of the unit tests will fail if this isn't here
let error?: Option String ← goal.withContext do
let exprType ← Meta.inferType expr
if ← Meta.isDefEq goalType exprType then
pure .none
else do
return .some s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} != {← Meta.ppExpr goalType}"
if let .some error := error? then
return .parseError error
goal.checkNotAssigned `GoalState.assign
goal.assign expr
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map (·.data)).mapM fun md => md.toString
return .failure errors
let prevMCtx := state.savedState.term.meta.meta.mctx
let nextMCtx ← getMCtx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
let newMVars := newMVarSet prevMCtx nextMCtx
let nextGoals ← newMVars.toList.filterM (λ mvar => do pure !(← mvar.isAssigned))
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let expr ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(env := state.env)
(catName := `term)
(input := expr)
(fileName := ← getFileName) with
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal $ Tactic.evalAssign expr
let goalType ← goal.getType
try
let expr ← goal.withContext $
Elab.Term.elabTermAndSynthesize (stx := expr) (expectedType? := .some goalType)
state.assign goal expr
catch exception =>
return .failure #[← exception.toMessageData.toString]
-- Specialized Tactics
protected def GoalState.tryLet (state: GoalState) (goal: MVarId) (binderName: String) (type: String):
protected def GoalState.tryHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let type ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(env := state.env)
(catName := `term)
(input := type)
(fileName := ← getFileName) with
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal $ Tactic.evalLet binderName.toName type
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let fvar := mkFVar fvarId
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[fvar] 0 do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(← goal.getType) (kind := MetavarKind.synthetic) (userName := .anonymous)
let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
goal.assign expr
pure mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let type ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
let upstreamType := .letE binderName type mvarBranch (← goal.getType) false
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
upstreamType (kind := MetavarKind.synthetic) (userName := (← goal.getTag))
goal.assign mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Enter conv tactic mode -/
protected def GoalState.conv (state: GoalState) (goal: MVarId):
protected def GoalState.conv (state: GoalState) (goalId: Nat):
Elab.TermElabM TacticResult := do
if state.convMVar?.isSome then
return .invalidAction "Already in conv state"
goal.checkNotAssigned `GoalState.conv
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let tacticM : Elab.Tactic.TacticM (Elab.Tactic.SavedState × MVarId) := do
state.restoreTacticM goal
-- See Lean.Elab.Tactic.Conv.convTarget
let convMVar ← Elab.Tactic.withMainContext do
let (rhs, newGoal) ← Elab.Tactic.Conv.mkConvGoalFor (← Elab.Tactic.getMainTarget)
Elab.Tactic.replaceMainGoal [newGoal.mvarId!]
Elab.Tactic.setGoals [newGoal.mvarId!]
pure rhs.mvarId!
return (← MonadBacktrack.saveState, convMVar)
try
let (nextSavedState, convRhs) ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
-- Other goals are now dormant
let otherGoals := state.goals.filter $ λ g => g != goal
let prevMCtx := state.mctx
let nextMCtx := nextSavedState.term.meta.meta.mctx
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
convMVar? := .some (convRhs, goal, otherGoals),
convMVar? := .some (convRhs, goal),
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Exit from `conv` mode. Resumes all goals before the mode starts and applys the conv -/
@[export pantograph_goal_state_conv_exit_m]
protected def GoalState.convExit (state: GoalState):
Elab.TermElabM TacticResult := do
let (convRhs, convGoal, _) ← match state.convMVar? with
let (convRhs, convGoal) ← match state.convMVar? with
| .some mvar => pure mvar
| .none => return .invalidAction "Not in conv state"
let tacticM : Elab.Tactic.TacticM Elab.Tactic.SavedState:= do
@ -353,9 +355,12 @@ protected def GoalState.convExit (state: GoalState):
MonadBacktrack.saveState
try
let nextSavedState ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let nextMCtx := nextSavedState.term.meta.meta.mctx
let prevMCtx := state.savedState.term.meta.meta.mctx
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some convGoal,
convMVar? := .none
calcPrevRhs? := .none
@ -363,30 +368,29 @@ protected def GoalState.convExit (state: GoalState):
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.calcPrevRhsOf? (state: GoalState) (goal: MVarId): Option Expr := do
let (mvarId, rhs) ← state.calcPrevRhs?
if mvarId == goal then
.some rhs
protected def GoalState.calcPrevRhsOf? (state: GoalState) (goalId: Nat) :=
if goalId == 1 then
state.calcPrevRhs?
else
.none
@[export pantograph_goal_state_try_calc_m]
protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String):
protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
if state.convMVar?.isSome then
return .invalidAction "Cannot initiate `calc` while in `conv` state"
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let `(term|$pred) ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := pred)
(fileName := ← getFileName) with
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
goal.checkNotAssigned `GoalState.tryCalc
let calcPrevRhs? := state.calcPrevRhsOf? goal
let decl ← goal.getDecl
let target ← instantiateMVars decl.type
let tag := decl.userName
let calcPrevRhs? := state.calcPrevRhsOf? goalId
let target ← instantiateMVars (← goal.getDecl).type
let tag := (← goal.getDecl).userName
try
goal.withContext do
@ -400,7 +404,7 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
throwErrorAt pred "invalid 'calc' step, relation expected{indentExpr step}"
if let some prevRhs := calcPrevRhs? then
unless ← Meta.isDefEqGuarded lhs prevRhs do
throwErrorAt pred "invalid 'calc' step, left-hand-side is{indentD m!"{lhs} : {← Meta.inferType lhs}"}\nprevious right-hand-side is{indentD m!"{prevRhs} : {← Meta.inferType prevRhs}"}"
throwErrorAt pred "invalid 'calc' step, left-hand-side is{indentD m!"{lhs} : {← Meta.inferType lhs}"}\nprevious right-hand-side is{indentD m!"{prevRhs} : {← Meta.inferType prevRhs}"}" -- "
-- Creates a mvar to represent the proof that the calc tactic solves the
-- current branch
@ -410,8 +414,9 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
(userName := tag ++ `calc)
let mvarBranch := proof.mvarId!
let calcPrevRhs? := Option.some rhs
let mut proofType ← Meta.inferType proof
let mut remainder? := Option.none
let mut remainder := Option.none
-- The calc tactic either solves the main goal or leaves another relation.
-- Replace the main goal, and save the new goal if necessary
@ -424,21 +429,84 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
let lastStepGoal ← Meta.mkFreshExprSyntheticOpaqueMVar lastStep tag
(proof, proofType) ← Elab.Term.mkCalcTrans proof proofType lastStepGoal lastStep
unless ← Meta.isDefEq proofType target do throwFailed
remainder? := .some lastStepGoal.mvarId!
remainder := .some lastStepGoal.mvarId!
goal.assign proof
let goals := [ mvarBranch ] ++ remainder?.toList
let calcPrevRhs? := remainder?.map $ λ g => (g, rhs)
let goals := [ mvarBranch ] ++ remainder.toList
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals },
},
newMVars := goals.toSSet,
parentMVar? := .some goal,
calcPrevRhs?
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId
return {
state with
savedState := {
state.savedState with
tactic := { goals := [goal] },
},
calcPrevRhs? := .none,
}
/--
Brings into scope a list of goals
-/
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState :=
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then
.error s!"Goals not in scope"
else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal =>
let mctx := state.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok {
state with
savedState := {
term := state.savedState.term,
tactic := { goals := unassigned },
},
calcPrevRhs? := .none,
}
/--
Brings into scope all goals from `branch`
-/
protected def GoalState.continue (target: GoalState) (branch: GoalState): Except String GoalState :=
if !target.goals.isEmpty then
.error s!"Target state has unresolved goals"
else if target.root != branch.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {branch.root.name}"
else
target.resume (goals := branch.goals)
protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
if expr.hasMVar then
-- Must not assert that the goal state is empty here. We could be in a branch goal.
--assert! ¬goalState.goals.isEmpty
.none
else
assert! goalState.goals.isEmpty
return expr
protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do
let parent ← goalState.parentMVar?
let expr := goalState.mctx.eAssignment.find! parent
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
protected def GoalState.assignedExprOf? (goalState: GoalState) (mvar: MVarId): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? mvar
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
end Pantograph

View File

@ -1,7 +1,7 @@
import Pantograph.Environment
import Pantograph.Goal
import Pantograph.Protocol
import Pantograph.Delate
import Pantograph.Serial
import Pantograph.Version
import Lean
@ -38,10 +38,13 @@ open Lean
namespace Pantograph
def defaultTermElabMContext: Elab.Term.Context := {
errToSorry := false
}
def runMetaM { α } (metaM: MetaM α): CoreM α :=
metaM.run'
def runTermElabM { α } (termElabM: Elab.TermElabM α): CoreM α :=
termElabM.run' (ctx := defaultElabContext) |>.run'
termElabM.run' (ctx := defaultTermElabMContext) |>.run'
def errorI (type desc: String): Protocol.InteractionError := { error := type, desc := desc }
@ -75,12 +78,22 @@ def createCoreState (imports: Array String): IO Core.State := do
(trustLevel := 1)
return { env := env }
@[export pantograph_env_catalog_m]
def envCatalog: CoreM Protocol.EnvCatalogResult :=
Environment.catalog ({}: Protocol.EnvCatalog)
@[export pantograph_env_inspect_m]
def envInspect (name: String) (value: Bool) (dependency: Bool) (options: @&Protocol.Options):
CoreM (Protocol.CR Protocol.EnvInspectResult) :=
Environment.inspect ({
name, value? := .some value, dependency?:= .some dependency
}: Protocol.EnvInspect) options
@[export pantograph_env_add_m]
def envAdd (name: String) (type: String) (value: String) (isTheorem: Bool):
CoreM (Protocol.CR Protocol.EnvAddResult) :=
Environment.addDecl { name, type, value, isTheorem }
@[export pantograph_parse_elab_type_m]
def parseElabType (type: String): Elab.TermElabM (Protocol.CR Expr) := do
let env ← MonadEnv.getEnv
let syn ← match parseTerm env type with
@ -91,7 +104,6 @@ def parseElabType (type: String): Elab.TermElabM (Protocol.CR Expr) := do
| .ok expr => return .ok (← instantiateMVars expr)
/-- This must be a TermElabM since the parsed expr contains extra information -/
@[export pantograph_parse_elab_expr_m]
def parseElabExpr (expr: String) (expectedType?: Option String := .none): Elab.TermElabM (Protocol.CR Expr) := do
let env ← MonadEnv.getEnv
let expectedType? ← match ← expectedType?.mapM parseElabType with
@ -129,95 +141,59 @@ def goalStartExpr (expr: String) (levels: Array String): CoreM (Protocol.CR Goal
| .ok expr => pure $ expr
return .ok $ ← GoalState.create expr
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goalId: Nat) (tactic: String): CoreM TacticResult :=
runTermElabM <| state.tryTactic goalId tactic
@[export pantograph_goal_assign_m]
def goalAssign (state: GoalState) (goalId: Nat) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goalId expr
@[export pantograph_goal_have_m]
def goalHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryHave goalId binderName type
@[export pantograph_goal_let_m]
def goalLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryLet goalId binderName type
@[export pantograph_goal_conv_m]
def goalConv (state: GoalState) (goalId: Nat): CoreM TacticResult :=
runTermElabM <| state.conv goalId
@[export pantograph_goal_conv_exit_m]
def goalConvExit (state: GoalState): CoreM TacticResult :=
runTermElabM <| state.convExit
@[export pantograph_goal_calc_m]
def goalCalc (state: GoalState) (goalId: Nat) (pred: String): CoreM TacticResult :=
runTermElabM <| state.tryCalc goalId pred
@[export pantograph_goal_focus]
def goalFocus (state: GoalState) (goalId: Nat): Option GoalState :=
state.focus goalId
@[export pantograph_goal_resume]
def goalResume (target: GoalState) (goals: Array String): Except String GoalState :=
target.resume (goals.map (λ n => { name := n.toName }) |>.toList)
@[export pantograph_goal_continue]
def goalContinue (target: GoalState) (branch: GoalState): Except String GoalState :=
target.continue branch
@[export pantograph_goal_serialize_m]
def goalSerialize (state: GoalState) (options: @&Protocol.Options): CoreM (Array Protocol.Goal) :=
runMetaM <| state.serializeGoals (parent := .none) options
@[export pantograph_goal_print_m]
def goalPrint (state: GoalState) (rootExpr: Bool) (parentExpr: Bool) (goals: Bool) (extraMVars : Array String) (options: @&Protocol.Options)
: CoreM Protocol.GoalPrintResult := runMetaM do
state.restoreMetaM
def goalPrint (state: GoalState) (options: @&Protocol.Options): CoreM Protocol.GoalPrintResult :=
runMetaM do
state.restoreMetaM
return {
root? := ← state.rootExpr?.mapM (λ expr => do
serializeExpression options (← unfoldAuxLemmas expr)),
parent? := ← state.parentExpr?.mapM (λ expr => do
serializeExpression options (← unfoldAuxLemmas expr)),
}
let root? ← if rootExpr then
state.rootExpr?.mapM λ expr => state.withRootContext do
serializeExpression options (← instantiateAll expr)
else
pure .none
let parent? ← if parentExpr then
state.parentExpr?.mapM λ expr => state.withParentContext do
serializeExpression options (← instantiateAll expr)
else
pure .none
let goals ← if goals then
goalSerialize state options
else
pure #[]
let extraMVars ← extraMVars.mapM λ mvarId => do
let mvarId: MVarId := { name := mvarId.toName }
let .some _ ← mvarId.findDecl? | return {}
state.withContext mvarId do
let .some expr ← getExprMVarAssignment? mvarId | return {}
serializeExpression options (← instantiateAll expr)
return {
root?,
parent?,
goals,
extraMVars,
}
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goal: MVarId) (tactic: String): CoreM TacticResult :=
runTermElabM <| state.tryTactic goal tactic
@[export pantograph_goal_assign_m]
def goalAssign (state: GoalState) (goal: MVarId) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goal expr
@[export pantograph_goal_have_m]
protected def GoalState.tryHave (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult := do
let type ← match (← parseTermM type) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goal $ Tactic.evalHave binderName.toName type
@[export pantograph_goal_try_define_m]
protected def GoalState.tryDefine (state: GoalState) (goal: MVarId) (binderName: String) (expr: String): CoreM TacticResult := do
let expr ← match (← parseTermM expr) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goal (Tactic.evalDefine binderName.toName expr)
@[export pantograph_goal_try_motivated_apply_m]
protected def GoalState.tryMotivatedApply (state: GoalState) (goal: MVarId) (recursor: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let recursor ← match (← parseTermM recursor) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal (tacticM := Tactic.evalMotivatedApply recursor)
@[export pantograph_goal_try_no_confuse_m]
protected def GoalState.tryNoConfuse (state: GoalState) (goal: MVarId) (eq: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let eq ← match (← parseTermM eq) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal (tacticM := Tactic.evalNoConfuse eq)
@[export pantograph_goal_let_m]
def goalLet (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryLet goal binderName type
@[export pantograph_goal_conv_m]
def goalConv (state: GoalState) (goal: MVarId): CoreM TacticResult :=
runTermElabM <| state.conv goal
@[export pantograph_goal_conv_exit_m]
def goalConvExit (state: GoalState): CoreM TacticResult :=
runTermElabM <| state.convExit
@[export pantograph_goal_calc_m]
def goalCalc (state: GoalState) (goal: MVarId) (pred: String): CoreM TacticResult :=
runTermElabM <| state.tryCalc goal pred
end Pantograph

View File

@ -27,8 +27,6 @@ structure Options where
printAuxDecls: Bool := false
-- See `pp.implementationDetailHyps`
printImplementationDetailHyps: Bool := false
-- If this is set to `true`, goals will never go dormant, so you don't have to manage resumption
automaticMode: Bool := true
deriving Lean.ToJson
abbrev OptionsT := ReaderT Options
@ -53,7 +51,7 @@ structure Variable where
/-- The name displayed to the user -/
userName: String
/-- Does the name contain a dagger -/
isInaccessible: Bool := false
isInaccessible?: Option Bool := .none
type?: Option Expression := .none
value?: Option Expression := .none
deriving Lean.ToJson
@ -183,12 +181,6 @@ structure EnvAdd where
structure EnvAddResult where
deriving Lean.ToJson
structure EnvSaveLoad where
path: System.FilePath
deriving Lean.FromJson
structure EnvSaveLoadResult where
deriving Lean.ToJson
/-- Set options; See `Options` struct above for meanings -/
structure OptionsSet where
printJsonPretty?: Option Bool
@ -198,12 +190,12 @@ structure OptionsSet where
noRepeat?: Option Bool
printAuxDecls?: Option Bool
printImplementationDetailHyps?: Option Bool
automaticMode?: Option Bool
deriving Lean.FromJson
structure OptionsSetResult where
deriving Lean.ToJson
structure OptionsPrint where
deriving Lean.FromJson
abbrev OptionsPrintResult := Options
structure GoalStart where
-- Only one of the fields below may be populated.
@ -225,7 +217,6 @@ structure GoalTactic where
tactic?: Option String := .none
expr?: Option String := .none
have?: Option String := .none
let?: Option String := .none
calc?: Option String := .none
-- true to enter `conv`, `false` to exit. In case of exit the `goalId` is ignored.
conv?: Option Bool := .none
@ -271,23 +262,12 @@ structure GoalDeleteResult where
structure GoalPrint where
stateId: Nat
-- Print root?
rootExpr?: Option Bool := .some False
-- Print the parent expr?
parentExpr?: Option Bool := .some False
-- Print goals?
goals?: Option Bool := .some False
-- Print values of extra mvars?
extraMVars?: Option (Array String) := .none
deriving Lean.FromJson
structure GoalPrintResult where
-- The root expression
root?: Option Expression := .none
-- The filling expression of the parent goal
parent?: Option Expression := .none
goals: Array Goal := #[]
extraMVars: Array Expression := #[]
parent?: Option Expression
deriving Lean.ToJson
-- Diagnostic Options, not available in REPL
@ -298,60 +278,6 @@ structure GoalDiag where
-- Print all mvars
printAll: Bool := false
instantiate: Bool := true
printSexp: Bool := false
structure GoalSave where
id: Nat
path: System.FilePath
deriving Lean.FromJson
structure GoalSaveResult where
deriving Lean.ToJson
structure GoalLoad where
path: System.FilePath
deriving Lean.FromJson
structure GoalLoadResult where
id: Nat
deriving Lean.ToJson
/-- Executes the Lean compiler on a single file -/
structure FrontendProcess where
-- One of these two must be supplied: Either supply the file name or the content.
fileName?: Option String := .none
file?: Option String := .none
-- If set to true, collect tactic invocations
invocations: Bool := false
-- If set to true, collect `sorry`s
sorrys: Bool := false
-- If set to true, extract new constants
newConstants: Bool := false
deriving Lean.FromJson
structure InvokedTactic where
goalBefore: String
goalAfter: String
tactic: String
-- List of used constants
usedConstants: Array String
deriving Lean.ToJson
structure CompilationUnit where
-- String boundaries of compilation units
boundary: (Nat × Nat)
messages: Array String := #[]
-- Tactic invocations
invocations?: Option (List InvokedTactic) := .none
goalStateId?: Option Nat := .none
goals?: Option (Array Goal) := .none
-- Code segments which generated the goals
goalSrcBoundaries?: Option (Array (Nat × Nat)) := .none
-- New constants defined in compilation unit
newConstants?: Option (Array String) := .none
deriving Lean.ToJson
structure FrontendProcessResult where
units: List CompilationUnit
deriving Lean.ToJson
abbrev CR α := Except InteractionError α

View File

@ -1,162 +1,321 @@
import Lean.Environment
import Lean.Replay
import Init.System.IOError
import Std.Data.HashMap
import Pantograph.Goal
/-!
Input/Output functions
# Pickling and unpickling objects
By abusing `saveModuleData` and `readModuleData` we can pickle and unpickle objects to disk.
/-
All serialisation functions;
This replicates the behaviour of `Scope`s in `Lean/Elab/Command.lean` without
using `Scope`s.
-/
import Lean
import Pantograph.Protocol
import Pantograph.Goal
open Lean
-- Symbol processing functions --
def Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _
namespace Pantograph
/--
Save an object to disk.
If you need to write multiple objects from within a single declaration,
you will need to provide a unique `key` for each.
-/
def pickle {α : Type} (path : System.FilePath) (x : α) (key : Name := by exact decl_name%) : IO Unit :=
saveModuleData path key (unsafe unsafeCast x)
/-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/
def unfoldAuxLemmas (e : Expr) : CoreM Expr := do
Lean.Meta.deltaExpand e Lean.Name.isAuxLemma
--- Input Functions ---
/-- Read syntax object from string -/
def parseTerm (env: Environment) (s: String): Except String Syntax :=
Parser.runParserCategory
(env := env)
(catName := `term)
(input := s)
(fileName := "<stdin>")
/-- Parse a syntax object. May generate additional metavariables! -/
def elabType (syn: Syntax): Elab.TermElabM (Except String Expr) := do
try
let expr ← Elab.Term.elabType syn
return .ok expr
catch ex => return .error (← ex.toMessageData.toString)
def elabTerm (syn: Syntax) (expectedType? : Option Expr := .none): Elab.TermElabM (Except String Expr) := do
try
let expr ← Elab.Term.elabTerm (stx := syn) expectedType?
return .ok expr
catch ex => return .error (← ex.toMessageData.toString)
--- Output Functions ---
def typeExprToBound (expr: Expr): MetaM Protocol.BoundExpression := do
Meta.forallTelescope expr fun arr body => do
let binders ← arr.mapM fun fvar => do
return (toString (← fvar.fvarId!.getUserName), toString (← Meta.ppExpr (← fvar.fvarId!.getType)))
return { binders, target := toString (← Meta.ppExpr body) }
def serializeName (name: Name) (sanitize: Bool := true): String :=
let internal := name.isInaccessibleUserName || name.hasMacroScopes
if sanitize && internal then "_"
else toString name |> addQuotes
where
addQuotes (n: String) :=
let quote := "\""
if n.contains Lean.idBeginEscape then s!"{quote}{n}{quote}" else n
/-- serialize a sort level. Expression is optimized to be compact e.g. `(+ u 2)` -/
partial def serializeSortLevel (level: Level) (sanitize: Bool): String :=
let k := level.getOffset
let u := level.getLevelOffset
let u_str := match u with
| .zero => "0"
| .succ _ => panic! "getLevelOffset should not return .succ"
| .max v w =>
let v := serializeSortLevel v sanitize
let w := serializeSortLevel w sanitize
s!"(:max {v} {w})"
| .imax v w =>
let v := serializeSortLevel v sanitize
let w := serializeSortLevel w sanitize
s!"(:imax {v} {w})"
| .param name =>
let name := serializeName name sanitize
s!"{name}"
| .mvar id =>
let name := serializeName id.name sanitize
s!"(:mv {name})"
match k, u with
| 0, _ => u_str
| _, .zero => s!"{k}"
| _, _ => s!"(+ {u_str} {k})"
/--
Load an object from disk.
Note: The returned `CompactedRegion` can be used to free the memory behind the value
of type `α`, using `CompactedRegion.free` (which is only safe once all references to the `α` are
released). Ignoring the `CompactedRegion` results in the data being leaked.
Use `withUnpickle` to call `CompactedRegion.free` automatically.
Completely serializes an expression tree. Json not used due to compactness
This function is unsafe because the data being loaded may not actually have type `α`, and this
may cause crashes or other bad behavior.
A `_` symbol in the AST indicates automatic deductions not present in the original expression.
-/
unsafe def unpickle (α : Type) (path : System.FilePath) : IO (α × CompactedRegion) := do
let (x, region) ← readModuleData path
pure (unsafeCast x, region)
partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM String := do
self expr
where
self (e: Expr): MetaM String :=
match e with
| .bvar deBruijnIndex =>
-- This is very common so the index alone is shown. Literals are handled below.
-- The raw de Bruijn index should never appear in an unbound setting. In
-- Lean these are handled using a `#` prefix.
pure s!"{deBruijnIndex}"
| .fvar fvarId =>
let name := ofName fvarId.name
pure s!"(:fv {name})"
| .mvar mvarId =>
let name := ofName mvarId.name
pure s!"(:mv {name})"
| .sort level =>
let level := serializeSortLevel level sanitize
pure s!"(:sort {level})"
| .const declName _ =>
-- The universe level of the const expression is elided since it should be
-- inferrable from surrounding expression
pure s!"(:c {declName})"
| .app _ _ => do
let fn' ← self e.getAppFn
let args := (← e.getAppArgs.mapM self) |>.toList
let args := " ".intercalate args
pure s!"({fn'} {args})"
| .lam binderName binderType body binderInfo => do
let binderName' := ofName binderName
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:lambda {binderName'} {binderType'} {body'}{binderInfo'})"
| .forallE binderName binderType body binderInfo => do
let binderName' := ofName binderName
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:forall {binderName'} {binderType'} {body'}{binderInfo'})"
| .letE name type value body _ => do
-- Dependent boolean flag diacarded
let name' := serializeName name
let type' ← self type
let value' ← self value
let body' ← self body
pure s!"(:let {name'} {type'} {value'} {body'})"
| .lit v =>
-- To not burden the downstream parser who needs to handle this, the literal
-- is wrapped in a :lit sexp.
let v' := match v with
| .natVal val => toString val
| .strVal val => s!"\"{val}\""
pure s!"(:lit {v'})"
| .mdata _ inner =>
-- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter
-- It may become necessary to incorporate the metadata.
self inner
| .proj typeName idx inner => do
let env ← getEnv
let ctor := getStructureCtor env typeName
let fieldName := getStructureFields env typeName |>.get! idx
let projectorName := getProjFnForField? env typeName fieldName |>.get!
/-- Load an object from disk and run some continuation on it, freeing memory afterwards. -/
unsafe def withUnpickle [Monad m] [MonadLiftT IO m] {α β : Type}
(path : System.FilePath) (f : α → m β) : m β := do
let (x, region) ← unpickle α path
let r ← f x
region.free
pure r
let autos := String.intercalate " " (List.replicate ctor.numParams "_")
let inner ← self inner
pure s!"((:c {projectorName}) {autos} {inner})"
-- Elides all unhygenic names
binderInfoSexp : Lean.BinderInfo → String
| .default => ""
| .implicit => " :implicit"
| .strictImplicit => " :strictImplicit"
| .instImplicit => " :instImplicit"
ofName (name: Name) := serializeName name sanitize
/--
Pickle an `Environment` to disk.
We only store:
* the list of imports
* the new constants from `Environment.constants`
and when unpickling, we build a fresh `Environment` from the imports,
and then add the new constants.
-/
@[export pantograph_env_pickle_m]
def environmentPickle (env : Environment) (path : System.FilePath) : IO Unit :=
Pantograph.pickle path (env.header.imports, env.constants.map₂)
/--
Unpickle an `Environment` from disk.
We construct a fresh `Environment` with the relevant imports,
and then replace the new constants.
-/
@[export pantograph_env_unpickle_m]
def environmentUnpickle (path : System.FilePath) : IO (Environment × CompactedRegion) := unsafe do
let ((imports, map₂), region) ← Pantograph.unpickle (Array Import × PHashMap Name ConstantInfo) path
let env ← importModules imports {} 0
return (← env.replay (Std.HashMap.ofList map₂.toList), region)
open Lean.Core in
structure CompactCoreState where
-- env : Environment
nextMacroScope : MacroScope := firstFrontendMacroScope + 1
ngen : NameGenerator := {}
-- traceState : TraceState := {}
-- cache : Cache := {}
-- messages : MessageLog := {}
-- infoState : Elab.InfoState := {}
@[export pantograph_goal_state_pickle_m]
def goalStatePickle (goalState : GoalState) (path : System.FilePath) : IO Unit :=
let {
savedState := {
term := {
meta := {
core,
meta,
}
«elab»,
},
tactic
}
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
} := goalState
--let env := core.env
Pantograph.pickle path (
({ core with } : CompactCoreState),
meta,
«elab»,
tactic,
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
)
@[export pantograph_goal_state_unpickle_m]
def goalStateUnpickle (path : System.FilePath) (env : Environment)
: IO (GoalState × CompactedRegion) := unsafe do
let ((
compactCore,
meta,
«elab»,
tactic,
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
), region) ← Pantograph.unpickle (
CompactCoreState ×
Meta.State ×
Elab.Term.State ×
Elab.Tactic.State ×
MVarId ×
Option MVarId ×
Option (MVarId × MVarId × List MVarId) ×
Option (MVarId × Expr)
) path
let goalState := {
savedState := {
term := {
meta := {
core := {
compactCore with
passedHeartbeats := 0,
env,
},
meta,
},
«elab»,
},
tactic,
},
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.Expression := do
let pp?: Option String ← match options.printExprPretty with
| true => pure $ .some $ toString $ ← Meta.ppExpr e
| false => pure $ .none
let sexp?: Option String ← match options.printExprAST with
| true => pure $ .some $ ← serializeExpressionSexp e
| false => pure $ .none
let dependentMVars? ← match options.printDependentMVars with
| true => pure $ .some $ (← Meta.getMVars e).map (λ mvarId => mvarId.name.toString)
| false => pure $ .none
return {
pp?,
sexp?
dependentMVars?,
}
return (goalState, region)
/-- Adapted from ppGoal -/
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl)
: MetaM Protocol.Goal := do
-- Options for printing; See Meta.ppGoal for details
let showLetValues := true
let ppAuxDecls := options.printAuxDecls
let ppImplDetailHyps := options.printImplementationDetailHyps
let lctx := mvarDecl.lctx
let lctx := lctx.sanitizeNames.run' { options := (← getOptions) }
Meta.withLCtx lctx mvarDecl.localInstances do
let ppVarNameOnly (localDecl: LocalDecl): MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName _ _ _ =>
let userName := userName.simpMacroScopes
return {
name := ofName fvarId.name,
userName:= ofName userName.simpMacroScopes,
}
| .ldecl _ fvarId userName _ _ _ _ => do
return {
name := ofName fvarId.name,
userName := toString userName.simpMacroScopes,
}
let ppVar (localDecl : LocalDecl) : MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName type _ _ =>
let userName := userName.simpMacroScopes
let type ← instantiateMVars type
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
}
| .ldecl _ fvarId userName type val _ _ => do
let userName := userName.simpMacroScopes
let type ← instantiateMVars type
let value? ← if showLetValues then
let val ← instantiateMVars val
pure $ .some (← serializeExpression options val)
else
pure $ .none
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
value? := value?
}
let vars ← lctx.foldlM (init := []) fun acc (localDecl : LocalDecl) => do
let skip := !ppAuxDecls && localDecl.isAuxDecl ||
!ppImplDetailHyps && localDecl.isImplementationDetail
if skip then
return acc
else
let nameOnly := options.noRepeat && (parentDecl?.map
(λ decl => decl.lctx.find? localDecl.fvarId |>.isSome) |>.getD false)
let var ← match nameOnly with
| true => ppVarNameOnly localDecl
| false => ppVar localDecl
return var::acc
return {
name := ofName goal.name,
userName? := if mvarDecl.userName == .anonymous then .none else .some (ofName mvarDecl.userName),
isConversion := isLHSGoal? mvarDecl.type |>.isSome,
target := (← serializeExpression options (← instantiateMVars mvarDecl.type)),
vars := vars.reverse.toArray
}
where
ofName (n: Name) := serializeName n (sanitize := false)
protected def GoalState.serializeGoals
(state: GoalState)
(parent: Option GoalState := .none)
(options: @&Protocol.Options := {}):
MetaM (Array Protocol.Goal):= do
state.restoreMetaM
let goals := state.goals.toArray
let parentDecl? := parent.bind (λ parentState => parentState.mctx.findDecl? state.parentMVar?.get!)
goals.mapM fun goal => do
match state.mctx.findDecl? goal with
| .some mvarDecl =>
let serializedGoal ← serializeGoal options goal mvarDecl (parentDecl? := parentDecl?)
pure serializedGoal
| .none => throwError s!"Metavariable does not exist in context {goal.name}"
/-- Print the metavariables in a readable format -/
protected def GoalState.diag (goalState: GoalState) (options: Protocol.GoalDiag := {}): MetaM Unit := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => IO.println s!">{root.name}: ??"
goals.forM (fun mvarId => do
if mvarId != root then
match mctx.decls.find? mvarId with
| .some decl => printMVar "⊢" mvarId decl
| .none => IO.println s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
mctx.decls.forM (fun mvarId decl => do
if goals.contains mvarId || mvarId == root then
pure ()
-- Print the remainig ones that users don't see in Lean
else if options.printAll then
let pref := if goalState.newMVars.contains mvarId then "~" else " "
printMVar pref mvarId decl
else
pure ()
--IO.println s!" {mvarId.name}{userNameToString decl.userName}"
)
where
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): MetaM Unit := do
if options.printContext then
decl.lctx.fvarIdToDecl.forM printFVar
let type ← if options.instantiate
then instantiateMVars decl.type
else pure $ decl.type
let type_sexp ← serializeExpressionSexp type (sanitize := false)
IO.println s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type} {type_sexp}"
if options.printValue then
if let Option.some value := (← getMCtx).eAssignment.find? mvarId then
let value ← if options.instantiate
then instantiateMVars value
else pure $ value
IO.println s!" := {← Meta.ppExpr value}"
printFVar (fvarId: FVarId) (decl: LocalDecl): MetaM Unit := do
IO.println s!" | {fvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}"
userNameToString : Name → String
| .anonymous => ""
| other => s!"[{other}]"
end Pantograph

View File

@ -1,5 +0,0 @@
import Pantograph.Tactic.Assign
import Pantograph.Tactic.Congruence
import Pantograph.Tactic.MotivatedApply
import Pantograph.Tactic.NoConfuse
import Pantograph.Tactic.Prograde

View File

@ -1,31 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
/-- WARNING: This should be used with a function like `elabTermWithHoles` that properly collects the mvar information from `expr`. -/
def assign (goal: MVarId) (expr: Expr) (nextGoals: List MVarId): MetaM (List MVarId) := do
goal.checkNotAssigned `Pantograph.Tactic.assign
-- This run of the unifier is critical in resolving mvars in passing
let exprType ← Meta.inferType expr
let goalType ← goal.getType
unless ← Meta.isDefEq goalType exprType do
throwError s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} ≠ {← Meta.ppExpr goalType}"
goal.assign expr
nextGoals.filterM (not <$> ·.isAssigned)
def evalAssign : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let target ← Elab.Tactic.getMainTarget
let goal ← Elab.Tactic.getMainGoal
goal.checkNotAssigned `Pantograph.Tactic.evalAssign
let (expr, nextGoals) ← Elab.Tactic.elabTermWithHoles stx
(expectedType? := .some target)
(tagSuffix := .anonymous )
(allowNaturalHoles := true)
goal.assign expr
Elab.Tactic.replaceMainGoal nextGoals
end Pantograph.Tactic

View File

@ -1,98 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def congruenceArg (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceArg
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let f ← Meta.mkFreshExprSyntheticOpaqueMVar (.forallE .anonymous α β .default)
(tag := userName ++ `f)
let a₁ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₂)
let h ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq a₁ a₂)
(tag := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f a₁) (.app f a₂)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrArg f h)
let result := [α, a₁, a₂, f, h, conduit]
return result.map (·.mvarId!)
def evalCongruenceArg: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceArg goal
Elab.Tactic.replaceMainGoal nextGoals
def congruenceFun (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceFun
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₂)
let a ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a)
let h ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq f₁ f₂)
(tag := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a) (.app f₂ a)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrFun h a)
let result := [α, f₁, f₂, h, a, conduit]
return result.map (·.mvarId!)
def evalCongruenceFun: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceFun goal
Elab.Tactic.replaceMainGoal nextGoals
def congruence (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruence
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₂)
let a₁ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₂)
let h₁ ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq f₁ f₂)
(tag := userName ++ `h₁)
let h₂ ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq a₁ a₂)
(tag := userName ++ `h₂)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a₁) (.app f₂ a₂)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongr h₁ h₂)
let result := [α, f₁, f₂, a₁, a₂, h₁, h₂, conduit]
return result.map (·.mvarId!)
def evalCongruence: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruence goal
Elab.Tactic.replaceMainGoal nextGoals
end Pantograph.Tactic

View File

@ -1,106 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def getForallArgsBody: Expr → List Expr × Expr
| .forallE _ d b _ =>
let (innerArgs, innerBody) := getForallArgsBody b
(d :: innerArgs, innerBody)
| e => ([], e)
def replaceForallBody: Expr → Expr → Expr
| .forallE param domain body binderInfo, target =>
let body := replaceForallBody body target
.forallE param domain body binderInfo
| _, target => target
structure RecursorWithMotive where
args: List Expr
body: Expr
-- .bvar index for the motive and major from the body
iMotive: Nat
namespace RecursorWithMotive
protected def nArgs (info: RecursorWithMotive): Nat := info.args.length
protected def getMotiveType (info: RecursorWithMotive): Expr :=
let level := info.nArgs - info.iMotive - 1
let a := info.args.get! level
a
protected def surrogateMotiveType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveType := Expr.instantiateRev info.getMotiveType mvars
let resultantType ← Meta.inferType resultant
return replaceForallBody motiveType resultantType
protected def conduitType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveCall := Expr.instantiateRev info.body mvars
Meta.mkEq motiveCall resultant
end RecursorWithMotive
def getRecursorInformation (recursorType: Expr): Option RecursorWithMotive := do
let (args, body) := getForallArgsBody recursorType
if ¬ body.isApp then
.none
let iMotive ← match body.getAppFn with
| .bvar iMotive => pure iMotive
| _ => .none
return {
args,
body,
iMotive,
}
def collectMotiveArguments (forallBody: Expr): SSet Nat :=
match forallBody with
| .app (.bvar i) _ => SSet.empty.insert i
| _ => SSet.empty
/-- Applies a symbol of the type `∀ (motive: α → Sort u) (a: α)..., (motive α)` -/
def motivatedApply (mvarId: MVarId) (recursor: Expr) : MetaM (Array Meta.InductionSubgoal) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.motivatedApply
let recursorType ← Meta.inferType recursor
let resultant ← mvarId.getType
let tag ← mvarId.getTag
let info ← match getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Recursor return type does not correspond with the invocation of a motive: {← Meta.ppExpr recursorType}"
let rec go (i: Nat) (prev: Array Expr): MetaM (Array Expr) := do
if i ≥ info.nArgs then
return prev
else
let argType := info.args.get! i
-- If `argType` has motive references, its goal needs to be placed in it
let argType := argType.instantiateRev prev
let bvarIndex := info.nArgs - i - 1
let argGoal ← if bvarIndex = info.iMotive then
let surrogateMotiveType ← info.surrogateMotiveType prev resultant
Meta.mkFreshExprSyntheticOpaqueMVar surrogateMotiveType (tag := tag ++ `motive)
else
Meta.mkFreshExprSyntheticOpaqueMVar argType (tag := .anonymous)
let prev := prev ++ [argGoal]
go (i + 1) prev
termination_by info.nArgs - i
let mut newMVars ← go 0 #[]
-- Create the conduit type which proves the result of the motive is equal to the goal
let conduitType ← info.conduitType newMVars resultant
let goalConduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType (tag := `conduit)
mvarId.assign $ ← Meta.mkEqMP goalConduit (mkAppN recursor newMVars)
newMVars := newMVars ++ [goalConduit]
return newMVars.map (λ mvar => { mvarId := mvar.mvarId!})
def evalMotivatedApply : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let recursor ← Elab.Term.elabTerm (stx := stx) .none
let nextGoals ← motivatedApply (← Elab.Tactic.getMainGoal) recursor
Elab.Tactic.replaceMainGoal $ nextGoals.toList.map (·.mvarId)
end Pantograph.Tactic

View File

@ -1,22 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def noConfuse (mvarId: MVarId) (h: Expr): MetaM Unit := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.noConfuse
let target ← mvarId.getType
let noConfusion ← Meta.mkNoConfusion (target := target) (h := h)
unless ← Meta.isDefEq (← Meta.inferType noConfusion) target do
throwError "invalid noConfuse call: The resultant type {← Meta.ppExpr $ ← Meta.inferType noConfusion} cannot be unified with {← Meta.ppExpr target}"
mvarId.assign noConfusion
def evalNoConfuse: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
let h ← goal.withContext $ Elab.Term.elabTerm (stx := stx) .none
noConfuse goal h
Elab.Tactic.replaceMainGoal []
end Pantograph.Tactic

View File

@ -1,88 +0,0 @@
/- Prograde (forward) reasoning tactics -/
import Lean
open Lean
namespace Pantograph.Tactic
private def mkUpstreamMVar (goal: MVarId) : MetaM Expr := do
Meta.mkFreshExprSyntheticOpaqueMVar (← goal.getType) (tag := ← goal.getTag)
/-- Introduces a fvar to the current mvar -/
def define (mvarId: MVarId) (binderName: Name) (expr: Expr): MetaM (FVarId × MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.define
let type ← Meta.inferType expr
Meta.withLetDecl binderName type expr λ fvar => do
let mvarUpstream ← mkUpstreamMVar mvarId
mvarId.assign $ ← Meta.mkLetFVars #[fvar] mvarUpstream
pure (fvar.fvarId!, mvarUpstream.mvarId!)
def evalDefine (binderName: Name) (expr: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let expr ← goal.withContext $ Elab.Term.elabTerm (stx := expr) (expectedType? := .none)
let (_, mvarId) ← define goal binderName expr
Elab.Tactic.replaceMainGoal [mvarId]
structure BranchResult where
fvarId?: Option FVarId := .none
branch: MVarId
main: MVarId
def «have» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.have
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[.fvar fvarId] 0 do
let mvarUpstream ← mkUpstreamMVar mvarId
--let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
mvarId.assign $ ← Meta.mkLambdaFVars #[.fvar fvarId] mvarUpstream
pure mvarUpstream
return {
fvarId? := .some fvarId,
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalHave (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let result ← «have» goal binderName type
pure [result.branch, result.main]
Elab.Tactic.replaceMainGoal nextGoals
def «let» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.let
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type (userName := binderName)
assert! ¬ type.hasLooseBVars
let mvarUpstream ← Meta.withLetDecl binderName type mvarBranch $ λ fvar => do
let mvarUpstream ← mkUpstreamMVar mvarId
mvarId.assign $ ← Meta.mkLetFVars #[fvar] mvarUpstream
pure mvarUpstream
return {
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalLet (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let type ← goal.withContext $ Elab.Term.elabType (stx := type)
let result ← «let» goal binderName type
Elab.Tactic.replaceMainGoal [result.branch, result.main]
end Pantograph.Tactic

View File

@ -1,6 +1,6 @@
namespace Pantograph
@[export pantograph_version]
def version := "0.2.23"
def version := "0.2.15"
end Pantograph

123
README.md
View File

@ -7,33 +7,39 @@ A Machine-to-Machine interaction system for Lean 4.
Pantograph provides interfaces to execute proofs, construct expressions, and
examine the symbol list of a Lean project for machine learning.
See [documentations](doc/rationale.md) for design rationale and references.
## Installation
For Nix users, run
``` sh
nix build .#{sharedLib,executable}
```
to build either the shared library or executable.
For Nix based workflow, see below.
Install `lake` and `lean` fixed to the version of the `lean-toolchain` file, and
run
Install `elan` and `lake`. Execute
``` sh
make
```
This builds the executable in `.lake/build/bin/pantograph`.
To use Pantograph in a project environment, setup the `LEAN_PATH` environment
variable so it contains the library path of lean libraries. The libraries must
be built in advance. For example, if `mathlib4` is stored at `../lib/mathlib4`,
the environment might be setup like this:
``` sh
lake build
LIB="../lib"
LIB_MATHLIB="$LIB/mathlib4/lake-packages"
export LEAN_PATH="$LIB/mathlib4/build/lib:$LIB_MATHLIB/aesop/build/lib:$LIB_MATHLIB/Qq/build/lib:$LIB_MATHLIB/std/build/lib"
LEAN_PATH=$LEAN_PATH build/bin/pantograph $@
```
The `$LEAN_PATH` executable of any project can be extracted by
``` sh
lake env printenv LEAN_PATH
```
This builds the executable in `.lake/build/bin/pantograph-repl`.
## Executable Usage
``` sh
pantograph-repl MODULES|LEAN_OPTIONS
pantograph MODULES|LEAN_OPTIONS
```
The `pantograph-repl` executable must be run with a list of modules to import.
It can also accept lean options of the form `--key=value` e.g. `--pp.raw=true`.
The REPL loop accepts commands as single-line JSON inputs and outputs either an
`Error:` (indicating malformed command) or a JSON return value indicating the
result of a command execution. The command can be passed in one of two formats
@ -44,6 +50,8 @@ command { ... }
The list of available commands can be found in `Pantograph/Protocol.lean` and below. An
empty command aborts the REPL.
The `pantograph` executable must be run with a list of modules to import. It can
also accept lean options of the form `--key=value` e.g. `--pp.raw=true`.
Example: (~5k symbols)
```
@ -69,26 +77,53 @@ stat
```
where the application of `assumption` should lead to a failure.
For a list of commands, see [REPL Documentation](doc/repl.md).
### Commands
### Project Environment
See `Pantograph/Protocol.lean` for a description of the parameters and return values in JSON.
* `reset`: Delete all cached expressions and proof trees
* `stat`: Display resource usage
* `expr.echo {"expr": <expr>, "type": <optional expected type>, ["levels": [<levels>]]}`: Determine the
type of an expression and format it.
* `env.catalog`: Display a list of all safe Lean symbols in the current environment
* `env.inspect {"name": <name>, "value": <bool>}`: Show the type and package of a
given symbol; If value flag is set, the value is printed or hidden. By default
only the values of definitions are printed.
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
* `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol
* `goal.tactic {"stateId": <id>, "goalId": <id>, ...}`: Execute a tactic string on a
given goal. The tactic is supplied as additional key-value pairs in one of the following formats:
- `{ "tactic": <tactic> }`: Execute an ordinary tactic
- `{ "expr": <expr> }`: Assign the given proof term to the current goal
- `{ "have": <expr>, "binderName": <name> }`: Execute `have` and creates a branch goal
- `{ "calc": <expr> }`: Execute one step of a `calc` tactic. Each step must
be of the form `lhs op rhs`. An `lhs` of `_` indicates that it should be set
to the previous `rhs`.
- `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of
exit, the goal id is ignored.
* `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`:
Execute continuation/resumption
- `{ "branch": <id> }`: Continue on branch state. The current state must have no goals.
- `{ "goals": <names> }`: Resume the given goals
* `goal.remove {"stateIds": [<id>]}"`: Drop the goal states specified in the list
* `goal.print {"stateId": <id>}"`: Print a goal state
To use Pantograph in a project environment, setup the `LEAN_PATH` environment
variable so it contains the library path of lean libraries. The libraries must
be built in advance. For example, if `mathlib4` is stored at `../lib/mathlib4`,
the environment might be setup like this:
### Errors
``` sh
LIB="../lib"
LIB_MATHLIB="$LIB/mathlib4/.lake"
export LEAN_PATH="$LIB/mathlib4/build/lib:$LIB_MATHLIB/aesop/build/lib:$LIB_MATHLIB/Qq/build/lib:$LIB_MATHLIB/std/build/lib"
When an error pertaining to the execution of a command happens, the returning JSON structure is
LEAN_PATH=$LEAN_PATH build/bin/pantograph $@
```
The `$LEAN_PATH` executable of any project can be extracted by
``` sh
lake env printenv LEAN_PATH
``` json
{ "error": "type", "desc": "description" }
```
Common error forms:
* `command`: Indicates malformed command structure which results from either
invalid command or a malformed JSON structure that cannot be fed to an
individual command.
* `index`: Indicates an invariant maintained by the output of one command and
input of another is broken. For example, attempting to query a symbol not
existing in the library or indexing into a non-existent proof state.
### Troubleshooting
@ -103,28 +138,24 @@ ulimit -s unlimited
with `Pantograph` which mirrors the REPL commands above. It is recommended to
call Pantograph via this FFI since it provides a tremendous speed up.
The executable can be used as-is, but linking against the shared library
requires the presence of `lean-all`. Note that there isn't a 1-1 correspondence
between executable (REPL) commands and library functions.
Inject any project path via the `pantograph_init_search` function.
## Developing
A Lean development shell is provided in the Nix flake.
### Testing
The tests are based on `LSpec`. To run tests, use either
The tests are based on `LSpec`. To run tests,
``` sh
make test
```
## Nix based workflow
The included Nix flake provides build targets for `sharedLib` and `executable`.
The executable can be used as-is, but linking against the shared library
requires the presence of `lean-all`.
To run tests:
``` sh
nix flake check
```
or
``` sh
lake test
```
You can run an individual test by specifying a prefix
``` sh
lake test -- "Tactic/No Confuse"
```

304
Repl.lean
View File

@ -1,304 +0,0 @@
import Std.Data.HashMap
import Pantograph
namespace Pantograph.Repl
structure Context where
imports: List String
/-- Stores state of the REPL -/
structure State where
options: Protocol.Options := {}
nextId: Nat := 0
goalStates: Std.HashMap Nat GoalState := Std.HashMap.empty
/-- Main state monad for executing commands -/
abbrev MainM := ReaderT Context (StateT State Lean.CoreM)
def newGoalState (goalState: GoalState) : MainM Nat := do
let state ← get
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return stateId
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables
-- certain monadic features in `MainM`
abbrev CR α := Except Protocol.InteractionError α
def runMetaInMainM { α } (metaM: Lean.MetaM α): MainM α :=
metaM.run'
def runTermElabInMainM { α } (termElabM: Lean.Elab.TermElabM α) : MainM α :=
termElabM.run' (ctx := defaultElabContext) |>.run'
/-- Main loop command of the REPL -/
def execute (command: Protocol.Command): MainM Lean.Json := do
let run { α β: Type } [Lean.FromJson α] [Lean.ToJson β] (comm: α → MainM (CR β)): MainM Lean.Json :=
match Lean.fromJson? command.payload with
| .ok args => do
match (← comm args) with
| .ok result => return Lean.toJson result
| .error ierror => return Lean.toJson ierror
| .error error => return Lean.toJson $ errorCommand s!"Unable to parse json: {error}"
try
match command.cmd with
| "reset" => run reset
| "stat" => run stat
| "expr.echo" => run expr_echo
| "env.catalog" => run env_catalog
| "env.inspect" => run env_inspect
| "env.add" => run env_add
| "env.save" => run env_save
| "env.load" => run env_load
| "options.set" => run options_set
| "options.print" => run options_print
| "goal.start" => run goal_start
| "goal.tactic" => run goal_tactic
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete
| "goal.print" => run goal_print
| "goal.save" => run goal_save
| "goal.load" => run goal_load
| "frontend.process" => run frontend_process
| cmd =>
let error: Protocol.InteractionError :=
errorCommand s!"Unknown command {cmd}"
return Lean.toJson error
catch ex => do
let error ← ex.toMessageData.toString
return Lean.toJson $ errorIO error
where
errorCommand := errorI "command"
errorIndex := errorI "index"
errorIO := errorI "io"
-- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
set { state with nextId := 0, goalStates := .empty }
Lean.Core.resetMessageLog
return .ok { nGoals }
stat (_: Protocol.Stat): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
return .ok { nGoals }
env_catalog (args: Protocol.EnvCatalog): MainM (CR Protocol.EnvCatalogResult) := do
let result ← Environment.catalog args
return .ok result
env_inspect (args: Protocol.EnvInspect): MainM (CR Protocol.EnvInspectResult) := do
let state ← get
Environment.inspect args state.options
env_add (args: Protocol.EnvAdd): MainM (CR Protocol.EnvAddResult) := do
Environment.addDecl args
env_save (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do
let env ← Lean.MonadEnv.getEnv
environmentPickle env args.path
return .ok {}
env_load (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do
let (env, _) ← environmentUnpickle args.path
Lean.setEnv env
return .ok {}
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do
let state ← get
exprEcho args.expr (expectedType? := args.type?) (levels := args.levels.getD #[]) (options := state.options)
options_set (args: Protocol.OptionsSet): MainM (CR Protocol.OptionsSetResult) := do
let state ← get
let options := state.options
set { state with
options := {
-- FIXME: This should be replaced with something more elegant
printJsonPretty := args.printJsonPretty?.getD options.printJsonPretty,
printExprPretty := args.printExprPretty?.getD options.printExprPretty,
printExprAST := args.printExprAST?.getD options.printExprAST,
printDependentMVars := args.printDependentMVars?.getD options.printDependentMVars,
noRepeat := args.noRepeat?.getD options.noRepeat,
printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls,
printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps
automaticMode := args.automaticMode?.getD options.automaticMode,
}
}
return .ok { }
options_print (_: Protocol.OptionsPrint): MainM (CR Protocol.Options) := do
return .ok (← get).options
goal_start (args: Protocol.GoalStart): MainM (CR Protocol.GoalStartResult) := do
let env ← Lean.MonadEnv.getEnv
let expr?: Except _ GoalState ← runTermElabInMainM (match args.expr, args.copyFrom with
| .some expr, .none => goalStartExpr expr (args.levels.getD #[])
| .none, .some copyFrom =>
(match env.find? <| copyFrom.toName with
| .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}"
| .some cInfo => return .ok (← GoalState.create cInfo.type))
| _, _ =>
return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied")
match expr? with
| .error error => return .error error
| .ok goalState =>
let stateId ← newGoalState goalState
return .ok { stateId, root := goalState.root.name.toString }
goal_tactic (args: Protocol.GoalTactic): MainM (CR Protocol.GoalTacticResult) := do
let state ← get
let .some goalState := state.goalStates[args.stateId]? |
return .error $ errorIndex s!"Invalid state index {args.stateId}"
let .some goal := goalState.goals.get? args.goalId |
return .error $ errorIndex s!"Invalid goal index {args.goalId}"
let nextGoalState?: Except _ TacticResult ← runTermElabInMainM do
match args.tactic?, args.expr?, args.have?, args.let?, args.calc?, args.conv? with
| .some tactic, .none, .none, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryTactic goal tactic
| .none, .some expr, .none, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryAssign goal expr
| .none, .none, .some type, .none, .none, .none => do
let binderName := args.binderName?.getD ""
pure <| Except.ok <| ← goalState.tryHave goal binderName type
| .none, .none, .none, .some type, .none, .none => do
let binderName := args.binderName?.getD ""
pure <| Except.ok <| ← goalState.tryLet goal binderName type
| .none, .none, .none, .none, .some pred, .none => do
pure <| Except.ok <| ← goalState.tryCalc goal pred
| .none, .none, .none, .none, .none, .some true => do
pure <| Except.ok <| ← goalState.conv goal
| .none, .none, .none, .none, .none, .some false => do
pure <| Except.ok <| ← goalState.convExit
| _, _, _, _, _, _ =>
let error := errorI "arguments" "Exactly one of {tactic, expr, have, calc, conv} must be supplied"
pure $ Except.error $ error
match nextGoalState? with
| .error error => return .error error
| .ok (.success nextGoalState) => do
let nextGoalState ← match state.options.automaticMode, args.conv? with
| true, .none => do
let .ok result := nextGoalState.resume (nextGoalState.goals ++ goalState.goals) |
throwError "Resuming known goals"
pure result
| true, .some true => pure nextGoalState
| true, .some false => do
let .some (_, _, dormantGoals) := goalState.convMVar? |
throwError "If conv exit succeeded this should not fail"
let .ok result := nextGoalState.resume (nextGoalState.goals ++ dormantGoals) |
throwError "Resuming known goals"
pure result
| false, _ => pure nextGoalState
let nextStateId ← newGoalState nextGoalState
let goals ← nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run'
return .ok {
nextStateId? := .some nextStateId,
goals? := .some goals,
}
| .ok (.parseError message) =>
return .ok { parseError? := .some message }
| .ok (.invalidAction message) =>
return .error $ errorI "invalid" message
| .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do
let state ← get
let .some target := state.goalStates[args.target]? |
return .error $ errorIndex s!"Invalid state index {args.target}"
let nextState? ← match args.branch?, args.goals? with
| .some branchId, .none => do
match state.goalStates[branchId]? with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ target.continue branch
| .none, .some goals =>
pure $ goalResume target goals
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied"
match nextState? with
| .error error => return .error <| errorI "structure" error
| .ok nextGoalState =>
let nextStateId ← newGoalState nextGoalState
let goals ← goalSerialize nextGoalState (options := state.options)
return .ok {
nextStateId,
goals,
}
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do
let state ← get
let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates
set { state with goalStates }
return .ok {}
goal_print (args: Protocol.GoalPrint): MainM (CR Protocol.GoalPrintResult) := do
let state ← get
let .some goalState := state.goalStates[args.stateId]? |
return .error $ errorIndex s!"Invalid state index {args.stateId}"
let result ← runMetaInMainM <| goalPrint
goalState
(rootExpr := args.rootExpr?.getD False)
(parentExpr := args.parentExpr?.getD False)
(goals := args.goals?.getD False)
(extraMVars := args.extraMVars?.getD #[])
(options := state.options)
return .ok result
goal_save (args: Protocol.GoalSave): MainM (CR Protocol.GoalSaveResult) := do
let state ← get
let .some goalState := state.goalStates[args.id]? |
return .error $ errorIndex s!"Invalid state index {args.id}"
goalStatePickle goalState args.path
return .ok {}
goal_load (args: Protocol.GoalLoad): MainM (CR Protocol.GoalLoadResult) := do
let (goalState, _) ← goalStateUnpickle args.path (← Lean.MonadEnv.getEnv)
let id ← newGoalState goalState
return .ok { id }
frontend_process (args: Protocol.FrontendProcess): MainM (CR Protocol.FrontendProcessResult) := do
let options := (← get).options
try
let (fileName, file) ← match args.fileName?, args.file? with
| .some fileName, .none => do
let file ← IO.FS.readFile fileName
pure (fileName, file)
| .none, .some file =>
pure ("<anonymous>", file)
| _, _ => return .error <| errorI "arguments" "Exactly one of {fileName, file} must be supplied"
let env?: Option Lean.Environment ← if args.fileName?.isSome then
pure .none
else do
let env ← Lean.MonadEnv.getEnv
pure <| .some env
let (context, state) ← do Frontend.createContextStateFromFile file fileName env? {}
let frontendM := Frontend.mapCompilationSteps λ step => do
let boundary := (step.src.startPos.byteIdx, step.src.stopPos.byteIdx)
let invocations?: Option (List Protocol.InvokedTactic) ← if args.invocations then
let invocations ← Frontend.collectTacticsFromCompilationStep step
pure $ .some invocations
else
pure .none
let sorrys ← if args.sorrys then
Frontend.collectSorrys step
else
pure []
let messages ← step.messageStrings
let newConstants ← if args.newConstants then
Frontend.collectNewDefinedConstants step
else
pure []
return (step.before, boundary, invocations?, sorrys, messages, newConstants)
let li ← frontendM.run context |>.run' state
let units ← li.mapM λ (env, boundary, invocations?, sorrys, messages, newConstants) => Lean.withEnv env do
let newConstants? := if args.newConstants then
.some $ newConstants.toArray.map λ name => name.toString
else
.none
let (goalStateId?, goals?, goalSrcBoundaries?) ← if sorrys.isEmpty then do
pure (.none, .none, .none)
else do
let { state, srcBoundaries } ← runMetaInMainM $ Frontend.sorrysToGoalState sorrys
let stateId ← newGoalState state
let goals ← goalSerialize state options
let srcBoundaries := srcBoundaries.toArray.map (λ (b, e) => (b.byteIdx, e.byteIdx))
pure (.some stateId, .some goals, .some srcBoundaries)
return {
boundary,
messages,
invocations?,
goalStateId?,
goals?,
goalSrcBoundaries?,
newConstants?,
}
return .ok { units }
catch e =>
return .error $ errorI "frontend" (← e.toMessageData.toString)
end Pantograph.Repl

View File

@ -8,33 +8,20 @@ open Lean
namespace Pantograph
deriving instance Repr for Expr
-- Use strict equality check for expressions
instance : BEq Expr := ⟨Expr.equal⟩
def uniq (n: Nat): Name := .num (.str .anonymous "_uniq") n
-- Auxiliary functions
namespace Protocol
def Goal.devolatilizeVars (goal: Goal): Goal :=
/-- Set internal names to "" -/
def Goal.devolatilize (goal: Goal): Goal :=
{
goal with
name := "",
vars := goal.vars.map removeInternalAux,
}
where removeInternalAux (v: Variable): Variable :=
{
v with
name := ""
}
/-- Set internal names to "" -/
def Goal.devolatilize (goal: Goal): Goal :=
{
goal.devolatilizeVars with
name := "",
}
deriving instance DecidableEq, Repr for Name
deriving instance DecidableEq, Repr for Expression
deriving instance DecidableEq, Repr for Variable
deriving instance DecidableEq, Repr for Goal
@ -43,33 +30,13 @@ deriving instance DecidableEq, Repr for InteractionError
deriving instance DecidableEq, Repr for Option
end Protocol
namespace Condensed
deriving instance BEq, Repr for LocalDecl
deriving instance BEq, Repr for Goal
protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl :=
{
decl with fvarId := { name := .anonymous }
}
protected def Goal.devolatilize (goal: Goal): Goal :=
{
goal with
mvarId := { name := .anonymous },
context := goal.context.map LocalDecl.devolatilize
}
end Condensed
def GoalState.get! (state: GoalState) (i: Nat): MVarId := state.goals.get! i
def GoalState.tacticOn (state: GoalState) (goalId: Nat) (tactic: String) := state.tryTactic (state.goals.get! goalId) tactic
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
| .invalidAction error => s!".invalidAction {error}"
namespace Test
@ -89,80 +56,7 @@ def runCoreMSeq (env: Environment) (coreM: CoreM LSpec.TestSeq) (options: Array
def runMetaMSeq (env: Environment) (metaM: MetaM LSpec.TestSeq): IO LSpec.TestSeq :=
runCoreMSeq env metaM.run'
def runTermElabMInMeta { α } (termElabM: Lean.Elab.TermElabM α): Lean.MetaM α :=
termElabM.run' (ctx := defaultElabContext)
def runTermElabMSeq (env: Environment) (termElabM: Elab.TermElabM LSpec.TestSeq): IO LSpec.TestSeq :=
runMetaMSeq env $ termElabM.run' (ctx := defaultElabContext)
def exprToStr (e: Expr): Lean.MetaM String := toString <$> Meta.ppExpr e
def strToTermSyntax (s: String): CoreM Syntax := do
let .ok stx := Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := ← getFileName) | panic! s!"Failed to parse {s}"
return stx
def parseSentence (s: String): Elab.TermElabM Expr := do
let stx ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
Elab.Term.elabTerm (stx := stx) .none
def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
return newGoals.goals
def mvarUserNameAndType (mvarId: MVarId): MetaM (Name × String) := do
let name := (← mvarId.getDecl).userName
let t ← exprToStr (← mvarId.getType)
return (name, t)
-- Monadic testing
abbrev TestT := StateRefT' IO.RealWorld LSpec.TestSeq
section Monadic
variable [Monad m] [MonadLiftT (ST IO.RealWorld) m]
def addTest (test: LSpec.TestSeq) : TestT m Unit := do
set $ (← get) ++ test
def checkEq [DecidableEq α] [Repr α] (desc : String) (lhs rhs : α) : TestT m Unit := do
addTest $ LSpec.check desc (lhs = rhs)
def checkTrue (desc : String) (flag : Bool) : TestT m Unit := do
addTest $ LSpec.check desc flag
def fail (desc : String) : TestT m Unit := do
addTest $ LSpec.check desc false
def runTest (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done
def runTestWithResult { α } (t: TestT m α): m (α × LSpec.TestSeq) :=
t.run LSpec.TestSeq.done
end Monadic
def runTestTermElabM (env: Environment) (t: TestT Elab.TermElabM Unit):
IO LSpec.TestSeq :=
runTermElabMSeq env $ runTest t
def cdeclOf (userName: Name) (type: Expr): Condensed.LocalDecl :=
{ userName, type }
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
termElabM.run' (ctx := Pantograph.defaultTermElabMContext)
end Test

View File

@ -1,109 +0,0 @@
import LSpec
import Pantograph.Delate
import Test.Common
import Lean
open Lean
namespace Pantograph.Test.Delate
open Pantograph
deriving instance Repr, DecidableEq for Protocol.BoundExpression
def test_serializeName: LSpec.TestSeq :=
let quote := "\""
let escape := "\\"
LSpec.test "a.b.1" (serializeName (Name.num (.str (.str .anonymous "a") "b") 1) = "a.b.1") ++
LSpec.test "seg.«a.b»" (serializeName (Name.str (.str .anonymous "seg") "a.b") = s!"{quote}seg.«a.b»{quote}") ++
-- Pathological test case
LSpec.test s!"«̈{escape}{quote}»" (serializeName (Name.str .anonymous s!"{escape}{quote}") = s!"{quote}«{escape}{quote}»{quote}")
def test_expr_to_binder (env: Environment): IO LSpec.TestSeq := do
let entries: List (Name × Protocol.BoundExpression) := [
("Nat.add_comm".toName, { binders := #[("n", "Nat"), ("m", "Nat")], target := "n + m = m + n" }),
("Nat.le_of_succ_le".toName, { binders := #[("n", "Nat"), ("m", "Nat"), ("h", "n.succ ≤ m")], target := "n ≤ m" })
]
runCoreMSeq env $ entries.foldlM (λ suites (symbol, target) => do
let env ← MonadEnv.getEnv
let expr := env.find? symbol |>.get! |>.type
let test := LSpec.check symbol.toString ((← typeExprToBound expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done |>.run'
def test_sexp_of_symbol (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × String) := [
-- This one contains unhygienic variable names which must be suppressed
("Nat.add", "(:forall a (:c Nat) (:forall a (:c Nat) (:c Nat)))"),
-- These ones are normal and easy
("Nat.add_one", "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"),
("Nat.le_of_succ_le", "(:forall n (:c Nat) (:forall m (:c Nat) (:forall h ((:c LE.le) (:c Nat) (:c instLENat) ((:c Nat.succ) 1) 0) ((:c LE.le) (:c Nat) (:c instLENat) 2 1)) :implicit) :implicit)"),
-- Handling of higher order types
("Or", "(:forall a (:sort 0) (:forall b (:sort 0) (:sort 0)))"),
("List", "(:forall α (:sort (+ u 1)) (:sort (+ u 1)))")
]
runMetaMSeq env $ entries.foldlM (λ suites (symbol, target) => do
let env ← MonadEnv.getEnv
let expr := env.find? symbol.toName |>.get! |>.type
let test := LSpec.check symbol ((← serializeExpressionSexp expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done
def test_sexp_of_elab (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × (List Name) × String) := [
("λ x: Nat × Bool => x.1", [], "(:lambda x ((:c Prod) (:c Nat) (:c Bool)) ((:c Prod.fst) (:c Nat) (:c Bool) 0))"),
("λ x: Array Nat => x.data", [], "(:lambda x ((:c Array) (:c Nat)) ((:c Array.data) (:c Nat) 0))"),
("λ {α: Sort (u + 1)} => List α", [`u], "(:lambda α (:sort (+ u 1)) ((:c List) 0) :implicit)"),
("λ {α} => List α", [], "(:lambda α (:sort (+ (:mv _uniq.4) 1)) ((:c List) 0) :implicit)"),
("(2: Nat) <= (5: Nat)", [], "((:c LE.le) (:mv _uniq.18) (:mv _uniq.19) ((:c OfNat.ofNat) (:mv _uniq.4) (:lit 2) (:mv _uniq.5)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))"),
]
entries.foldlM (λ suites (source, levels, target) =>
let termElabM := do
let env ← MonadEnv.getEnv
let s ← match parseTerm env source with
| .ok s => pure s
| .error e => return parseFailure e
let expr ← match (← elabTerm s) with
| .ok expr => pure expr
| .error e => return elabFailure e
return LSpec.check source ((← serializeExpressionSexp expr) = target)
let metaM := (Elab.Term.withLevelNames levels termElabM).run' (ctx := defaultElabContext)
return LSpec.TestSeq.append suites (← runMetaMSeq env metaM))
LSpec.TestSeq.done
def test_sexp_of_expr (env: Environment): IO LSpec.TestSeq := do
let entries: List (Expr × String) := [
(.lam `p (.sort .zero)
(.lam `q (.sort .zero)
(.lam `k (mkApp2 (.const `And []) (.bvar 1) (.bvar 0))
(.proj `And 1 (.bvar 0))
.default)
.implicit)
.implicit,
"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda k ((:c And) 1 0) ((:c And.right) _ _ 0)) :implicit) :implicit)"
),
]
let termElabM: Elab.TermElabM LSpec.TestSeq := entries.foldlM (λ suites (expr, target) => do
let env ← MonadEnv.getEnv
let testCaseName := target.take 10
let test := LSpec.check testCaseName ((← serializeExpressionSexp expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done
runMetaMSeq env $ termElabM.run' (ctx := defaultElabContext)
-- Instance parsing
def test_instance (env: Environment): IO LSpec.TestSeq :=
runMetaMSeq env do
let env ← MonadEnv.getEnv
let source := "λ x y: Nat => HAdd.hAdd Nat Nat Nat (instHAdd Nat instAddNat) x y"
let s := parseTerm env source |>.toOption |>.get!
let _expr := (← runTermElabMInMeta <| elabTerm s) |>.toOption |>.get!
return LSpec.TestSeq.done
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("serializeName", do pure test_serializeName),
("Expression binder", test_expr_to_binder env),
("Sexp from symbol", test_sexp_of_symbol env),
("Sexp from elaborated expr", test_sexp_of_elab env),
("Sexp from expr", test_sexp_of_expr env),
("Instance", test_instance env),
]
end Pantograph.Test.Delate

View File

@ -1,5 +1,5 @@
import LSpec
import Pantograph.Delate
import Pantograph.Serial
import Pantograph.Environment
import Test.Common
import Lean
@ -33,7 +33,7 @@ def test_catalog: IO LSpec.TestSeq := do
def test_symbol_visibility: IO LSpec.TestSeq := do
let entries: List (Name × Bool) := [
("Nat.add_comm".toName, false),
("foo.bla.Init.Data.List.Basic.2.1.Init.Lean.Expr._hyg.4".toName, true),
("Lean.Name".toName, true),
("Init.Data.Nat.Basic._auxLemma.4".toName, true),
]
let suite := entries.foldl (λ suites (symbol, target) =>

View File

@ -1,235 +0,0 @@
import LSpec
import Pantograph
import Repl
import Test.Common
open Lean Pantograph
namespace Pantograph.Test.Frontend
def collectSorrysFromSource (source: String) : MetaM (List GoalState) := do
let filename := "<anonymous>"
let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {}
let m := Frontend.mapCompilationSteps λ step => do
return (step.before, ← Frontend.collectSorrys step)
let li ← m.run context |>.run' state
let goalStates ← li.filterMapM λ (env, sorrys) => withEnv env do
if sorrys.isEmpty then
return .none
let { state, .. } ← Frontend.sorrysToGoalState sorrys
return .some state
return goalStates
def test_multiple_sorrys_in_proof : TestT MetaM Unit := do
let sketch := "
theorem plus_n_Sm_proved_formal_sketch : ∀ n m : Nat, n + (m + 1) = (n + m) + 1 := by
have h_nat_add_succ: ∀ n m : Nat, n = m := sorry
sorry
"
let goalStates ← (collectSorrysFromSource sketch).run' {}
let [goalState] := goalStates | panic! "Incorrect number of states"
addTest $ LSpec.check "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize) = #[
{
target := { pp? := "∀ (n m : Nat), n = m" },
vars := #[
]
},
{
target := { pp? := "∀ (n m : Nat), n + (m + 1) = n + m + 1" },
vars := #[{
userName := "h_nat_add_succ",
type? := .some { pp? := "∀ (n m : Nat), n = m" },
}],
}
])
def test_sorry_in_middle: TestT MetaM Unit := do
let sketch := "
example : ∀ (n m: Nat), n + m = m + n := by
intros n m
sorry
"
let goalStates ← (collectSorrysFromSource sketch).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
addTest $ LSpec.check "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize) = #[
{
target := { pp? := "n + m = m + n" },
vars := #[{
userName := "n",
type? := .some { pp? := "Nat" },
}, {
userName := "m",
type? := .some { pp? := "Nat" },
}
],
}
])
def test_sorry_in_induction : TestT MetaM Unit := do
let sketch := "
example : ∀ (n m: Nat), n + m = m + n := by
intros n m
induction n with
| zero =>
have h1 : 0 + m = m := sorry
sorry
| succ n ih =>
have h2 : n + m = m := sorry
sorry
"
let goalStates ← (collectSorrysFromSource sketch).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
addTest $ LSpec.check "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize) = #[
{
target := { pp? := "0 + m = m" },
vars := #[{
userName := "m",
type? := .some { pp? := "Nat" },
}]
},
{
userName? := .some "zero",
target := { pp? := "0 + m = m + 0" },
vars := #[{
userName := "m",
type? := .some { pp? := "Nat" },
}, {
userName := "h1",
type? := .some { pp? := "0 + m = m" },
}]
},
{
target := { pp? := "n + m = m" },
vars := #[{
userName := "m",
type? := .some { pp? := "Nat" },
}, {
userName := "n",
type? := .some { pp? := "Nat" },
}, {
userName := "ih",
type? := .some { pp? := "n + m = m + n" },
}]
},
{
userName? := .some "succ",
target := { pp? := "n + 1 + m = m + (n + 1)" },
vars := #[{
userName := "m",
type? := .some { pp? := "Nat" },
}, {
userName := "n",
type? := .some { pp? := "Nat" },
}, {
userName := "ih",
type? := .some { pp? := "n + m = m + n" },
}, {
userName := "h2",
type? := .some { pp? := "n + m = m" },
}]
}
])
def test_sorry_in_coupled: TestT MetaM Unit := do
let sketch := "
example : ∀ (y: Nat), ∃ (x: Nat), y + 1 = x := by
intro y
apply Exists.intro
case h => sorry
case w => sorry
"
let goalStates ← (collectSorrysFromSource sketch).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
addTest $ LSpec.check "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize) = #[
{
target := { pp? := "y + 1 = ?w" },
vars := #[{
userName := "y",
type? := .some { pp? := "Nat" },
}
],
},
{
userName? := .some "w",
target := { pp? := "Nat" },
vars := #[{
userName := "y",
type? := .some { pp? := "Nat" },
}
],
}
])
def test_environment_capture: TestT MetaM Unit := do
let sketch := "
def mystery (n: Nat) := n + 1
example (n: Nat) : mystery n + 1 = n + 2 := sorry
"
let goalStates ← (collectSorrysFromSource sketch).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
addTest $ LSpec.check "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize) = #[
{
target := { pp? := "mystery n + 1 = n + 2" },
vars := #[{
userName := "n",
type? := .some { pp? := "Nat" },
}],
}
])
def test_capture_type_mismatch : TestT MetaM Unit := do
let input := "
def mystery (k: Nat) : Nat := true
"
let goalStates ← (collectSorrysFromSource input).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
checkEq "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize)) #[
{
target := { pp? := "Nat" },
vars := #[{
userName := "k",
type? := .some { pp? := "Nat" },
}],
}
]
def collectNewConstants (source: String) : MetaM (List (List Name)) := do
let filename := "<anonymous>"
let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {}
let m := Frontend.mapCompilationSteps λ step => do
Frontend.collectNewDefinedConstants step
m.run context |>.run' state
def test_collect_one_constant : TestT MetaM Unit := do
let input := "
def mystery : Nat := 123
"
let names ← collectNewConstants input
checkEq "constants" names [[`mystery]]
def test_collect_one_theorem : TestT MetaM Unit := do
let input := "
theorem mystery [SizeOf α] (as : List α) (i : Fin as.length) : sizeOf (as.get i) < sizeOf as := by
match as, i with
| a::as, ⟨0, _⟩ => simp_arith [get]
| a::as, ⟨i+1, h⟩ =>
have ih := sizeOf_get as ⟨i, Nat.le_of_succ_le_succ h⟩
apply Nat.lt_trans ih
simp_arith
"
let names ← collectNewConstants input
checkEq "constants" names [[`mystery]]
def suite (env : Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("multiple_sorrys_in_proof", test_multiple_sorrys_in_proof),
("sorry_in_middle", test_sorry_in_middle),
("sorry_in_induction", test_sorry_in_induction),
("sorry_in_coupled", test_sorry_in_coupled),
("environment_capture", test_environment_capture),
("capture_type_mismatch", test_capture_type_mismatch),
("collect_one_constant", test_collect_one_constant),
("collect_one_theorem", test_collect_one_theorem),
]
tests.map (fun (name, test) => (name, runMetaMSeq env $ runTest test))
end Pantograph.Test.Frontend

View File

@ -2,24 +2,39 @@
-/
import LSpec
import Pantograph
import Repl
import Test.Common
namespace Pantograph.Test.Integration
open Pantograph.Repl
open Pantograph
def step { α } [Lean.ToJson α] (cmd: String) (payload: List (String × Lean.Json))
(expected: α) (name? : Option String := .none): MainM LSpec.TestSeq := do
let payload := Lean.Json.mkObj payload
let name := name?.getD s!"{cmd} {payload.compress}"
let result ← Repl.execute { cmd, payload }
return LSpec.test name (toString result = toString (Lean.toJson expected))
def subroutine_named_step (name cmd: String) (payload: List (String × Lean.Json))
(expected: Lean.Json): MainM LSpec.TestSeq := do
let result ← execute { cmd := cmd, payload := Lean.Json.mkObj payload }
return LSpec.test name (toString result = toString expected)
def subroutine_step (cmd: String) (payload: List (String × Lean.Json))
(expected: Lean.Json): MainM LSpec.TestSeq := subroutine_named_step cmd cmd payload expected
abbrev Test := List (MainM LSpec.TestSeq)
def subroutine_runner (steps: List (MainM LSpec.TestSeq)): IO LSpec.TestSeq := do
-- Setup the environment for execution
let env ← Lean.importModules
(imports := #[{module := Lean.Name.str .anonymous "Init", runtimeOnly := false }])
(opts := {})
(trustLevel := 1)
let context: Context := {
imports := ["Init"]
}
let coreContext: Lean.Core.Context ← createCoreContext #[]
let commands: MainM LSpec.TestSeq :=
steps.foldlM (λ suite step => do
let result ← step
return suite ++ result) LSpec.TestSeq.done
try
let coreM := commands.run context |>.run' {}
return Prod.fst $ (← coreM.toIO coreContext { env := env })
catch ex =>
return LSpec.check s!"Uncaught IO exception: {ex.toString}" false
def test_elab : Test :=
[
step "expr.echo"
def test_elab : IO LSpec.TestSeq :=
subroutine_runner [
subroutine_step "expr.echo"
[("expr", .str "λ {α : Sort (u + 1)} => List α"), ("levels", .arr #["u"])]
(Lean.toJson ({
type := { pp? := .some "{α : Type u} → Type u" },
@ -27,235 +42,130 @@ def test_elab : Test :=
}: Protocol.ExprEchoResult)),
]
def test_option_modify : Test :=
def test_option_modify : IO LSpec.TestSeq :=
let pp? := Option.some "∀ (n : Nat), n + 1 = n.succ"
let sexp? := Option.some "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"
let module? := Option.some "Init.Data.Nat.Basic"
let options: Protocol.Options := {}
[
step "env.inspect" [("name", .str "Nat.add_one")]
({ type := { pp? }, module? }: Protocol.EnvInspectResult),
step "options.set" [("printExprAST", .bool true)]
({ }: Protocol.OptionsSetResult),
step "env.inspect" [("name", .str "Nat.add_one")]
({ type := { pp?, sexp? }, module? }: Protocol.EnvInspectResult),
step "options.print" []
({ options with printExprAST := true }: Protocol.Options),
subroutine_runner [
subroutine_step "env.inspect"
[("name", .str "Nat.add_one")]
(Lean.toJson ({
type := { pp? }, module? }:
Protocol.EnvInspectResult)),
subroutine_step "options.set"
[("printExprAST", .bool true)]
(Lean.toJson ({ }:
Protocol.OptionsSetResult)),
subroutine_step "env.inspect"
[("name", .str "Nat.add_one")]
(Lean.toJson ({
type := { pp?, sexp? }, module? }:
Protocol.EnvInspectResult)),
subroutine_step "options.print"
[]
(Lean.toJson ({ options with printExprAST := true }:
Protocol.OptionsPrintResult))
]
def test_malformed_command : Test :=
def test_malformed_command : IO LSpec.TestSeq :=
let invalid := "invalid"
[
step invalid [("name", .str "Nat.add_one")]
({ error := "command", desc := s!"Unknown command {invalid}" }: Protocol.InteractionError)
(name? := .some "Invalid Command"),
step "expr.echo" [(invalid, .str "Random garbage data")]
({ error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected" }:
Protocol.InteractionError)
(name? := .some "JSON Deserialization")
subroutine_runner [
subroutine_named_step "Invalid command" invalid
[("name", .str "Nat.add_one")]
(Lean.toJson ({
error := "command", desc := s!"Unknown command {invalid}"}:
Protocol.InteractionError)),
subroutine_named_step "JSON Deserialization" "expr.echo"
[(invalid, .str "Random garbage data")]
(Lean.toJson ({
error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected"}:
Protocol.InteractionError))
]
def test_tactic : Test :=
def test_tactic : IO LSpec.TestSeq :=
let goal1: Protocol.Goal := {
name := "_uniq.11",
target := { pp? := .some "∀ (q : Prop), x q → q x" },
vars := #[{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}],
vars := #[{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}],
}
let goal2: Protocol.Goal := {
name := "_uniq.17",
name := "_uniq.14",
target := { pp? := .some "x y → y x" },
vars := #[
{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.16", userName := "y", type? := .some { pp? := .some "Prop" }}
{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.13", userName := "y", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}
],
}
[
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")]
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro x")]
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.print" [("stateId", .num 1), ("parentExpr", .bool true), ("rootExpr", .bool true)]
({ parent? := .some { pp? := .some "fun x => ?m.12 x" }, }: Protocol.GoalPrintResult),
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "intro y")]
({ nextStateId? := .some 2, goals? := #[goal2], }: Protocol.GoalTacticResult),
]
def test_automatic_mode (automatic: Bool): Test :=
let varsPQ := #[
{ name := "_uniq.10", userName := "p", type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.13", userName := "q", type? := .some { pp? := .some "Prop" }}
]
let goal1: Protocol.Goal := {
name := "_uniq.17",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.16", userName := "h", type? := .some { pp? := .some "p q" }}
],
}
let goal2l: Protocol.Goal := {
name := "_uniq.59",
userName? := .some "inl",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
],
}
let goal2r: Protocol.Goal := {
name := "_uniq.72",
userName? := .some "inr",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.60", userName := "h✝", type? := .some { pp? := .some "q" }, isInaccessible := true}
],
}
let goal3l: Protocol.Goal := {
name := "_uniq.78",
userName? := .some "inl.h",
target := { pp? := .some "p" },
vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
],
}
[
step "options.set" [("automaticMode", .bool automatic)]
({}: Protocol.OptionsSetResult),
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")]
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro p q h")]
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "cases h")]
({ nextStateId? := .some 2, goals? := #[goal2l, goal2r], }: Protocol.GoalTacticResult),
let goals? := if automatic then #[goal3l, goal2r] else #[goal3l]
step "goal.tactic" [("stateId", .num 2), ("goalId", .num 0), ("tactic", .str "apply Or.inr")]
({ nextStateId? := .some 3, goals?, }: Protocol.GoalTacticResult),
subroutine_runner [
subroutine_step "goal.start"
[("expr", .str "∀ (p q: Prop), p q → q p")]
(Lean.toJson ({stateId := 0, root := "_uniq.9"}:
Protocol.GoalStartResult)),
subroutine_step "goal.tactic"
[("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro x")]
(Lean.toJson ({
nextStateId? := .some 1,
goals? := #[goal1],
}:
Protocol.GoalTacticResult)),
subroutine_step "goal.print"
[("stateId", .num 1)]
(Lean.toJson ({
parent? := .some { pp? := .some "fun x => ?m.12 x" },
}:
Protocol.GoalPrintResult)),
subroutine_step "goal.tactic"
[("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "intro y")]
(Lean.toJson ({
nextStateId? := .some 2,
goals? := #[goal2],
}:
Protocol.GoalTacticResult))
]
def test_env_add_inspect : Test :=
def test_env_add_inspect : IO LSpec.TestSeq :=
let name1 := "Pantograph.mystery"
let name2 := "Pantograph.mystery2"
[
step "env.add"
subroutine_runner [
subroutine_step "env.add"
[
("name", .str name1),
("type", .str "Prop → Prop → Prop"),
("value", .str "λ (a b: Prop) => Or a b"),
("isTheorem", .bool false)
]
({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name1)]
({
(Lean.toJson ({}: Protocol.EnvAddResult)),
subroutine_step "env.inspect"
[("name", .str name1)]
(Lean.toJson ({
value? := .some { pp? := .some "fun a b => a b" },
type := { pp? := .some "Prop → Prop → Prop" },
}:
Protocol.EnvInspectResult),
step "env.add"
Protocol.EnvInspectResult)),
subroutine_step "env.add"
[
("name", .str name2),
("type", .str "Nat → Int"),
("value", .str "λ (a: Nat) => a + 1"),
("isTheorem", .bool false)
]
({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name2)]
({
(Lean.toJson ({}: Protocol.EnvAddResult)),
subroutine_step "env.inspect"
[("name", .str name2)]
(Lean.toJson ({
value? := .some { pp? := .some "fun a => ↑a + 1" },
type := { pp? := .some "Nat → Int" },
}:
Protocol.EnvInspectResult)
Protocol.EnvInspectResult))
]
example : ∀ (p: Prop), p → p := by
intro p h
exact h
def test_frontend_process : Test :=
def suite: List (String × IO LSpec.TestSeq) :=
[
let file := "example : ∀ (p q: Prop), p → p q := by\n intro p q h\n exact Or.inl h"
let goal1 := "p q : Prop\nh : p\n⊢ p q"
step "frontend.process"
[
("file", .str file),
("invocations", .bool true),
("sorrys", .bool false),
("newConstants", .bool false),
]
({
units := [{
boundary := (0, file.utf8ByteSize),
invocations? := .some [
{
goalBefore := "⊢ ∀ (p q : Prop), p → p q",
goalAfter := goal1,
tactic := "intro p q h",
usedConstants := #[],
},
{
goalBefore := goal1 ,
goalAfter := "",
tactic := "exact Or.inl h",
usedConstants := #["Or.inl"],
},
]
}],
}: Protocol.FrontendProcessResult),
]
example : 1 + 2 = 3 := rfl
example (p: Prop): p → p := by simp
def test_frontend_process_sorry : Test :=
let solved := "example : 1 + 2 = 3 := rfl\n"
let withSorry := "example (p: Prop): p → p := sorry"
[
let file := s!"{solved}{withSorry}"
let goal1: Protocol.Goal := {
name := "_uniq.6",
target := { pp? := .some "p → p" },
vars := #[{ name := "_uniq.4", userName := "p", type? := .some { pp? := .some "Prop" }}],
}
step "frontend.process"
[
("file", .str file),
("invocations", .bool false),
("sorrys", .bool true),
("newConstants", .bool false),
]
({
units := [{
boundary := (0, solved.utf8ByteSize),
}, {
boundary := (solved.utf8ByteSize, solved.utf8ByteSize + withSorry.utf8ByteSize),
goalStateId? := .some 0,
goals? := .some #[goal1],
goalSrcBoundaries? := .some #[(57, 62)],
messages := #["<anonymous>:2:0: warning: declaration uses 'sorry'\n"],
}],
}: Protocol.FrontendProcessResult),
]
def runTest (env: Lean.Environment) (steps: Test): IO LSpec.TestSeq := do
-- Setup the environment for execution
let context: Context := {
imports := ["Init"]
}
let commands: MainM LSpec.TestSeq :=
steps.foldlM (λ suite step => do
let result ← step
return suite ++ result) LSpec.TestSeq.done
runCoreMSeq env <| commands.run context |>.run' {}
def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("expr.echo", test_elab),
("options.set options.print", test_option_modify),
("Elab", test_elab),
("Option modify", test_option_modify),
("Malformed command", test_malformed_command),
("Tactic", test_tactic),
("Manual Mode", test_automatic_mode false),
("Automatic Mode", test_automatic_mode true),
("env.add env.inspect", test_env_add_inspect),
("frontend.process invocation", test_frontend_process),
("frontend.process sorry", test_frontend_process_sorry),
]
tests.map (fun (name, test) => (name, runTest env test))
end Pantograph.Test.Integration

View File

@ -24,7 +24,7 @@ def test_expr_echo (env: Environment): IO LSpec.TestSeq := do
},
expr := {
pp? := "⟨∀ (x : Prop), x → x, fun x h => h⟩",
sexp? := "((:c PSigma.mk) (:sort 0) (:lambda p (:sort 0) 0) (:forall x (:sort 0) (:forall a 0 1)) (:lambda x (:sort 0) (:lambda h 0 0)))",
sexp? := "((:c PSigma.mk) (:sort 0) (:lambda p (:sort 0) 0) (:forall x (:sort 0) (:forall _ 0 1)) (:lambda x (:sort 0) (:lambda h 0 0)))",
}
}))
return tests

View File

@ -1,13 +1,10 @@
import LSpec
import Test.Delate
import Test.Environment
import Test.Frontend
import Test.Integration
import Test.Library
import Test.Metavar
import Test.Proofs
import Test.Serial
import Test.Tactic
-- Test running infrastructure
@ -46,17 +43,11 @@ def main (args: List String) := do
let suites: List (String × List (String × IO LSpec.TestSeq)) := [
("Environment", Environment.suite),
("Frontend", Frontend.suite env_default),
("Integration", Integration.suite env_default),
("Integration", Integration.suite),
("Library", Library.suite env_default),
("Metavar", Metavar.suite env_default),
("Proofs", Proofs.suite env_default),
("Delate", Delate.suite env_default),
("Serial", Serial.suite env_default),
("Tactic/Congruence", Tactic.Congruence.suite env_default),
("Tactic/Motivated Apply", Tactic.MotivatedApply.suite env_default),
("Tactic/No Confuse", Tactic.NoConfuse.suite env_default),
("Tactic/Prograde", Tactic.Prograde.suite env_default),
]
let tests: List (String × IO LSpec.TestSeq) := suites.foldl (λ acc (name, suite) => acc ++ (addPrefix name suite)) []
LSpec.lspecIO (← runTestGroup name_filter tests)

View File

@ -1,6 +1,6 @@
import LSpec
import Pantograph.Goal
import Pantograph.Delate
import Pantograph.Serial
import Test.Common
import Lean
@ -8,7 +8,10 @@ namespace Pantograph.Test.Metavar
open Pantograph
open Lean
abbrev TestM := TestT $ ReaderT Protocol.Options Elab.TermElabM
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options Elab.TermElabM)
def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test
-- Tests that all delay assigned mvars are instantiated
def test_instantiate_mvar: TestM Unit := do
@ -29,6 +32,8 @@ def test_instantiate_mvar: TestM Unit := do
"((:c LE.le) (:c Nat) (:c instLENat) ((:c OfNat.ofNat) (:mv _uniq.2) (:lit 2) (:mv _uniq.3)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))")
return ()
def startProof (expr: String): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv
let syn? := parseTerm env expr
@ -55,13 +60,14 @@ def buildGoal (nameType: List (String × String)) (target: String) (userName?: O
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context ← createCoreContext #[]
let metaM := termElabM.run' (ctx := defaultElabContext)
let metaM := termElabM.run' (ctx := defaultTermElabMContext)
let coreM := metaM.run'
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
@ -78,7 +84,7 @@ def test_m_couple: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -87,7 +93,7 @@ def test_m_couple: TestM Unit := do
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 3") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -110,7 +116,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -121,7 +127,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ LSpec.check "(metavariables)" (serializedState1.map (·.target.dependentMVars?.get!) =
#[#["_uniq.38"], #["_uniq.38"], #[]])
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 2") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 2") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -135,7 +141,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ LSpec.check "exact 2" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 2", .some "2 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
let state3 ← match ← state1b.tacticOn (goalId := 0) (tactic := "simp") with
let state3 ← match ← state1b.tryTactic (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -145,7 +151,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
let state5 ← match ← state4.tacticOn (goalId := 0) (tactic := "simp") with
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -172,7 +178,7 @@ def test_proposition_generation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply PSigma.mk") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -186,22 +192,21 @@ def test_proposition_generation: TestM Unit := do
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := "λ (x: Nat) => _") with
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "?m.29 x"])
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let assign := "Eq.refl x"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := assign) with
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {assign}" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
@ -215,7 +220,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -223,7 +228,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "apply Nat.succ") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "apply Nat.succ") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -258,7 +263,7 @@ def test_partial_continuation: TestM Unit := do
-- Continuation should fail if the state does not exist:
match state0.resume coupled_goals with
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Goals [_uniq.40, _uniq.41, _uniq.38, _uniq.47] are not in scope")
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Goals not in scope")
| .ok _ => addTest $ assertUnreachable "(continuation failure)"
-- Continuation should fail if some goals have not been solved
match state2.continue state1 with

View File

@ -3,7 +3,7 @@ Tests pertaining to goals with no interdependencies
-/
import LSpec
import Pantograph.Goal
import Pantograph.Delate
import Pantograph.Serial
import Test.Common
namespace Pantograph.Test.Proofs
@ -14,7 +14,10 @@ inductive Start where
| copy (name: String) -- Start from some name in the environment
| expr (expr: String) -- Start from some expression
abbrev TestM := TestT $ ReaderT Protocol.Options $ Elab.TermElabM
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options Elab.TermElabM)
def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test
def startProof (start: Start): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv
@ -46,32 +49,21 @@ def startProof (start: Start): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr)
return Option.some goal
def buildNamedGoal (name: String) (nameType: List (String × String)) (target: String)
(userName?: Option String := .none): Protocol.Goal :=
{
name,
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context ← createCoreContext #[]
let metaM := termElabM.run' (ctx := defaultElabContext)
let metaM := termElabM.run' (ctx := defaultTermElabMContext)
let coreM := metaM.run'
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
@ -79,27 +71,6 @@ def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq :=
| .ok (_, a) =>
return a
def test_identity: TestM Unit := do
let state? ← startProof (.expr "∀ (p: Prop), p → p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p h"
let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let inner := "_uniq.12"
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.name) =
#[inner])
let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda h 0 (:subst (:mv {inner}) 1 0)))")
-- Individual test cases
example: ∀ (a b: Nat), a + b = b + a := by
intro n m
@ -115,7 +86,7 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn 0 "intro n m" with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n m") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -123,13 +94,13 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ LSpec.check "intro n m" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("m", "Nat")] "n + m = m + n"])
match ← state1.tacticOn 0 "assumption" with
match ← state1.tryTactic (goalId := 0) (tactic := "assumption") with
| .failure #[message] =>
addTest $ LSpec.check "assumption" (message = "tactic 'assumption' failed\nn m : Nat\n⊢ n + m = m + n")
| other => do
addTest $ assertUnreachable $ other.toString
let state2 ← match ← state1.tacticOn 0 "rw [Nat.add_comm]" with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "rw [Nat.add_comm]") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -147,14 +118,14 @@ def test_delta_variable: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "intro n") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) =
#[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"])
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "intro m") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "intro m") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -170,6 +141,7 @@ def test_delta_variable: TestM Unit := do
vars := (nameType.map fun x => ({
userName := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
@ -186,14 +158,14 @@ def test_arith: TestM Unit := do
return ()
let tactic := "intros"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic (state1.goals.length = 1)
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -201,7 +173,7 @@ def test_arith: TestM Unit := do
addTest $ LSpec.check "simp ..." (state2.goals.length = 1)
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone
let tactic := "assumption"
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -236,81 +208,56 @@ def test_or_comm: TestM Unit := do
addTest $ LSpec.check "(0 root)" state0.rootExpr?.isNone
let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let fvP := "_uniq.10"
let fvQ := "_uniq.13"
let fvH := "_uniq.16"
let state1g0 := "_uniq.17"
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)) =
#[{
name := state1g0,
target := { pp? := .some "q p" },
vars := #[
{ name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } },
{ name := fvQ, userName := "q", type? := .some { pp? := .some "Prop" } },
{ name := fvH, userName := "h", type? := .some { pp? := .some "p q" } }
]
}])
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p q")] "q p"])
addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome
addTest $ LSpec.check "(1 root)" state1.rootExpr?.isNone
let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda h ((:c Or) 1 0) (:subst (:mv {state1g0}) 2 1 0))))")
let tactic := "cases h"
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := tactic) with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[branchGoal "inl" "p", branchGoal "inr" "q"])
let (caseL, caseR) := ("_uniq.64", "_uniq.77")
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.name) =
#[caseL, caseR])
addTest $ LSpec.check "(2 parent exists)" state2.parentExpr?.isSome
addTest $ LSpec.check "(2 parent)" state2.parentExpr?.isSome
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone
let state2parent ← state2.withParentContext do
serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!) (sanitize := false)
let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))"
let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))"
let motive := s!"(:lambda t {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))"
let caseL := s!"(:lambda h (:fv {fvP}) (:lambda h ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inl) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseL}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let caseR := s!"(:lambda h (:fv {fvQ}) (:lambda h ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inr) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseR}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let conduit := s!"((:c Eq.refl) {orPQ} (:fv {fvH}))"
let state2parent ← serializeExpressionSexp state2.parentExpr?.get! (sanitize := false)
-- This is due to delayed assignment
addTest $ LSpec.test "(2 parent)" (state2parent ==
s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})")
"((:mv _uniq.43) (:fv _uniq.16) ((:c Eq.refl) ((:c Or) (:fv _uniq.10) (:fv _uniq.13)) (:fv _uniq.16)))")
let state3_1 ← match ← state2.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state3_1parent ← state3_1.withParentContext do
serializeExpressionSexp (← instantiateAll state3_1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == s!"((:c Or.inr) (:fv {fvQ}) (:fv {fvP}) (:mv _uniq.91))")
let state3_1parent ← serializeExpressionSexp state3_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == "((:c Or.inr) (:fv _uniq.13) (:fv _uniq.10) (:mv _uniq.78))")
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check " assumption" state4_1.goals.isEmpty
let state4_1parent ← instantiateAll state4_1.parentExpr?.get!
addTest $ LSpec.test "(4_1 parent)" state4_1parent.isFVar
let state4_1parent ← serializeExpressionSexp state4_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(4_1 parent)" (state4_1parent == "(:fv _uniq.47)")
addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isNone
let state3_2 ← match ← state2.tacticOn (goalId := 1) (tactic := "apply Or.inl") with
let state3_2 ← match ← state2.tryTactic (goalId := 1) (tactic := "apply Or.inl") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1)
let state4_2 ← match ← state3_2.tacticOn (goalId := 0) (tactic := "assumption") with
let state4_2 ← match ← state3_2.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -324,13 +271,13 @@ def test_or_comm: TestM Unit := do
return ()
| .ok state => pure state
addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals.get! 0])
let state3_1 ← match ← state2b.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2b.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -345,12 +292,75 @@ def test_or_comm: TestM Unit := do
userName? := .some caseName,
target := { pp? := .some "q p" },
vars := #[
{ userName := "p", type? := .some typeProp },
{ userName := "q", type? := .some typeProp },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible := true }
{ userName := "p", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "q", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible? := .some true }
]
}
def test_have: TestM Unit := do
let state? ← startProof (.expr "∀ (p q: Prop), p → ((p q) (p q))")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (goalId := 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(4 root)" state4.rootExpr?.isSome
example : ∀ (a b c1 c2: Nat), (b + a) + c1 = (b + a) + c2 → (a + b) + c1 = (b + a) + c2 := by
intro a b c1 c2 h
conv =>
@ -369,7 +379,7 @@ def test_conv: TestM Unit := do
return ()
let tactic := "intro a b c1 c2 h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -377,7 +387,7 @@ def test_conv: TestM Unit := do
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "a + b + c1 = b + a + c2"])
let state2 ← match ← state1.conv (state1.get! 0) with
let state2 ← match ← state1.conv (goalId := 0) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -386,7 +396,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "a + b + c1 = b + a + c2" with isConversion := true }])
let convTactic := "rhs"
let state3R ← match ← state2.tacticOn (goalId := 0) convTactic with
let state3R ← match ← state2.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -395,7 +405,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "b + a + c2" with isConversion := true }])
let convTactic := "lhs"
let state3L ← match ← state2.tacticOn (goalId := 0) convTactic with
let state3L ← match ← state2.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -404,7 +414,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "a + b + c1" with isConversion := true }])
let convTactic := "congr"
let state4 ← match ← state3L.tacticOn (goalId := 0) convTactic with
let state4 ← match ← state3L.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -416,7 +426,7 @@ def test_conv: TestM Unit := do
])
let convTactic := "rw [Nat.add_comm]"
let state5_1 ← match ← state4.tacticOn (goalId := 0) convTactic with
let state5_1 ← match ← state4.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -425,7 +435,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "b + a" with isConversion := true, userName? := .some "a" }])
let convTactic := "rfl"
let state6_1 ← match ← state5_1.tacticOn (goalId := 0) convTactic with
let state6_1 ← match ← state5_1.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -440,7 +450,7 @@ def test_conv: TestM Unit := do
return ()
let convTactic := "rfl"
let state6 ← match ← state4_1.tacticOn (goalId := 0) convTactic with
let state6 ← match ← state4_1.tryTactic (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -455,7 +465,7 @@ def test_conv: TestM Unit := do
return ()
let tactic := "exact h"
let stateF ← match ← state1_1.tacticOn (goalId := 0) (tactic := tactic) with
let stateF ← match ← state1_1.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -482,7 +492,7 @@ def test_calc: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro a b c d h1 h2"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -490,7 +500,7 @@ def test_calc: TestM Unit := do
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "a + b = c + d"])
let pred := "a + b = b + c"
let state2 ← match ← state1.tryCalc (state1.get! 0) (pred := pred) with
let state2 ← match ← state1.tryCalc (goalId := 0) (pred := pred) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -500,11 +510,11 @@ def test_calc: TestM Unit := do
interiorGoal [] "a + b = b + c" (.some "calc"),
interiorGoal [] "b + c = c + d"
])
addTest $ LSpec.test "(2.0 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 0) |>.isNone)
addTest $ LSpec.test "(2.1 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 1) |>.isSome)
addTest $ LSpec.test "(2.0 prev rhs)" (state2.calcPrevRhsOf? 0 |>.isNone)
addTest $ LSpec.test "(2.1 prev rhs)" (state2.calcPrevRhsOf? 1 |>.isSome)
let tactic := "apply h1"
let state2m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
let state2m ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -515,7 +525,7 @@ def test_calc: TestM Unit := do
addTest $ expectationFailure "continue" e
return ()
let pred := "_ = c + d"
let state4 ← match ← state3.tryCalc (state3.get! 0) (pred := pred) with
let state4 ← match ← state3.tryCalc (goalId := 0) (pred := pred) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -524,9 +534,9 @@ def test_calc: TestM Unit := do
#[
interiorGoal [] "b + c = c + d" (.some "calc")
])
addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? (state4.get! 0) |>.isNone)
addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? 0 |>.isNone)
let tactic := "apply h2"
let state4m ← match ← state4.tacticOn (goalId := 0) (tactic := tactic) with
let state4m ← match ← state4.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -538,233 +548,95 @@ def test_calc: TestM Unit := do
("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free
buildGoal free target userName?
def test_nat_zero_add: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
def test_let (specialized: Bool): TestM Unit := do
let state? ← startProof (.expr "∀ (a: Nat) (p: Prop), p → p ¬p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
let tactic := "intro a p h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
#[interiorGoal [] "p ¬p"])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (goalId := 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (goalId := 0) (expr := expr)
let state2 ← match result2 with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
let serializedState2 ← state2.serializeGoals (options := ← read)
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
#[
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal "_uniq.68" [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
interiorGoal [] letType,
interiorGoal [] "let b := ?m.20;\np ¬p"
])
-- Check that the goal mvar ids match up
addTest $ LSpec.check expr ((serializedState2.map (·.name) |>.get! 0) = "_uniq.20")
let tactic := "exact n"
let state3b ← match ← state2.tacticOn (goalId := 1) (tactic := tactic) with
let tactic := "exact a"
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3b.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3b.continue state2 with
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "exact (λ x => x + 0 = x)"
let state3c ← match ← state2b.tacticOn (goalId := 0) (tactic := tactic) with
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "let b := a;\np ¬p"])
let tactic := "exact h"
match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = "type mismatch\n h\nhas type\n p : Prop\nbut is expected to have type\n let b := a;\n p ¬p : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "intro b"
let state4 ← match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3c.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2c ← match state3c.continue state2b with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "intro t h"
let state3 ← match ← state2c.tacticOn (goalId := 0) (tactic := tactic) with
let tactic := "exact Or.inl h"
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("t", "Nat"), ("h", "Nat.below t")] "t + 0 = t"])
let tactic := "simp"
let state3d ← match ← state3.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state2d ← match state3d.continue state2c with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "rfl"
let stateF ← match ← state2d.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← stateF.serializeGoals (options := ← read)) =
#[])
let expr := stateF.mctx.eAssignment.find! stateF.root
let (expr, _) := instantiateMVarsCore (mctx := stateF.mctx) (e := expr)
addTest $ LSpec.check "(F root)" stateF.rootExpr?.isSome
def test_nat_zero_add_alt: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let major := "_uniq.68"
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
#[
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal major [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
])
let tactic := "intro x"
let state3m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3m.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("x", "Nat")] "Prop" (.some "motive")])
let tactic := "apply Eq"
let state3m2 ← match ← state3m.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let (eqL, eqR, eqT) := ("_uniq.88", "_uniq.89", "_uniq.87")
addTest $ LSpec.check tactic $ state3m2.goals.map (·.name.toString) = [eqL, eqR, eqT]
let [_motive, _major, _step, conduit] := state2.goals | panic! "Goals conflict"
let state2b ← match state3m2.resume [conduit] with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let cNatAdd := "(:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat))"
let cNat0 := "((:c OfNat.ofNat) (:c Nat) (:lit 0) ((:c instOfNatNat) (:lit 0)))"
let fvN := "_uniq.63"
let conduitRight := s!"((:c Eq) (:c Nat) ({cNatAdd} (:fv {fvN}) {cNat0}) (:fv {fvN}))"
let substOf (mv: String) := s!"(:subst (:mv {mv}) (:fv {fvN}) (:mv {major}))"
addTest $ LSpec.check "resume" ((← state2b.serializeGoals (options := { ← read with printExprAST := true })) =
#[
{
name := "_uniq.70",
userName? := .some "conduit",
target := {
pp? := .some "(?m.92 ?m.68 = ?m.94 ?m.68) = (n + 0 = n)",
sexp? := .some s!"((:c Eq) (:sort 0) ((:c Eq) {substOf eqT} {substOf eqL} {substOf eqR}) {conduitRight})",
},
vars := #[{
name := fvN,
userName := "n",
type? := .some { pp? := .some "Nat", sexp? := .some "(:c Nat)" },
}],
}
])
def test_tactic_failure_unresolved_goals : TestM Unit := do
let state? ← startProof (.expr "∀ (p : Nat → Prop), ∃ (x : Nat), p (0 + x + 0)")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p"
let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let tactic := "exact ⟨0, by simp⟩"
let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
checkEq s!"{tactic} fails" messages #[s!"{← getFileName}:0:12: error: unsolved goals\np : Nat → Prop\n⊢ p 0\n"]
def test_tactic_failure_synthesize_placeholder : TestM Unit := do
let state? ← startProof (.expr "∀ (p q r : Prop) (h : p → q), q ∧ r")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p q r h"
let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let tactic := "simpa [h] using And.imp_left h _"
let state2 ← match ← state1.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
checkEq tactic ((← state2.serializeGoals).map (·.devolatilize)) #[
buildGoal [("p", "Prop"), ("q", "Prop"), ("r", "Prop"), ("h", "p → q")] "p ∧ r"
]
--let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
--let message := s!"<Pantograph>:0:31: error: don't know how to synthesize placeholder\ncontext:\np q r : Prop\nh : p → q\n⊢ p ∧ r\n"
--checkEq s!"{tactic} fails" messages #[message]
addTest $ LSpec.test "(5 root)" state5.rootExpr?.isSome
where
interiorGoal (free: List (String × String)) (target: String) (userName?: Option String := .none) :=
let free := [("a", "Nat"), ("p", "Prop"), ("h", "p")] ++ free
buildGoal free target userName?
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("identity", test_identity),
("Nat.add_comm", test_nat_add_comm false),
("Nat.add_comm manual", test_nat_add_comm true),
("Nat.add_comm delta", test_delta_variable),
("arithmetic", test_arith),
("Or.comm", test_or_comm),
("have", test_have),
("conv", test_conv),
("calc", test_calc),
("Nat.zero_add", test_nat_zero_add),
("Nat.zero_add alt", test_nat_zero_add_alt),
("tactic failure with unresolved goals", test_tactic_failure_unresolved_goals),
("tactic failure with synthesize placeholder", test_tactic_failure_synthesize_placeholder),
("let via assign", test_let false),
("let via tryLet", test_let true),
]
tests.map (fun (name, test) => (name, proofRunner env test))

View File

@ -1,109 +1,109 @@
import LSpec
import Pantograph.Serial
import Test.Common
import Lean
import Pantograph.Library
open Lean
namespace Pantograph.Test.Serial
def tempPath : IO System.FilePath := do
Prod.snd <$> IO.FS.createTempFile
open Pantograph
structure MultiState where
coreContext : Core.Context
env: Environment
deriving instance Repr, DecidableEq for Protocol.BoundExpression
abbrev TestM := TestT $ StateRefT MultiState $ IO
def test_serializeName: LSpec.TestSeq :=
let quote := "\""
let escape := "\\"
LSpec.test "a.b.1" (serializeName (Name.num (.str (.str .anonymous "a") "b") 1) = "a.b.1") ++
LSpec.test "seg.«a.b»" (serializeName (Name.str (.str .anonymous "seg") "a.b") = s!"{quote}seg.«a.b»{quote}") ++
-- Pathological test case
LSpec.test s!"«̈{escape}{quote}»" (serializeName (Name.str .anonymous s!"{escape}{quote}") = s!"{quote}«{escape}{quote}»{quote}")
instance : MonadEnv TestM where
getEnv := return (← getThe MultiState).env
modifyEnv f := do modifyThe MultiState fun s => { s with env := f s.env }
def runCoreM { α } (state : Core.State) (testCoreM : TestT CoreM α) : TestM (α × Core.State) := do
let multiState ← getThe MultiState
let coreM := runTestWithResult testCoreM
match ← (coreM.run multiState.coreContext state).toBaseIO with
| .error e => do
throw $ .userError $ ← e.toMessageData.toString
| .ok ((a, tests), state') => do
set $ (← getThe LSpec.TestSeq) ++ tests
return (a, state')
def test_environment_pickling : TestM Unit := do
let coreSrc : Core.State := { env := ← getEnv }
let coreDst : Core.State := { env := ← getEnv }
let name := `mystery
let envPicklePath ← tempPath
let ((), _) ← runCoreM coreSrc do
let type: Expr := .forallE `p (.sort 0) (.forallE `h (.bvar 0) (.bvar 1) .default) .default
let value: Expr := .lam `p (.sort 0) (.lam `h (.bvar 0) (.bvar 0) .default) .default
let c := Lean.Declaration.defnDecl <| Lean.mkDefinitionValEx
(name := name)
(levelParams := [])
(type := type)
(value := value)
(hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe)
(all := [])
let env' ← match (← getEnv).addDecl (← getOptions) c with
| .error e => do
let error ← (e.toMessageData (← getOptions)).toString
throwError error
| .ok env' => pure env'
environmentPickle env' envPicklePath
let _ ← runCoreM coreDst do
let (env', _) ← environmentUnpickle envPicklePath
checkTrue s!"Has symbol {name}" (env'.find? name).isSome
let anotherName := `mystery2
checkTrue s!"Doesn't have symbol {anotherName}" (env'.find? anotherName).isNone
IO.FS.removeFile envPicklePath
def test_goal_state_pickling_simple : TestM Unit := do
let coreSrc : Core.State := { env := ← getEnv }
let coreDst : Core.State := { env := ← getEnv }
let statePath ← tempPath
let type: Expr := .forallE `p (.sort 0) (.forallE `h (.bvar 0) (.bvar 1) .default) .default
let stateGenerate : MetaM GoalState := runTermElabMInMeta do
GoalState.create type
let ((), _) ← runCoreM coreSrc do
let state ← stateGenerate.run'
goalStatePickle state statePath
let ((), _) ← runCoreM coreDst do
let (goalState, _) ← goalStateUnpickle statePath (← getEnv)
let metaM : MetaM (List Expr) := do
goalState.goals.mapM λ goal => goalState.withContext goal goal.getType
let types ← metaM.run'
checkTrue "Goals" $ types[0]!.equal type
IO.FS.removeFile statePath
structure Test where
name : String
routine: TestM Unit
protected def Test.run (test: Test) (env: Lean.Environment) : IO LSpec.TestSeq := do
-- Create the state
let state : MultiState := {
coreContext := ← createCoreContext #[],
env,
}
match ← ((runTest $ test.routine).run' state).toBaseIO with
| .ok e => return e
| .error e =>
return LSpec.check s!"Emitted exception: {e.toString}" (e.toString == "")
def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) :=
let tests: List Test := [
{ name := "environment_pickling", routine := test_environment_pickling, },
{ name := "goal_state_pickling_simple", routine := test_goal_state_pickling_simple, },
def test_expr_to_binder (env: Environment): IO LSpec.TestSeq := do
let entries: List (Name × Protocol.BoundExpression) := [
("Nat.add_comm".toName, { binders := #[("n", "Nat"), ("m", "Nat")], target := "n + m = m + n" }),
("Nat.le_of_succ_le".toName, { binders := #[("n", "Nat"), ("m", "Nat"), ("h", "n.succ ≤ m")], target := "n ≤ m" })
]
runCoreMSeq env $ entries.foldlM (λ suites (symbol, target) => do
let env ← MonadEnv.getEnv
let expr := env.find? symbol |>.get! |>.type
let test := LSpec.check symbol.toString ((← typeExprToBound expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done |>.run'
def test_sexp_of_symbol (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × String) := [
-- This one contains unhygienic variable names which must be suppressed
("Nat.add", "(:forall _ (:c Nat) (:forall _ (:c Nat) (:c Nat)))"),
-- These ones are normal and easy
("Nat.add_one", "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"),
("Nat.le_of_succ_le", "(:forall n (:c Nat) (:forall m (:c Nat) (:forall h ((:c LE.le) (:c Nat) (:c instLENat) ((:c Nat.succ) 1) 0) ((:c LE.le) (:c Nat) (:c instLENat) 2 1)) :implicit) :implicit)"),
-- Handling of higher order types
("Or", "(:forall a (:sort 0) (:forall b (:sort 0) (:sort 0)))"),
("List", "(:forall α (:sort (+ u 1)) (:sort (+ u 1)))")
]
runMetaMSeq env $ entries.foldlM (λ suites (symbol, target) => do
let env ← MonadEnv.getEnv
let expr := env.find? symbol.toName |>.get! |>.type
let test := LSpec.check symbol ((← serializeExpressionSexp expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done
def test_sexp_of_elab (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × (List Name) × String) := [
("λ x: Nat × Bool => x.1", [], "(:lambda x ((:c Prod) (:c Nat) (:c Bool)) ((:c Prod.fst) (:c Nat) (:c Bool) 0))"),
("λ x: Array Nat => x.data", [], "(:lambda x ((:c Array) (:c Nat)) ((:c Array.data) (:c Nat) 0))"),
-- This tests `autoBoundImplicit`
("λ {α: Sort (u + 1)} => List α", [`u], "(:lambda α (:sort (+ u 1)) ((:c List) 0) :implicit)"),
("λ {α} => List α", [], "(:lambda α (:sort (+ (:mv _uniq.4) 1)) ((:c List) 0) :implicit)"),
]
entries.foldlM (λ suites (source, levels, target) =>
let termElabM := do
let env ← MonadEnv.getEnv
let s ← match parseTerm env source with
| .ok s => pure s
| .error e => return parseFailure e
let expr ← match (← elabTerm s) with
| .ok expr => pure expr
| .error e => return elabFailure e
return LSpec.check source ((← serializeExpressionSexp expr) = target)
let metaM := (Elab.Term.withLevelNames levels termElabM).run' (ctx := defaultTermElabMContext)
return LSpec.TestSeq.append suites (← runMetaMSeq env metaM))
LSpec.TestSeq.done
def test_sexp_of_expr (env: Environment): IO LSpec.TestSeq := do
let entries: List (Expr × String) := [
(.lam `p (.sort .zero)
(.lam `q (.sort .zero)
(.lam `k (mkApp2 (.const `And []) (.bvar 1) (.bvar 0))
(.proj `And 1 (.bvar 0))
.default)
.implicit)
.implicit,
"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda k ((:c And) 1 0) ((:c And.right) _ _ 0)) :implicit) :implicit)"
),
]
let termElabM: Elab.TermElabM LSpec.TestSeq := entries.foldlM (λ suites (expr, target) => do
let env ← MonadEnv.getEnv
let testCaseName := target.take 10
let test := LSpec.check testCaseName ((← serializeExpressionSexp expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done
runMetaMSeq env $ termElabM.run' (ctx := defaultTermElabMContext)
-- Instance parsing
def test_instance (env: Environment): IO LSpec.TestSeq :=
runMetaMSeq env do
let env ← MonadEnv.getEnv
let source := "λ x y: Nat => HAdd.hAdd Nat Nat Nat (instHAdd Nat instAddNat) x y"
let s := parseTerm env source |>.toOption |>.get!
let _expr := (← runTermElabMInMeta <| elabTerm s) |>.toOption |>.get!
return LSpec.TestSeq.done
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("serializeName", do pure test_serializeName),
("Expression binder", test_expr_to_binder env),
("Sexp from symbol", test_sexp_of_symbol env),
("Sexp from elaborated expr", test_sexp_of_elab env),
("Sexp from expr", test_sexp_of_expr env),
("Instance", test_instance env),
]
tests.map (fun test => (test.name, test.run env))
end Pantograph.Test.Serial

View File

@ -1,4 +0,0 @@
import Test.Tactic.Congruence
import Test.Tactic.MotivatedApply
import Test.Tactic.NoConfuse
import Test.Tactic.Prograde

View File

@ -1,88 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Congruence
def test_congr_arg_list : TestT Elab.TermElabM Unit := do
let expr := "λ {α} (l1 l2 : List α) (h: l1 = l2) => l1.reverse = l2.reverse"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.30"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → List α"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (l1.reverse = l2.reverse)"),
])
let f := newGoals.get! 3
let h := newGoals.get! 4
let c := newGoals.get! 5
let results ← Meta.withAssignableSyntheticOpaque do f.apply (← parseSentence "List.reverse")
addTest $ LSpec.check "apply" (results.length = 0)
addTest $ LSpec.check "h" ((← exprToStr $ ← h.getType) = "?a₁ = ?a₂")
addTest $ LSpec.check "conduit" ((← exprToStr $ ← c.getType) = "(?a₁.reverse = ?a₂.reverse) = (l1.reverse = l2.reverse)")
def test_congr_arg : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) (h: n = m) => n * n = m * m"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.70"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → Nat"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (n * n = m * m)"),
])
def test_congr_fun : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) => (n + m) + (n + m) = (n + m) * 2"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceFun target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.159"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`h, "?f₁ = ?f₂"),
(`a, "?α"),
(`conduit, "(?f₁ ?a = ?f₂ ?a) = (n + m + (n + m) = (n + m) * 2)"),
])
def test_congr : TestT Elab.TermElabM Unit := do
let expr := "λ (a b: Nat) => a = b"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruence target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.10"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`a₁, "?α"),
(`a₂, "?α"),
(`h₁, "?f₁ = ?f₂"),
(`h₂, "?a₁ = ?a₂"),
(`conduit, "(?f₁ ?a₁ = ?f₂ ?a₂) = (a = b)"),
])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("congrArg List.reverse", test_congr_arg_list),
("congrArg", test_congr_arg),
("congrFun", test_congr_fun),
("congr", test_congr),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Congruence

View File

@ -1,113 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.MotivatedApply
def test_type_extract : TestT Elab.TermElabM Unit := do
let recursor ← parseSentence "@Nat.brecOn"
let recursorType ← Meta.inferType recursor
addTest $ LSpec.check "recursorType" ("{motive : Nat → Sort ?u.1} → (t : Nat) → ((t : Nat) → Nat.below t → motive t) → motive t" =
(← exprToStr recursorType))
let info ← match Tactic.getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Failed to extract recursor info"
addTest $ LSpec.check "iMotive" (info.iMotive = 2)
let motiveType := info.getMotiveType
addTest $ LSpec.check "motiveType" ("Nat → Sort ?u.1" =
(← exprToStr motiveType))
def test_nat_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let test := LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
"?motive ?m.67 = (n + 0 = n)",
])
addTest test
def test_list_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ {α : Type} (l: List α) => l ++ [] = [] ++ l"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Type ?u.90",
"List ?m.92 → Prop",
"List ?m.92",
"∀ (t : List ?m.92), List.below t → ?motive t",
"?motive ?m.94 = (l ++ [] = [] ++ l)",
])
def test_partial_motive_instantiation : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let majorId := 67
addTest $ (LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
s!"?motive ?m.{majorId} = (n + 0 = n)",
]))
let [motive, major, step, conduit] := newGoals | panic! "Incorrect goal number"
addTest $ (LSpec.check "goal name" (major.name.toString = s!"_uniq.{majorId}"))
-- Assign motive to `λ x => x + _`
let motive_assign ← parseSentence "λ (x: Nat) => @Nat.add x + 0 = _"
motive.assign motive_assign
addTest $ ← conduit.withContext do
let t := toString (← Meta.ppExpr $ ← conduit.getType)
return LSpec.check "conduit" (t = s!"(?m.{majorId}.add + 0 = ?m.138 ?m.{majorId}) = (n + 0 = n)")
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("type_extract", test_type_extract),
("Nat.brecOn", test_nat_brec_on),
("List.brecOn", test_list_brec_on),
("Nat.brecOn partial motive instantiation", test_partial_motive_instantiation),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.MotivatedApply

View File

@ -1,72 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.NoConfuse
def test_nat : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: 0 = n + 1) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def test_nat_fail : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: n = n) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
try
let tactic := Tactic.evalNoConfuse recursor
let _ ← runTacticOnMVar tactic target.mvarId!
addTest $ assertUnreachable "Tactic should fail"
catch _ =>
addTest $ LSpec.check "Tactic should fail" true
def test_list : TestT Elab.TermElabM Unit := do
let expr := "λ (l: List Nat) (h: [] = 1 :: l) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals"
((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("Nat", test_nat),
("Nat fail", test_nat_fail),
("List", test_list),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.NoConfuse

View File

@ -1,300 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Prograde
def test_define : TestT Elab.TermElabM Unit := do
let expr := "forall (p q : Prop) (h: p), And (Or p q) (Or p q)"
let expr ← parseSentence expr
Meta.forallTelescope expr $ λ _ body => do
let e ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "Or.inl h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let goal ← Meta.mkFreshExprSyntheticOpaqueMVar body
let target: Expr := mkAnd
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
let h := .fvar ⟨uniq 8⟩
addTest $ LSpec.test "goals before" ((← toCondensedGoal goal.mvarId!).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h
],
target,
})
let tactic := Tactic.evalDefine `h2 e
let m := .mvar ⟨uniq 13⟩
let [newGoal] ← runTacticOnMVar tactic goal.mvarId! | panic! "Incorrect goal number"
addTest $ LSpec.test "goals after" ((← toCondensedGoal newGoal).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h,
{
userName := `h2,
type := mkOr h m,
value? := .some $ mkApp3 (mkConst `Or.inl) h m (.fvar ⟨uniq 10⟩)
}
],
target,
})
let .some e ← getExprMVarAssignment? goal.mvarId! | panic! "Tactic must assign"
addTest $ LSpec.test "assign" e.isLet
def test_define_proof : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let evalBind := "y"
let evalExpr := "Or.inl h"
let state2 ← match ← state1.tryDefine (state1.get! 0) (binderName := evalBind) (expr := evalExpr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"eval {evalBind} := {evalExpr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some "(p q) p q"},
vars := #[
{ userName := "p", type? := .some { pp? := .some "Prop" } },
{ userName := "q", type? := .some { pp? := .some "Prop" } },
{ userName := "h", type? := .some { pp? := .some "p" } },
{ userName := "y",
type? := .some { pp? := .some "p ?m.25" },
value? := .some { pp? := .some "Or.inl h" },
}
]
}])
let expr := "Or.inl y"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(3 root)" state3.rootExpr?.isSome
def fun_define_root_expr: ∀ (p: Prop), PProd (Nat → p) Unit → p := by
intro p x
apply x.fst
exact 5
def test_define_root_expr : TestT Elab.TermElabM Unit := do
--let rootExpr ← parseSentence "Nat"
--let state0 ← GoalState.create rootExpr
--let .success state1 ← state0.tacticOn (goalId := 0) "exact 5" | addTest $ assertUnreachable "exact 5"
--let .some rootExpr := state1.rootExpr? | addTest $ assertUnreachable "Root expr"
--addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "5")
let rootExpr ← parseSentence "∀ (p: Prop), PProd (Nat → p) Unit → p"
let state0 ← GoalState.create rootExpr
let tactic := "intro p x"
let .success state1 ← state0.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let binderName := `binder
let value := "x.fst"
let expr ← state1.goals[0]!.withContext $ strToTermSyntax value
let tacticM := Tactic.evalDefine binderName expr
let .success state2 ← state1.tryTacticM (state1.get! 0) tacticM | addTest $ assertUnreachable s!"define {binderName} := {value}"
let tactic := s!"apply {binderName}"
let .success state3 ← state2.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let tactic := s!"exact 5"
let .success state4 ← state3.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr"
addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p x =>\n let binder := x.fst;\n binder 5")
--set_option pp.all true
--#check @PSigma (α := Prop) (β := λ (p: Prop) => p)
--def test_define_root_expr : TestT Elab.TermElabM Unit := do
def test_have_proof : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (state1.get! 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (state2b.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals).map (·.devolatilize) =
#[])
let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr"
addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p q h y => Or.inl y")
def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro a p h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some mainTarget },
vars := interiorVars,
}])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (state1.get! 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (state1.get! 0) (expr := expr)
let state2 ← match result2 with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let serializedState2 ← state2.serializeGoals
let letBindName := if specialized then "b" else "_1"
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
#[{
target := { pp? := .some letType },
vars := interiorVars,
userName? := .some letBindName
},
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some letType },
value? := .some { pp? := .some s!"?{letBindName}" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact 1"
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals).map (·.devolatilize) =
#[
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some "Nat" },
value? := .some { pp? := .some "1" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact h"
match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = s!"type mismatch\n h\nhas type\n a : Prop\nbut is expected to have type\n {mainTarget} : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "exact Or.inl (Or.inl h)"
let state4 ← match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(4 root)" state4.rootExpr?.isSome
where
mainTarget := "(a p) a p"
interiorVars: Array Protocol.Variable := #[
{ userName := "a", type? := .some { pp? := .some "Prop" }, },
{ userName := "p", type? := .some { pp? := .some "Prop" }, },
{ userName := "h", type? := .some { pp? := .some "a" }, }
]
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("define", test_define),
("define proof", test_define_proof),
("define root expr", test_define_root_expr),
("have proof", test_have_proof),
("let via assign", test_let false),
("let via tryLet", test_let true),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Prograde

View File

@ -4,17 +4,17 @@
<svg
width="256"
height="256"
viewBox="0 0 67.733332 67.733333"
viewBox="0 0 55.900957 55.900957"
version="1.1"
id="svg1"
id="svg21534"
xml:space="preserve"
inkscape:version="1.2.2 (b0a8486541, 2022-12-01)"
sodipodi:docname="icon.svg"
inkscape:version="1.3.2 (091e20ef0f, 2023-11-25, custom)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg">
<sodipodi:namedview
id="namedview1"
xmlns:svg="http://www.w3.org/2000/svg"><sodipodi:namedview
id="namedview21536"
pagecolor="#ffffff"
bordercolor="#111111"
borderopacity="1"
@ -23,135 +23,51 @@
inkscape:pagecheckerboard="1"
inkscape:deskcolor="#d1d1d1"
inkscape:document-units="px"
showguides="true"
inkscape:zoom="5.1882633"
inkscape:cx="81.819286"
inkscape:cy="132.22151"
inkscape:window-width="3774"
inkscape:window-height="2126"
showgrid="true"
inkscape:zoom="5.1754899"
inkscape:cx="158.82554"
inkscape:cy="91.682142"
inkscape:window-width="3777"
inkscape:window-height="2093"
inkscape:window-x="0"
inkscape:window-y="0"
inkscape:window-maximized="1"
inkscape:current-layer="layer2">
<sodipodi:guide
position="33.866666,69.8437"
orientation="-1,0"
id="guide1"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="-27.673679,33.866666"
orientation="0,1"
id="guide2"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="16.933333,29.94582"
orientation="-1,0"
id="guide3"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="50.799999,37.44627"
orientation="-1,0"
id="guide4"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="31.336956,16.933333"
orientation="0,1"
id="guide5"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="24.528038,25.4"
orientation="0,1"
id="guide6"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="33.866666,50.799999"
orientation="0,1"
id="guide7"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="32.770414,55.033333"
orientation="0,1"
id="guide8"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="25.347689,33.866666"
orientation="1,0"
id="guide9"
inkscape:locked="false" />
<sodipodi:guide
position="25.347689,42.333333"
orientation="0,1"
id="guide10"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
</sodipodi:namedview>
<defs
id="defs1" />
<g
inkscape:current-layer="layer1"><inkscape:grid
type="xygrid"
id="grid23833"
spacingx="3.4938098"
spacingy="3.4938098"
empspacing="4" /></sodipodi:namedview><defs
id="defs21531" /><g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer4"
inkscape:label="bg" />
<g
inkscape:groupmode="layer"
id="layer1"
inkscape:label="Circle">
<path
id="path1"
style="fill:#666b98;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.0191989;stroke-miterlimit:3.4;fill-opacity:1"
d="M 33.866666 0.009818522 A 33.857067 33.857067 0 0 0 0.009818522 33.866666 A 33.857067 33.857067 0 0 0 33.866666 67.723514 A 33.857067 33.857067 0 0 0 67.723514 33.866666 A 33.857067 33.857067 0 0 0 33.866666 0.009818522 z M 33.866666 4.2416015 A 29.624933 29.624933 0 0 1 63.491731 33.866666 A 29.624933 29.624933 0 0 1 33.866666 63.491731 A 29.624933 29.624933 0 0 1 4.2416015 33.866666 A 29.624933 29.624933 0 0 1 33.866666 4.2416015 z " />
</g>
<g
inkscape:groupmode="layer"
id="layer2"
inkscape:label="Pantograph-Core">
<rect
style="fill:#666b98;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.01905;stroke-miterlimit:3.4"
id="rect8"
width="16.942858"
height="4.2257233"
x="33.866665"
y="12.7"
rx="0.58070719"
ry="0.34097314" />
<rect
style="fill:#666b98;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.01905;stroke-miterlimit:3.4"
id="rect1"
width="33.885715"
height="8.4211359"
x="16.933332"
y="42.333332"
rx="0.58070719"
ry="0.34097314" />
<path
style="fill:#666b98;fill-opacity:1;stroke:none;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 42.338095,16.925724 -16.990406,8.474275 13.121218,16.923808 -4.602241,0.0095 -4.254289,0.0015 -8.564029,-16.934789 17.310554,-8.464751 z"
id="path10"
sodipodi:nodetypes="cccccccc" />
<path
style="fill:none;stroke:#666b98;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="M 46.53445,16.925724 26.018901,26.73418"
id="path11" />
<path
style="fill:none;stroke:#666b98;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 21.048348,25.399999 4.352167,16.934808"
id="path12"
sodipodi:nodetypes="cc" />
</g>
</svg>
id="layer1"><rect
style="fill:#3e3e3e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.78013;stroke-miterlimit:3.4;stroke-dasharray:none"
id="rect26805"
width="11.502316"
height="2.2512667"
x="33.344425"
y="7.6690259"
ry="0.28140834"
rx="0.47926313" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 35.764667,9.9513013 c 0,0 -26.8581417,13.7987337 -28.0863506,14.9501437 -1.250042,1.171878 3.2347846,3.945325 3.2347846,3.945325 l 21.34979,14.934062 6.624567,0.453105 -27.599216,-17.304358 c 0,0 -0.603209,-0.08927 -0.600411,-0.762283 0.0028,-0.673015 27.32022,-16.4227356 27.32022,-16.4227356 z"
id="path27381"
sodipodi:nodetypes="csccccscc" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="M 10.97848,26.985751 40.537772,9.7943227 41.921795,9.7005084 11.210626,27.421377 Z"
id="path27479" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 7.0509847,25.522367 c -0.8266141,1.386819 -2.4011783,4.48805 -2.4706357,4.90223 -0.069458,0.414182 0.4434324,0.513474 0.8491061,0.757041 C 5.835129,31.425204 19.33424,43.917182 19.33424,43.917182 l 0.324562,-0.539228 c 0,0 -14.2055729,-12.369493 -14.0644435,-12.868167 0.1411292,-0.498672 3.544896,-3.777392 3.544896,-3.777392 L 7.4596884,25.117508 Z"
id="path27481" /><rect
style="fill:#3e3e3e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.11692;stroke-miterlimit:3.4;stroke-dasharray:none;stroke-opacity:1"
id="rect27483"
width="36.38942"
height="3.6217353"
x="13.953447"
y="43.009739"
rx="0.43672624"
ry="0.43672624" /><path
style="fill:none;stroke:#000000;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="M -2.1119274,7.666599 H 64.179192"
id="path27487" /></g></svg>

Before

Width:  |  Height:  |  Size: 5.2 KiB

After

Width:  |  Height:  |  Size: 3.5 KiB

View File

@ -1,59 +0,0 @@
# Design Rationale
A great problem in machine learning is to use ML agents to automatically prove
mathematical theorems. This sort of proof necessarily involves *search*.
Compatibility for search is the main reason for creating Pantograph. The Lean 4
LSP interface is not conducive to search. Pantograph is designed with this in
mind. It emphasizes the difference between 3 views of a proof:
- **Presentation View**: The view of a written, polished proof. e.g. Mathlib and
math papers are almost always written in this form.
- **Search View**: The view of a proof exploration trajectory. This is not
explicitly supported by Lean LSP.
- **Kernel View**: The proof viewed as a set of metavariables.
Pantograph enables proof agents to operate on the search view.
## Name
The name Pantograph is a pun. It means two things
- A pantograph is an instrument for copying down writing. As an agent explores
the vast proof search space, Pantograph records the current state to ensure
the proof is sound.
- A pantograph is also an equipment for an electric train. It supplies power to
a locomotive. In comparison the (relatively) simple Pantograph software powers
theorem proving projects.
## Caveats and Limitations
Pantograph does not exactly mimic Lean LSP's behaviour. That would not grant the
flexibility it offers. To support tree search means Pantograph has to act
differently from Lean in some times, but never at the sacrifice of soundness.
- When Lean LSP says "don't know how to synthesize placeholder", this indicates
the human operator needs to manually move the cursor to the placeholder and
type in the correct expression. This error therefore should not halt the proof
process, and the placeholder should be turned into a goal.
- When Lean LSP says "unresolved goals", that means a proof cannot finish where
it is supposed to finish at the end of a `by` block. Pantograph will raise the
error in this case, since it indicates the termination of a proof search branch.
- `pick_goal` or `swap` will not work since they run contrary to tree search
paradigms. However, if there are tactics which perform non-trivial operations
to multiple goals at the same time, this constrain could potentially be
relaxed at a cost of great bookkeeping overhead to the user.
Pantograph cannot perform things that are inherently constrained by Lean. These
include:
- If a tactic loses track of metavariables, it will not be caught until the end
of the proof search. This is a bug in the tactic itself.
- Timeouts for executing tactics is not available. Maybe this will change in the
future.
- Interceptions of parsing errors generally cannot be turned into goals (e.g.
`def mystery : Nat := :=`) due to Lean's parsing system.
## References
* [Pantograph Paper](https://arxiv.org/abs/2410.16429)

View File

@ -1,66 +0,0 @@
# REPL
## Commands
See `Pantograph/Protocol.lean` for a description of the parameters and return values in JSON.
* `reset`: Delete all cached expressions and proof trees
* `stat`: Display resource usage
* `expr.echo {"expr": <expr>, "type": <optional expected type>, ["levels": [<levels>]]}`: Determine the
type of an expression and format it.
* `env.catalog`: Display a list of all safe Lean symbols in the current environment
* `env.inspect {"name": <name>, "value": <bool>}`: Show the type and package of a
given symbol; If value flag is set, the value is printed or hidden. By default
only the values of definitions are printed.
* `env.save { "path": <fileName> }`, `env.load { "path": <fileName> }`: Save/Load the
current environment to/from a file
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
One particular option for interest for machine learning researchers is the
automatic mode (flag: `"automaticMode"`). By default it is turned on, with
all goals automatically resuming. This makes Pantograph act like a gym,
with no resumption necessary to manage your goals.
* `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol
* `goal.tactic {"stateId": <id>, "goalId": <id>, ...}`: Execute a tactic string on a
given goal. The tactic is supplied as additional key-value pairs in one of the following formats:
- `{ "tactic": <tactic> }`: Execute an ordinary tactic
- `{ "expr": <expr> }`: Assign the given proof term to the current goal
- `{ "have": <expr>, "binderName": <name> }`: Execute `have` and creates a branch goal
- `{ "calc": <expr> }`: Execute one step of a `calc` tactic. Each step must
be of the form `lhs op rhs`. An `lhs` of `_` indicates that it should be set
to the previous `rhs`.
- `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of
exit, the goal id is ignored.
* `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`:
Execute continuation/resumption
- `{ "branch": <id> }`: Continue on branch state. The current state must have no goals.
- `{ "goals": <names> }`: Resume the given goals
* `goal.remove {"stateIds": [<id>]}"`: Drop the goal states specified in the list
* `goal.print {"stateId": <id>}"`: Print a goal state
* `goal.save { "id": <id>, "path": <fileName> }`, `goal.load { "path": <fileName> }`:
Save/Load a goal state to/from a file. The environment is not carried with the
state. The user is responsible to ensure the sender/receiver instances share
the same environment.
* `frontend.process { ["fileName": <fileName>,] ["file": <str>], invocations:
<bool>, sorrys: <bool>, newConstants: <bool> }`: Executes the Lean frontend on
a file, collecting the tactic invocations (`"invocations": true`), the
sorrys and type errors into goal states (`"sorrys": true`), and new constants
(`"newConstants": true`). In the case of `sorrys`, this command additionally
outputs the position of each captured `sorry`.
## Errors
When an error pertaining to the execution of a command happens, the returning JSON structure is
``` json
{ "error": "type", "desc": "description" }
```
Common error forms:
* `command`: Indicates malformed command structure which results from either
invalid command or a malformed JSON structure that cannot be fed to an
individual command.
* `index`: Indicates an invariant maintained by the output of one command and
input of another is broken. For example, attempting to query a symbol not
existing in the library or indexing into a non-existent proof state.

View File

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1730504689,
"narHash": "sha256-hgmguH29K2fvs9szpq2r3pz2/8cJd2LPS+b4tfNFCwE=",
"lastModified": 1709336216,
"narHash": "sha256-Dt/wOWeW6Sqm11Yh+2+t0dfEWxoMxGBvv3JpIocFl9E=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "506278e768c2a08bec68eb62932193e341f55c90",
"rev": "f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2",
"type": "github"
},
"original": {
@ -18,112 +18,208 @@
"type": "github"
}
},
"flake-parts_2": {
"inputs": {
"nixpkgs-lib": "nixpkgs-lib_2"
},
"flake-utils": {
"locked": {
"lastModified": 1727826117,
"narHash": "sha256-K5ZLCyfO/Zj9mPFldf3iwS6oZStJcU4tSpiXTMYaaL0=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "3d04084d54bedc3d6b8b736c70ef449225c361b1",
"lastModified": 1656928814,
"narHash": "sha256-RIFfgBuKz6Hp89yRr7+NR5tzIAbn52h8vT6vXkYjZoM=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "7e2a3b3dfd9af950a856d66b0a7d01e3c18aa249",
"type": "github"
},
"original": {
"owner": "hercules-ci",
"repo": "flake-parts",
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"lean4-nix": {
"lean": {
"inputs": {
"flake-parts": "flake-parts_2",
"nixpkgs": "nixpkgs"
"flake-utils": "flake-utils",
"lean4-mode": "lean4-mode",
"nix": "nix",
"nixpkgs": "nixpkgs_2",
"nixpkgs-old": "nixpkgs-old"
},
"locked": {
"lastModified": 1731711316,
"narHash": "sha256-s5u+A2/Ea9gPveB5wwVM5dWW0NST6kamDsTeovGuLEs=",
"owner": "lenianiva",
"repo": "lean4-nix",
"rev": "136fc6057c48de970579e960b62421e9c295b67d",
"lastModified": 1714704934,
"narHash": "sha256-q0kLyIahUXolkSrBZSegPF+R99WAH1YC96JfKoFntDE=",
"owner": "leanprover",
"repo": "lean4",
"rev": "dcccfb73cb247e9478220375ab7de03f7c67e505",
"type": "github"
},
"original": {
"owner": "lenianiva",
"repo": "lean4-nix",
"owner": "leanprover",
"ref": "v4.8.0-rc1",
"repo": "lean4",
"type": "github"
}
},
"lean4-mode": {
"flake": false,
"locked": {
"lastModified": 1676498134,
"narHash": "sha256-u3WvyKxOViZG53hkb8wd2/Og6muTecbh+NdflIgVeyk=",
"owner": "leanprover",
"repo": "lean4-mode",
"rev": "2c6ef33f476fdf5eb5e4fa4fa023ba8b11372440",
"type": "github"
},
"original": {
"owner": "leanprover",
"repo": "lean4-mode",
"type": "github"
}
},
"lowdown-src": {
"flake": false,
"locked": {
"lastModified": 1633514407,
"narHash": "sha256-Dw32tiMjdK9t3ETl5fzGrutQTzh2rufgZV4A/BbxuD4=",
"owner": "kristapsdz",
"repo": "lowdown",
"rev": "d2c2b44ff6c27b936ec27358a2653caaef8f73b8",
"type": "github"
},
"original": {
"owner": "kristapsdz",
"repo": "lowdown",
"type": "github"
}
},
"lspec": {
"flake": false,
"locked": {
"lastModified": 1728279187,
"narHash": "sha256-ZMqbvCqR/gHXRuIkuo7b0Yp9N1vOQR7xnrcy/SeIBoQ=",
"owner": "argumentcomputer",
"lastModified": 1701971219,
"narHash": "sha256-HYDRzkT2UaLDrqKNWesh9C4LJNt0JpW0u68wYVj4Byw=",
"owner": "lurk-lab",
"repo": "LSpec",
"rev": "504a8cecf8da601b9466ac727aebb6b511aae4ab",
"rev": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"type": "github"
},
"original": {
"owner": "argumentcomputer",
"ref": "504a8cecf8da601b9466ac727aebb6b511aae4ab",
"owner": "lurk-lab",
"ref": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"repo": "LSpec",
"type": "github"
}
},
"nix": {
"inputs": {
"lowdown-src": "lowdown-src",
"nixpkgs": "nixpkgs",
"nixpkgs-regression": "nixpkgs-regression"
},
"locked": {
"lastModified": 1657097207,
"narHash": "sha256-SmeGmjWM3fEed3kQjqIAO8VpGmkC2sL1aPE7kKpK650=",
"owner": "NixOS",
"repo": "nix",
"rev": "f6316b49a0c37172bca87ede6ea8144d7d89832f",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nix",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1728500571,
"narHash": "sha256-dOymOQ3AfNI4Z337yEwHGohrVQb4yPODCW9MDUyAc4w=",
"owner": "nixos",
"lastModified": 1653988320,
"narHash": "sha256-ZaqFFsSDipZ6KVqriwM34T739+KLYJvNmCWzErjAg7c=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "d51c28603def282a24fa034bcb007e2bcb5b5dd0",
"rev": "2fa57ed190fd6c7c746319444f34b5917666e5c1",
"type": "github"
},
"original": {
"owner": "nixos",
"ref": "nixos-24.05",
"owner": "NixOS",
"ref": "nixos-22.05-small",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-lib": {
"locked": {
"lastModified": 1730504152,
"narHash": "sha256-lXvH/vOfb4aGYyvFmZK/HlsNsr/0CVWlwYvo2rxJk3s=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz"
"dir": "lib",
"lastModified": 1709237383,
"narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8",
"type": "github"
},
"original": {
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz"
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-lib_2": {
"nixpkgs-old": {
"flake": false,
"locked": {
"lastModified": 1727825735,
"narHash": "sha256-0xHYkMkeLVQAMa7gvkddbPqpxph+hDzdu1XdGPJR+Os=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz"
"lastModified": 1581379743,
"narHash": "sha256-i1XCn9rKuLjvCdu2UeXKzGLF6IuQePQKFt4hEKRU5oc=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "34c7eb7545d155cc5b6f499b23a7cb1c96ab4d59",
"type": "github"
},
"original": {
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz"
"owner": "NixOS",
"ref": "nixos-19.03",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-regression": {
"locked": {
"lastModified": 1643052045,
"narHash": "sha256-uGJ0VXIhWKGXxkeNnq4TvV3CIOkUJ3PAoLZ3HMzNVMw=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "215d4d0fd80ca5163643b03a33fde804a29cc1e2",
"type": "github"
},
"original": {
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "215d4d0fd80ca5163643b03a33fde804a29cc1e2",
"type": "github"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1731386116,
"narHash": "sha256-lKA770aUmjPHdTaJWnP3yQ9OI1TigenUqVC3wweqZuI=",
"lastModified": 1686089707,
"narHash": "sha256-LTNlJcru2qJ0XhlhG9Acp5KyjB774Pza3tRH0pKIb3o=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "af21c31b2a1ec5d361ed8050edd0303c31306397",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixpkgs-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs_3": {
"locked": {
"lastModified": 1711703276,
"narHash": "sha256-iMUFArF0WCatKK6RzfUJknjem0H9m4KgorO/p3Dopkk=",
"owner": "nixos",
"repo": "nixpkgs",
"rev": "689fed12a013f56d4c4d3f612489634267d86529",
"rev": "d8fe5e6c92d0d190646fb9f1056741a229980089",
"type": "github"
},
"original": {
"owner": "nixos",
"ref": "nixos-24.05",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
@ -131,9 +227,9 @@
"root": {
"inputs": {
"flake-parts": "flake-parts",
"lean4-nix": "lean4-nix",
"lean": "lean",
"lspec": "lspec",
"nixpkgs": "nixpkgs_2"
"nixpkgs": "nixpkgs_3"
}
}
},

View File

@ -2,11 +2,14 @@
description = "Pantograph";
inputs = {
nixpkgs.url = "github:nixos/nixpkgs/nixos-24.05";
nixpkgs.url = "github:nixos/nixpkgs/nixos-unstable";
flake-parts.url = "github:hercules-ci/flake-parts";
lean4-nix.url = "github:lenianiva/lean4-nix";
lean = {
# Do not follow input's nixpkgs since it could cause build failures
url = "github:leanprover/lean4?ref=v4.8.0-rc1";
};
lspec = {
url = "github:argumentcomputer/LSpec?ref=504a8cecf8da601b9466ac727aebb6b511aae4ab";
url = "github:lurk-lab/LSpec?ref=3388be5a1d1390594a74ec469fd54a5d84ff6114";
flake = false;
};
};
@ -15,84 +18,63 @@
self,
nixpkgs,
flake-parts,
lean4-nix,
lean,
lspec,
...
} : flake-parts.lib.mkFlake { inherit inputs; } {
flake = {
};
systems = [
"aarch64-linux"
"aarch64-darwin"
"x86_64-linux"
"x86_64-darwin"
];
perSystem = { system, pkgs, ... }: let
pkgs = import nixpkgs {
inherit system;
overlays = [ (lean4-nix.readToolchainFile ./lean-toolchain) ];
};
lspecLib = pkgs.lean.buildLeanPackage {
leanPkgs = lean.packages.${system};
lspecLib = leanPkgs.buildLeanPackage {
name = "LSpec";
roots = [ "Main" "LSpec" ];
src = "${lspec}";
};
project = pkgs.lean.buildLeanPackage {
project = leanPkgs.buildLeanPackage {
name = "Pantograph";
roots = [ "Pantograph" ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
roots = [ "Main" "Pantograph" ];
src = pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path) &&
!(pkgs.lib.hasSuffix "Repl.lean" path);
});
!(pkgs.lib.hasSuffix "Makefile" path);
};
};
repl = pkgs.lean.buildLeanPackage {
name = "Repl";
roots = [ "Main" "Repl" ];
deps = [ project ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path);
});
};
test = pkgs.lean.buildLeanPackage {
test = leanPkgs.buildLeanPackage {
name = "Test";
# NOTE: The src directory must be ./. since that is where the import
# root begins (e.g. `import Test.Environment` and not `import
# Environment`) and thats where `lakefile.lean` resides.
roots = [ "Test.Main" ];
deps = [ lspecLib repl ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
deps = [ lspecLib project ];
src = pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "Pantograph" path);
});
};
};
in rec {
packages = {
inherit (pkgs.lean) lean lean-all;
inherit (project) sharedLib iTree;
inherit (repl) executable;
default = repl.executable;
};
legacyPackages = {
inherit project;
leanPkgs = pkgs.lean;
inherit (leanPkgs) lean lean-all;
inherit (project) sharedLib executable;
default = project.executable;
};
checks = {
test = pkgs.runCommand "test" {
buildInputs = [ test.executable pkgs.lean.lean-all ];
buildInputs = [ test.executable leanPkgs.lean-all ];
} ''
#export LEAN_SRC_PATH="${./.}"
${test.executable}/bin/test > $out
'';
};
devShells.default = pkgs.mkShell {
buildInputs = [ pkgs.lean.lean-all pkgs.lean.lean ];
buildInputs = [ leanPkgs.lean-all leanPkgs.lean ];
};
};
};

View File

@ -1,14 +1,13 @@
{"version": "1.1.0",
{"version": 7,
"packagesDir": ".lake/packages",
"packages":
[{"url": "https://github.com/lenianiva/LSpec.git",
[{"url": "https://github.com/lurk-lab/LSpec.git",
"type": "git",
"subDir": null,
"scope": "",
"rev": "c492cecd0bc473e2f9c8b94d545d02cc0056034f",
"rev": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"name": "LSpec",
"manifestFile": "lake-manifest.json",
"inputRev": "c492cecd0bc473e2f9c8b94d545d02cc0056034f",
"inputRev": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"inherited": false,
"configFile": "lakefile.lean"}],
"name": "pantograph",

View File

@ -4,26 +4,22 @@ open Lake DSL
package pantograph
lean_lib Pantograph {
roots := #[`Pantograph]
defaultFacets := #[LeanLib.sharedFacet]
}
lean_lib Repl {
}
@[default_target]
lean_exe repl {
lean_exe pantograph {
root := `Main
-- Solves the native symbol not found problem
-- Somehow solves the native symbol not found problem
supportInterpreter := true
}
require LSpec from git
"https://github.com/lenianiva/LSpec.git" @ "c492cecd0bc473e2f9c8b94d545d02cc0056034f"
"https://github.com/lurk-lab/LSpec.git" @ "3388be5a1d1390594a74ec469fd54a5d84ff6114"
lean_lib Test {
}
@[test_driver]
lean_exe test {
root := `Test.Main
-- Solves the native symbol not found problem
-- Somehow solves the native symbol not found problem
supportInterpreter := true
}

View File

@ -1 +1 @@
leanprover/lean4:v4.12.0
leanprover/lean4:v4.8.0-rc1