Compare commits

..

148 Commits
v0.2.23 ... dev

Author SHA1 Message Date
Leni Aniva 120eb90291 Merge pull request 'chore: Update version' (#195) from chore/version into dev
Reviewed-on: #195
2025-05-01 10:41:47 -07:00
Leni Aniva 7578e9e180 Merge pull request 'doc: Add design limitations about memory' (#200) from doc/rationale into dev
Reviewed-on: #200
2025-05-01 10:40:52 -07:00
Leni Aniva df370b0bff
Merge branch 'dev' into chore/version 2025-05-01 13:39:28 -04:00
Leni Aniva 7b9361c72b Merge pull request 'feat(goal): Detect unsafe and sorry' (#201) from goal/detect-unsafe-sorry into dev
Reviewed-on: #201
2025-05-01 10:37:59 -07:00
Leni Aniva ad55ea1a27
feat(repl): Detection of sorrys 2025-05-01 13:37:35 -04:00
Leni Aniva 8c1cea17e3
fix(goal): Over-eager deduplication of goals 2025-05-01 13:34:27 -04:00
Leni Aniva 4db09c3abc
feat(goal): Check unsafe and sorry 2025-05-01 13:05:04 -04:00
Leni Aniva beef22b945
doc: Add design limitations about memory 2025-05-01 12:30:17 -04:00
Leni Aniva 06071c1044 Merge pull request 'fix: Shield tactics from the environment generated by `frontend.process`' (#199) from bug/exact-question-mark into dev
Reviewed-on: #199
2025-05-01 09:26:53 -07:00
Leni Aniva f214496c8f
Merge branch 'dev' into bug/exact-question-mark 2025-05-01 12:25:08 -04:00
Leni Aniva b039018578
Merge branch 'main' into bug/exact-question-mark 2025-05-01 12:24:50 -04:00
Leni Aniva 49d06e8c05
fix: Shield tactics from newly created environment 2025-05-01 12:21:32 -04:00
Leni Aniva 0a987174bc Merge pull request 'fix(repl): Elaborate with `errToSorry` as false by default' (#187) from repl/elab-option into dev
Reviewed-on: #187
2025-05-01 09:00:02 -07:00
Leni Aniva eca7431977 Merge pull request 'fix(goal): Prevent duplication in idempotent tactics' (#193) from bug/resume-goal-duplication into dev
Reviewed-on: #193
2025-05-01 08:59:36 -07:00
Leni Aniva 170099525c
test: Add tactic edge cases test 2025-05-01 11:09:43 -04:00
Leni Aniva 3653465ded
chore: Update version 2025-04-20 09:34:28 -07:00
Leni Aniva a2f9d77cb5 Merge pull request 'feat(repl): Flush stdout' (#194) from repl/flush into dev
Reviewed-on: #194
2025-04-20 09:29:03 -07:00
Leni Aniva a88829f9be
Merge branch 'dev' into repl/flush 2025-04-20 09:28:54 -07:00
Leni Aniva d9c484230b
feat(repl): Flush stdout 2025-04-20 09:27:03 -07:00
Leni Aniva fa5d423005 Merge pull request 'doc: Update rationale' (#189) from doc/rationale into dev
Reviewed-on: #189
2025-04-18 01:08:23 -07:00
Leni Aniva c68fed6657
fix(goal): Use `immediateResume` to handle goal 2025-04-18 00:38:54 -07:00
Leni Aniva 60f79f5f02
doc: Fix typo 2025-04-14 23:26:14 -07:00
Leni Aniva 4abe2fa72f
fix: LEAN_PATH example 2025-04-14 16:27:29 -07:00
Leni Aniva 77b517f4c6
doc: Update rationale about timeout 2025-04-13 22:55:41 -07:00
Leni Aniva 14b74b612d
fix(repl): Elaborate with `errToSorry` as false by default 2025-04-10 23:14:00 -07:00
Leni Aniva 4e44b147e0 Merge pull request 'chore: Version 0.3' (#136) from dev into main
Reviewed-on: #136
2025-04-09 00:23:18 -07:00
Leni Aniva c547d9c8dc Merge pull request 'chore: Update Lean to v4.18.0' (#185) from chore/version into dev
Reviewed-on: #185
2025-04-08 10:59:53 -07:00
Leni Aniva 13b03b602b
chore: Update flake 2025-04-08 10:59:37 -07:00
Leni Aniva b6c3f7d8fd
chore: Update Lean to v4.18.0 2025-04-08 10:58:38 -07:00
Leni Aniva 27a1f420ba Merge pull request 'fix: `variable` and `universe` commands in environment capture' (#183) from bug/variable-level-names-in-scope into dev
Reviewed-on: #183
2025-04-07 20:18:49 -07:00
Leni Aniva 5df3d2bee1
refactor: Remove `runTermElabM` from library 2025-04-07 20:17:58 -07:00
Leni Aniva 9216e4fa86
chore: Format code 2025-04-07 11:51:48 -07:00
Leni Aniva f42af9f6a8
fix: Level name capture 2025-04-05 14:26:22 -07:00
Leni Aniva 70152c7715
refactor: Optional levels 2025-04-03 14:38:40 -07:00
Leni Aniva cf4a5955e3
test: Non-matchers are not matchers 2025-04-03 11:18:17 -07:00
Leni Aniva 1402a69eea Merge pull request 'fix: `env.add` Declarations with universe levels' (#181) from bug/env-add-level into dev
Reviewed-on: #181
2025-03-29 15:48:12 -07:00
Leni Aniva 664516f148
Merge branch 'dev' into bug/env-add-level 2025-03-29 15:44:53 -07:00
Leni Aniva 18446f865e Merge pull request 'test: Update LSpec' (#182) from test/build into dev
Reviewed-on: #182
2025-03-29 15:44:28 -07:00
Leni Aniva 91fbc4cdca
chore: Remove redundant code 2025-03-29 15:43:49 -07:00
Leni Aniva 2885671490
test: Update LSpec 2025-03-29 15:22:31 -07:00
Leni Aniva b9ff9e8f13
feat(repl): Optional type argument in `env.add` 2025-03-29 14:51:35 -07:00
Leni Aniva 9ea099827f
fix(env): Adding declarations with universe levels 2025-03-29 14:39:42 -07:00
Leni Aniva 3c07188cdf Merge pull request 'feat: Tactic with timeout' (#179) from repl/timeout into dev
Reviewed-on: #179
2025-03-28 21:31:58 -07:00
Leni Aniva 0528a1592e
fix: Print internal exceptions nicely 2025-03-28 21:31:30 -07:00
Leni Aniva 4610348fed
feat: `CoreM` timeout 2025-03-28 20:42:10 -07:00
Leni Aniva be505b8050
feat: Run cancel token with timeout 2025-03-28 19:06:43 -07:00
Leni Aniva 48485a868b Merge pull request 'feat: Update `CoreM` options from parsed header' (#177) from frontend/env-init into dev
Reviewed-on: #177
2025-03-28 18:56:21 -07:00
Leni Aniva 9980fd9c39
test(repl): Environment loading from header 2025-03-28 18:45:58 -07:00
Leni Aniva 8adab24157
fix: Call sites in `Main.lean` 2025-03-28 00:56:18 -07:00
Leni Aniva c2b7501649
refactor: Remove `CoreM` from `MainM` 2025-03-28 00:50:39 -07:00
Leni Aniva 0fea0b50c9
Merge branch 'dev' into frontend/env-init 2025-03-25 12:27:32 -07:00
Leni Aniva fb91b521fb Merge pull request 'chore: Update Lean to v4.17.0, version to v0.3' (#178) from chore/version into dev
Reviewed-on: #178
2025-03-24 18:05:25 -07:00
Leni Aniva ebf514b92b
chore: Update nix flake 2025-03-24 18:04:34 -07:00
Leni Aniva d305918bb9
chore: Update Lean to v4.17.0 2025-03-24 17:57:34 -07:00
Leni Aniva 3e55b4b22f
feat(repl): Record last scope 2025-03-24 17:47:56 -07:00
Leni Aniva bc37482212 Merge pull request 'feat(delate): Unfold matchers' (#176) from delate/instantiate into dev
Reviewed-on: #176
2025-03-17 18:37:55 -07:00
Leni Aniva cb1082c7c7
chore: More code cleanup 2025-03-17 12:14:16 -07:00
Leni Aniva 678cc9b3c0
chore: Code cleanup 2025-03-17 11:30:24 -07:00
Leni Aniva 4643992c3b
refactor(delate): Unfold matchers into function 2025-03-17 11:26:13 -07:00
Leni Aniva 3b4b196a30
feat(delate): Add mdata annotation for matcher 2025-03-17 11:20:38 -07:00
Leni Aniva a28ad9b239
feat(delate): Expand matcher applications 2025-03-17 10:47:11 -07:00
Leni Aniva dc29d48b77
chore: Remove IO.println for trace 2025-03-17 09:31:39 -07:00
Leni Aniva 78485ae6e2
doc(frontend): Update documentation for `frontend.process` 2025-03-14 20:07:31 -07:00
Leni Aniva 98ad1ae283
feat(delate): Tracing tags 2025-03-14 16:54:34 -07:00
Leni Aniva 8063039f7e Merge pull request 'feat(frontend): Alternative methods of initializing environment' (#173) from frontend/env-init into dev
Reviewed-on: #173
2025-03-14 16:48:40 -07:00
Leni Aniva ef165b7045
fix(frontend): Test update 2025-03-14 16:47:46 -07:00
Leni Aniva 79e4dc697e
feat(frontend): Add option to inherit environment 2025-03-14 16:46:28 -07:00
Leni Aniva 8797bbe245
test(frontend): Fix the open test 2025-03-14 16:35:12 -07:00
Leni Aniva 896475848b
fix: Name generation not available due to context 2025-03-10 19:03:14 -07:00
Leni Aniva 0cfd73e44e
test(frontend): Add scope `open` test 2025-03-09 23:29:33 -07:00
Leni Aniva 1dceb5428e Merge pull request 'fix: Manifest key error' (#172) from chore/build into dev
Reviewed-on: #172
2025-03-08 22:53:07 -08:00
Leni Aniva 9e1ea54cbe
chore: Cleanup file filtering system 2025-03-08 22:52:36 -08:00
Leni Aniva 5d0a7e8443
fix: Manifest key error 2025-03-08 22:50:04 -08:00
Leni Aniva 4f5dd97e55 Merge pull request 'chore: Cleanup the library system' (#169) from chore/cleanup into dev
Reviewed-on: #169
2025-03-08 21:19:00 -08:00
Leni Aniva 7ae50696ac
merge: branch 'dev' into chore/cleanup 2025-03-08 21:18:45 -08:00
Leni Aniva 9cf071eefe
chore: Read manifest for LSpec version 2025-03-08 21:16:47 -08:00
Leni Aniva 92515ea0f2
fix: Update flake lock 2025-03-08 21:11:59 -08:00
Leni Aniva 5a690c4421
chore: Use `fetchGit` for `LSpec` input 2025-03-08 21:11:34 -08:00
Leni Aniva 39ec79e6bb
feat: Monad lifting in `GoalState.withContext` 2025-03-08 21:07:15 -08:00
Leni Aniva 999bb146fa
chore: Remove all unused auxiliary tactics 2025-03-01 20:12:30 -08:00
Leni Aniva 642bca42e9 Merge pull request 'chore: Version bump' (#168) from chore/version into dev
Reviewed-on: #168
2025-02-25 15:16:43 -08:00
Leni Aniva ec3e1ff2c0
chore: Bump version to 0.3.0-rc.1 2025-02-25 15:16:10 -08:00
Leni Aniva 76639d0266
fix: Panic edge case for module name 2025-02-24 15:45:31 -08:00
Leni Aniva 267290c8f7
fix: Draft tactic failure by new `sorry` semantics 2025-02-23 14:14:59 -08:00
Leni Aniva aac39ca60c
fix: Some test errors 2025-02-23 14:13:44 -08:00
Leni Aniva 31c76e0d00
chore: Version bump 2025-02-23 14:10:24 -08:00
Leni Aniva 4435a6459c Merge pull request 'fix: Use in-context environment in sorry collection' (#166) from bug/collect-sorry-generated-constants into dev
Reviewed-on: #166
2025-01-28 17:42:54 -08:00
Leni Aniva 05f6997062
doc: Update repl documentation 2025-01-28 17:41:41 -08:00
Leni Aniva c77f14d383
fix: Use context environment in sorry capture 2025-01-28 17:40:49 -08:00
Leni Aniva 274e29199d
fix: Use post-step environment in sorry collection 2025-01-27 19:57:02 -08:00
Leni Aniva 4d295bd9ff Merge pull request 'doc: Manual about `env.{describe,module_read}`' (#165) from env/module into dev
Reviewed-on: #165
2025-01-26 22:04:28 -08:00
Leni Aniva 7d6ad1ebb9 Merge pull request 'chore: Code cleanup' (#164) from chore/cleanup into dev
Reviewed-on: #164
2025-01-26 22:04:12 -08:00
Leni Aniva 003a63bd13
doc: Manual about `env.{describe,module_read}` 2025-01-24 20:21:31 -08:00
Leni Aniva 970c16a0a4
chore: Use `StateRefT` in `Repl.lean` 2025-01-24 20:19:07 -08:00
Leni Aniva 6a7830cb71
fix: Remove spurious print 2025-01-24 19:24:54 -08:00
Leni Aniva 787c9e606d
chore: Cleanup REPL loop 2025-01-24 19:22:58 -08:00
Leni Aniva 976646fb67
chore: Use repeat-break structure 2025-01-24 19:11:05 -08:00
Leni Aniva 418d630255
fix: Remove unused variable 2025-01-24 19:06:07 -08:00
Leni Aniva b67d3eccc4 Merge pull request 'fix: Panic in `exprProjToApp`' (#161) from bug/expr-proj-to-app-panic into dev
Reviewed-on: #161
2025-01-24 15:05:04 -08:00
Leni Aniva 6f792b0657
Merge branch 'dev' into bug/expr-proj-to-app-panic 2025-01-24 15:03:13 -08:00
Leni Aniva ed1d5d7b58 Merge pull request 'feat: Module reading functions' (#159) from env/module into dev
Reviewed-on: #159
2025-01-24 15:01:16 -08:00
Leni Aniva f7f1272145
Merge branch 'dev' into env/module 2025-01-24 15:01:00 -08:00
Leni Aniva be8dee6731
test: Add test for module read 2025-01-24 15:00:35 -08:00
Leni Aniva 549be79cbf Merge pull request 'feat: Pickle constants in goal state' (#157) from serial/pickle into dev
Reviewed-on: #157
2025-01-24 14:52:52 -08:00
Leni Aniva 5c1e7599c0
feat: Projection export function 2025-01-24 14:44:09 -08:00
Leni Aniva 8ce4cbdcf5
feat: Printing field projection in sexp 2025-01-22 13:01:47 -08:00
Leni Aniva 3a26bb1924
fix: Analyze projection application 2025-01-22 12:49:33 -08:00
Leni Aniva 5994f0ddf0
fix: Conditional handling of `.proj` 2025-01-17 23:10:03 -08:00
Leni Aniva 59935e386b Merge pull request 'feat: Draft tactic REPL interface' (#158) from tactic/draft into dev
Reviewed-on: #158
2025-01-16 10:32:47 -08:00
Leni Aniva bc4bf47c8b
feat: Implement repl interfaces 2025-01-15 21:23:37 -08:00
Leni Aniva c9f524b9ae
feat: Implement `env.describe` and `env.module_read` 2025-01-15 21:20:05 -08:00
Leni Aniva 4f5ffc1ffb
feat: Protocol for module access 2025-01-15 21:02:04 -08:00
Leni Aniva 62363cb943
fix: Over-eager assertion of fvarId validity 2025-01-14 13:21:38 -08:00
Leni Aniva 9d445783c2
feat: Draft tactic REPL interface 2025-01-13 12:50:25 -08:00
Leni Aniva fef7f1e2f3
feat: Pickle constants in goal state 2025-01-13 12:43:42 -08:00
Leni Aniva c1f63af019 chore: Update version to 0.2.25 2025-01-13 12:29:11 -08:00
Leni Aniva b8b46c4a9c Merge pull request 'chore: Update Lean to v4.15.0' (#134) from misc/version into dev
Reviewed-on: #134
2025-01-13 12:28:49 -08:00
Leni Aniva 60e78b322e
fix: Test failures 2025-01-13 12:28:16 -08:00
Leni Aniva 06fdf7e678
chore: Update Lean to v4.15.0 2025-01-13 11:09:55 -08:00
Leni Aniva 5e61282660
test: Source location extraction 2025-01-13 10:30:26 -08:00
Leni Aniva 9d2a999a4f
merge: branch 'dev' into misc/version 2025-01-13 10:29:50 -08:00
Leni Aniva db24650aec Merge pull request 'feat: Draft tactic' (#153) from goal/tactic-draft into dev
Reviewed-on: #153
2025-01-13 10:22:35 -08:00
Leni Aniva 6a9ba4bb15
Merge branch 'dev' into goal/tactic-draft 2025-01-13 10:22:05 -08:00
Leni Aniva ebde7c9eed
feat: Prohibit coupling in drafting 2025-01-13 10:20:36 -08:00
Leni Aniva ef4e5ecbf8
chore: Update version 2025-01-10 12:55:26 -08:00
Leni Aniva a374af3a5f Merge pull request 'fix: Incorrect binder capture' (#152) from bug/incorrect-binder-capture into dev
Reviewed-on: #152
2025-01-10 12:49:14 -08:00
Leni Aniva 9eec14503a
Merge branch 'dev' into bug/incorrect-binder-capture 2025-01-10 12:48:18 -08:00
Leni Aniva 814f36eb63 Merge pull request 'feat: Add source location extraction' (#154) from env/inspect into dev
Reviewed-on: #154
2025-01-10 12:47:35 -08:00
Leni Aniva 4a4b02d7b0
test: Source location extraction 2025-01-10 12:47:13 -08:00
Leni Aniva 97eaadc93c
feat: Add source location extraction 2025-01-10 12:16:23 -08:00
Leni Aniva aa066b8634
fix: Add test 2025-01-08 22:53:10 -08:00
Leni Aniva 072d351f04
fix: Delete extraneous test 2025-01-08 22:47:08 -08:00
Leni Aniva cb46b47a60
test: Draft tactic test 2025-01-08 22:23:30 -08:00
Leni Aniva 5ce6123de7
feat: Draft tactic 2025-01-08 19:56:14 -08:00
Leni Aniva f891960362
fix: Volatile test 2025-01-07 17:52:28 -08:00
Leni Aniva 6302b747b8
feat: Improve error message clarity 2025-01-07 17:51:32 -08:00
Leni Aniva 07e737eb81 Merge pull request 'feat: Simplify sexp printing' (#149) from delate/sexp into dev
Reviewed-on: #149
2025-01-07 17:31:29 -08:00
Leni Aniva 56f40462ae Merge pull request 'fix: Unnecessary instantiation call' (#148) from goal/tactic into dev
Reviewed-on: #148
2025-01-07 17:31:08 -08:00
Leni Aniva 524314721b
feat: Gate type error collection behind flag 2025-01-07 19:40:03 +09:00
Leni Aniva 5a05e9e8d4
test: Add binder capturing test 2024-12-22 08:47:38 +09:00
Leni Aniva 48b924fae2
fix(frontend): Incorrect capture of binder term 2024-12-20 19:12:12 +09:00
Leni Aniva b42d917aa7
fix: Unnecessary instantiation call 2024-12-17 08:18:27 +09:00
Leni Aniva 53bad1c4c9
refactor: Remove obsolete sanitize option 2024-12-15 12:52:08 -08:00
Leni Aniva 7a3b89cc0e
feat: Simplify sexp binder 2024-12-15 12:49:02 -08:00
Leni Aniva c0090dec97
fix: Quote string literal in sexp 2024-12-15 12:40:47 -08:00
Leni Aniva 13e01b9e62
Merge branch 'dev' into misc/version 2024-12-11 20:53:32 -08:00
Leni Aniva fb3d36584f
chore: Add formatter, update lean4-nix 2024-12-05 18:59:14 -08:00
Leni Aniva 13dd11e995
chore: Update Lean to v4.14 2024-12-05 18:55:30 -08:00
45 changed files with 1522 additions and 1595 deletions

View File

@ -8,64 +8,68 @@ import Repl
open Pantograph.Repl open Pantograph.Repl
open Pantograph.Protocol open Pantograph.Protocol
/-- Print a string to stdout without buffering -/
def printImmediate (s : String) : IO Unit := do
let stdout ← IO.getStdout
stdout.putStr (s ++ "\n")
stdout.flush
/-- Parse a command either in `{ "cmd": ..., "payload": ... }` form or `cmd { ... }` form. -/ /-- Parse a command either in `{ "cmd": ..., "payload": ... }` form or `cmd { ... }` form. -/
def parseCommand (s: String): Except String Command := do def parseCommand (s: String): Except String Command := do
let s := s.trim match s.trim.get? 0 with
match s.get? 0 with | .some '{' =>
| .some '{' => -- Parse in Json mode -- Parse in Json mode
Lean.fromJson? (← Lean.Json.parse s) Lean.fromJson? (← Lean.Json.parse s)
| .some _ => -- Parse in line mode | .some _ =>
-- Parse in line mode
let offset := s.posOf ' ' |> s.offsetOfPos let offset := s.posOf ' ' |> s.offsetOfPos
if offset = s.length then if offset = s.length then
return { cmd := s.take offset, payload := Lean.Json.null } return { cmd := s.take offset, payload := Lean.Json.null }
else else
let payload ← s.drop offset |> Lean.Json.parse let payload ← s.drop offset |> Lean.Json.parse
return { cmd := s.take offset, payload := payload } return { cmd := s.take offset, payload := payload }
| .none => throw "Command is empty" | .none =>
throw "Command is empty"
partial def loop : MainM Unit := do partial def loop : MainM Unit := do repeat do
let state ← get let state ← get
let command ← (← IO.getStdin).getLine let command ← (← IO.getStdin).getLine
if command.trim.length = 0 then return () -- Halt the program if empty line is given
if command.trim.length = 0 then break
match parseCommand command with match parseCommand command with
| .error error => | .error error =>
let error := Lean.toJson ({ error := "command", desc := error }: InteractionError) let error := Lean.toJson ({ error := "command", desc := error }: InteractionError)
-- Using `Lean.Json.compress` here to prevent newline -- Using `Lean.Json.compress` here to prevent newline
IO.println error.compress printImmediate error.compress
| .ok command => | .ok command =>
try try
let ret ← execute command let ret ← execute command
let str := match state.options.printJsonPretty with let str := match state.options.printJsonPretty with
| true => ret.pretty | true => ret.pretty
| false => ret.compress | false => ret.compress
IO.println str printImmediate str
catch e => catch e =>
let message ← e.toMessageData.toString let message := e.toString
let error := Lean.toJson ({ error := "main", desc := message }: InteractionError) let error := Lean.toJson ({ error := "main", desc := message }: InteractionError)
IO.println error.compress printImmediate error.compress
loop
def main (args: List String): IO Unit := do
unsafe def main (args: List String): IO Unit := do
-- NOTE: A more sophisticated scheme of command line argument handling is needed. -- NOTE: A more sophisticated scheme of command line argument handling is needed.
-- Separate imports and options
if args == ["--version"] then do if args == ["--version"] then do
IO.println s!"{Pantograph.version}" IO.println s!"{Pantograph.version}"
return return
unsafe do
Pantograph.initSearch "" Pantograph.initSearch ""
let coreContext ← args.filterMap (λ s => if s.startsWith "--" then .some <| s.drop 2 else .none) -- Separate imports and options
|>.toArray |> Pantograph.createCoreContext let (options, imports) := args.partition (·.startsWith "--")
let imports:= args.filter (λ s => ¬ (s.startsWith "--")) let coreContext ← options.map (·.drop 2) |>.toArray |> Pantograph.createCoreContext
let coreState ← Pantograph.createCoreState imports.toArray let coreState ← Pantograph.createCoreState imports.toArray
let context: Context := {
imports
}
try try
let coreM := loop.run context |>.run' {} let mainM := loop.run { coreContext } |>.run' { env := coreState.env }
IO.println "ready." printImmediate "ready."
discard <| coreM.toIO coreContext coreState mainM
catch ex => catch ex =>
let message := ex.toString let message := ex.toString
let error := Lean.toJson ({ error := "io", desc := message }: InteractionError) let error := Lean.toJson ({ error := "io", desc := message }: InteractionError)

View File

@ -12,31 +12,72 @@ open Lean
namespace Pantograph namespace Pantograph
structure ProjectionApplication where inductive Projection where
projector: Name -- Normal field case
numParams: Nat | field (projector : Name) (numParams : Nat)
inner: Expr -- Singular inductive case
| singular (recursor : Name) (numParams : Nat) (numFields : Nat)
/-- Converts a `.proj` expression to a form suitable for exporting/transpilation -/
@[export pantograph_analyze_projection]
def analyzeProjection (env: Environment) (e: Expr): Projection :=
let (typeName, idx, _) := match e with
| .proj typeName idx struct => (typeName, idx, struct)
| _ => panic! "Argument must be proj"
if (getStructureInfo? env typeName).isSome then
let ctor := getStructureCtor env typeName
let fieldName := (getStructureFields env typeName)[idx]!
let projector := getProjFnForField? env typeName fieldName |>.get!
.field projector ctor.numParams
else
let recursor := mkRecOnName typeName
let ctor := getStructureCtor env typeName
.singular recursor ctor.numParams ctor.numFields
def anonymousLevel : Level := .mvar ⟨.anonymous⟩
@[export pantograph_expr_proj_to_app] @[export pantograph_expr_proj_to_app]
def exprProjToApp (env: Environment) (e: Expr): ProjectionApplication := def exprProjToApp (env : Environment) (e : Expr) : Expr :=
let (typeName, idx, inner) := match e with let anon : Expr := .mvar ⟨.anonymous⟩
| .proj typeName idx inner => (typeName, idx, inner) match analyzeProjection env e with
| _ => panic! "Argument must be proj" | .field projector numParams =>
let ctor := getStructureCtor env typeName let info := match env.find? projector with
let fieldName := getStructureFields env typeName |>.get! idx | .some info => info
let projector := getProjFnForField? env typeName fieldName |>.get! | _ => panic! "Illegal projector"
{ let callee := .const projector $ List.replicate info.numLevelParams anonymousLevel
projector, let args := (List.replicate numParams anon) ++ [e.projExpr!]
numParams := ctor.numParams, mkAppN callee args.toArray
inner, | .singular recursor numParams numFields =>
} let info := match env.find? recursor with
| .some info => info
| _ => panic! "Illegal recursor"
let callee := .const recursor $ List.replicate info.numLevelParams anonymousLevel
let typeArgs := List.replicate numParams anon
-- Motive type can be inferred directly
let motive := .lam .anonymous anon anon .default
let major := e.projExpr!
-- Generate a lambda of `numFields` parameters, and returns the `e.projIdx!` one.
let induct := List.foldl
(λ acc _ => .lam .anonymous anon acc .default)
(.bvar $ (numFields - e.projIdx! - 1))
(List.range numFields)
mkAppN callee (typeArgs ++ [motive, major, induct]).toArray
def _root_.Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _ def _root_.Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _
/-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/ /-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/
@[export pantograph_unfold_aux_lemmas] @[export pantograph_unfold_aux_lemmas_m]
def unfoldAuxLemmas (e : Expr) : CoreM Expr := do def unfoldAuxLemmas : Expr → CoreM Expr :=
Lean.Meta.deltaExpand e Lean.Name.isAuxLemma (Meta.deltaExpand · Lean.Name.isAuxLemma)
/-- Unfold all matcher applications -/
@[export pantograph_unfold_matchers_m]
def unfoldMatchers (expr : Expr) : CoreM Expr :=
Core.transform expr λ e => do
let .some mapp ← Meta.matchMatcherApp? e | return .continue e
let .some matcherInfo := (← getEnv).find? mapp.matcherName | panic! "Matcher must exist"
let f ← Meta.instantiateValueLevelParams matcherInfo mapp.matcherLevels.toList
let mdata := KVMap.empty.insert `matcher (DataValue.ofName mapp.matcherName)
return .visit $ .mdata mdata (f.betaRev e.getAppRevArgs (useZeta := true))
/-- /--
Force the instantiation of delayed metavariables even if they cannot be fully Force the instantiation of delayed metavariables even if they cannot be fully
@ -53,13 +94,12 @@ This function ensures any metavariable in the result is either
1. Delayed assigned with its pending mvar not assigned in any form 1. Delayed assigned with its pending mvar not assigned in any form
2. Not assigned (delay or not) 2. Not assigned (delay or not)
-/ -/
partial def instantiateDelayedMVars (eOrig: Expr) : MetaM Expr := do partial def instantiateDelayedMVars (expr : Expr) : MetaM Expr :=
--let padding := String.join $ List.replicate level "│ " withTraceNode `Pantograph.Delate (λ _ex => return m!":= {← Meta.ppExpr expr}") do
--IO.println s!"{padding}Starting {toString eOrig}" let mut result ← Meta.transform (← instantiateMVars expr)
let mut result ← Meta.transform (← instantiateMVars eOrig) λ e => e.withApp fun f args => do
(pre := fun e => e.withApp fun f args => do
let .mvar mvarId := f | return .continue let .mvar mvarId := f | return .continue
--IO.println s!"{padding}├V {e}" trace[Pantograph.Delate] "V {e}"
let mvarDecl ← mvarId.getDecl let mvarDecl ← mvarId.getDecl
-- This is critical to maintaining the interdependency of metavariables. -- This is critical to maintaining the interdependency of metavariables.
@ -77,60 +117,63 @@ partial def instantiateDelayedMVars (eOrig: Expr) : MetaM Expr := do
panic! s!"In the context of {mvarId.name}, there are local context variable violations: {violations}" panic! s!"In the context of {mvarId.name}, there are local context variable violations: {violations}"
if let .some assign ← getExprMVarAssignment? mvarId then if let .some assign ← getExprMVarAssignment? mvarId then
--IO.println s!"{padding}├A ?{mvarId.name}" trace[Pantograph.Delate] "A ?{mvarId.name}"
assert! !(← mvarId.isDelayedAssigned) assert! !(← mvarId.isDelayedAssigned)
return .visit (mkAppN assign args) return .visit (mkAppN assign args)
else if let some { fvars, mvarIdPending } ← getDelayedMVarAssignment? mvarId then else if let some { fvars, mvarIdPending } ← getDelayedMVarAssignment? mvarId then
--let substTableStr := String.intercalate ", " $ Array.zipWith fvars args (λ fvar assign => s!"{fvar.fvarId!.name} := {assign}") |>.toList if ← isTracingEnabledFor `Pantograph.Delate then
--IO.println s!"{padding}├MD ?{mvarId.name} := ?{mvarIdPending.name} [{substTableStr}]" let substTableStr := ",".intercalate $
Array.zipWith (λ fvar assign => s!"{fvar.fvarId!.name} := {assign}") fvars args |>.toList
trace[Pantograph.Delate]"MD ?{mvarId.name} := ?{mvarIdPending.name} [{substTableStr}]"
if args.size < fvars.size then if args.size < fvars.size then
throwError "Not enough arguments to instantiate a delay assigned mvar. This is due to bad implementations of a tactic: {args.size} < {fvars.size}. Expr: {toString e}; Origin: {toString eOrig}" throwError "Not enough arguments to instantiate a delay assigned mvar. This is due to bad implementations of a tactic: {args.size} < {fvars.size}. Expr: {toString e}; Origin: {toString expr}"
--if !args.isEmpty then if !args.isEmpty then
--IO.println s!"{padding}├── Arguments Begin" trace[Pantograph.Delate] "─ Arguments Begin"
let args ← args.mapM self let args ← args.mapM self
--if !args.isEmpty then if !args.isEmpty then
--IO.println s!"{padding}├── Arguments End" trace[Pantograph.Delate] "─ Arguments End"
if !(← mvarIdPending.isAssignedOrDelayedAssigned) then if !(← mvarIdPending.isAssignedOrDelayedAssigned) then
--IO.println s!"{padding}├T1" trace[Pantograph.Delate] "T1"
let result := mkAppN f args let result := mkAppN f args
return .done result return .done result
let pending ← mvarIdPending.withContext do let pending ← mvarIdPending.withContext do
let inner ← instantiateDelayedMVars (.mvar mvarIdPending) --(level := level + 1) let inner ← instantiateDelayedMVars (.mvar mvarIdPending)
--IO.println s!"{padding}├Pre: {inner}" trace[Pantograph.Delate] "Pre: {inner}"
pure <| (← inner.abstractM fvars).instantiateRev args pure <| (← inner.abstractM fvars).instantiateRev args
-- Tail arguments -- Tail arguments
let result := mkAppRange pending fvars.size args.size args let result := mkAppRange pending fvars.size args.size args
--IO.println s!"{padding}├MD {result}" trace[Pantograph.Delate] "MD {result}"
return .done result return .done result
else else
assert! !(← mvarId.isAssigned) assert! !(← mvarId.isAssigned)
assert! !(← mvarId.isDelayedAssigned) assert! !(← mvarId.isDelayedAssigned)
--if !args.isEmpty then if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments Begin" trace[Pantograph.Delate] "─ Arguments Begin"
let args ← args.mapM self let args ← args.mapM self
--if !args.isEmpty then if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments End" trace[Pantograph.Delate] "─ Arguments End"
--IO.println s!"{padding}├M ?{mvarId.name}" trace[Pantograph.Delate] "M ?{mvarId.name}"
return .done (mkAppN f args)) return .done (mkAppN f args)
--IO.println s!"{padding}└Result {result}" trace[Pantoraph.Delate] "Result {result}"
return result return result
where where
self e := instantiateDelayedMVars e --(level := level + 1) self e := instantiateDelayedMVars e
/-- /--
Convert an expression to an equiavlent form with Convert an expression to an equivalent form with
1. No nested delayed assigned mvars 1. No nested delayed assigned mvars
2. No aux lemmas 2. No aux lemmas or matchers
3. No assigned mvars 3. No assigned mvars
-/ -/
@[export pantograph_instantiate_all_m] @[export pantograph_instantiate_all_m]
def instantiateAll (e : Expr) : MetaM Expr := do def instantiateAll (e : Expr) : MetaM Expr := do
let e ← instantiateDelayedMVars e let e ← instantiateDelayedMVars e
let e ← unfoldAuxLemmas e let e ← unfoldAuxLemmas e
let e ← unfoldMatchers e
return e return e
structure DelayedMVarInvocation where structure DelayedMVarInvocation where
@ -264,38 +307,36 @@ def serializeName (name: Name) (sanitize: Bool := true): String :=
if n.contains Lean.idBeginEscape then s!"{quote}{n}{quote}" else n if n.contains Lean.idBeginEscape then s!"{quote}{n}{quote}" else n
/-- serialize a sort level. Expression is optimized to be compact e.g. `(+ u 2)` -/ /-- serialize a sort level. Expression is optimized to be compact e.g. `(+ u 2)` -/
partial def serializeSortLevel (level: Level) (sanitize: Bool): String := partial def serializeSortLevel (level: Level) : String :=
let k := level.getOffset let k := level.getOffset
let u := level.getLevelOffset let u := level.getLevelOffset
let u_str := match u with let u_str := match u with
| .zero => "0" | .zero => "0"
| .succ _ => panic! "getLevelOffset should not return .succ" | .succ _ => panic! "getLevelOffset should not return .succ"
| .max v w => | .max v w =>
let v := serializeSortLevel v sanitize let v := serializeSortLevel v
let w := serializeSortLevel w sanitize let w := serializeSortLevel w
s!"(:max {v} {w})" s!"(:max {v} {w})"
| .imax v w => | .imax v w =>
let v := serializeSortLevel v sanitize let v := serializeSortLevel v
let w := serializeSortLevel w sanitize let w := serializeSortLevel w
s!"(:imax {v} {w})" s!"(:imax {v} {w})"
| .param name => | .param name =>
let name := serializeName name sanitize
s!"{name}" s!"{name}"
| .mvar id => | .mvar id =>
let name := serializeName id.name sanitize let name := id.name
s!"(:mv {name})" s!"(:mv {name})"
match k, u with match k, u with
| 0, _ => u_str | 0, _ => u_str
| _, .zero => s!"{k}" | _, .zero => s!"{k}"
| _, _ => s!"(+ {u_str} {k})" | _, _ => s!"(+ {u_str} {k})"
/-- /--
Completely serializes an expression tree. Json not used due to compactness Completely serializes an expression tree. Json not used due to compactness
A `_` symbol in the AST indicates automatic deductions not present in the original expression. A `_` symbol in the AST indicates automatic deductions not present in the original expression.
-/ -/
partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM String := do partial def serializeExpressionSexp (expr: Expr) : MetaM String := do
self expr self expr
where where
delayedMVarToSexp (e: Expr): MetaM (Option String) := do delayedMVarToSexp (e: Expr): MetaM (Option String) := do
@ -334,9 +375,10 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
let name := mvarId.name let name := mvarId.name
pure s!"(:{pref} {name})" pure s!"(:{pref} {name})"
| .sort level => | .sort level =>
let level := serializeSortLevel level sanitize let level := serializeSortLevel level
pure s!"(:sort {level})" pure s!"(:sort {level})"
| .const declName _ => | .const declName _ =>
let declName := serializeName declName (sanitize := false)
-- The universe level of the const expression is elided since it should be -- The universe level of the const expression is elided since it should be
-- inferrable from surrounding expression -- inferrable from surrounding expression
pure s!"(:c {declName})" pure s!"(:c {declName})"
@ -369,24 +411,29 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
-- is wrapped in a :lit sexp. -- is wrapped in a :lit sexp.
let v' := match v with let v' := match v with
| .natVal val => toString val | .natVal val => toString val
| .strVal val => s!"\"{val}\"" | .strVal val => IR.EmitC.quoteString val
pure s!"(:lit {v'})" pure s!"(:lit {v'})"
| .mdata _ inner => | .mdata _ inner =>
-- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter -- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter
-- It may become necessary to incorporate the metadata. -- It may become necessary to incorporate the metadata.
self inner self inner
| .proj _ _ _ => do | .proj typeName idx inner => do
let env ← getEnv let env ← getEnv
let projApp := exprProjToApp env e match analyzeProjection env e with
let autos := String.intercalate " " (List.replicate projApp.numParams "_") | .field projector numParams =>
let inner ← self projApp.inner let autos := String.intercalate " " (List.replicate numParams "_")
pure s!"((:c {projApp.projector}) {autos} {inner})" let inner' ← self inner
pure s!"((:c {projector}) {autos} {inner'})"
| .singular _ _ _ =>
let typeName' := serializeName typeName (sanitize := false)
let e' ← self e
pure s!"(:proj {typeName'} {idx} {e'})"
-- Elides all unhygenic names -- Elides all unhygenic names
binderInfoSexp : Lean.BinderInfo → String binderInfoSexp : Lean.BinderInfo → String
| .default => "" | .default => ""
| .implicit => " :implicit" | .implicit => " :i"
| .strictImplicit => " :strictImplicit" | .strictImplicit => " :si"
| .instImplicit => " :instImplicit" | .instImplicit => " :ii"
def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.Expression := do def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.Expression := do
let pp?: Option String ← match options.printExprPretty with let pp?: Option String ← match options.printExprPretty with
@ -532,7 +579,7 @@ protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState :
then instantiateAll decl.type then instantiateAll decl.type
else pure $ decl.type else pure $ decl.type
let type_sexp ← if options.printSexp then let type_sexp ← if options.printSexp then
let sexp ← serializeExpressionSexp type (sanitize := false) let sexp ← serializeExpressionSexp type
pure <| " " ++ sexp pure <| " " ++ sexp
else else
pure "" pure ""
@ -558,4 +605,7 @@ protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState :
| other => s!"[{other}]" | other => s!"[{other}]"
parentHasMVar (mvarId: MVarId): Bool := parent?.map (λ state => state.mctx.decls.contains mvarId) |>.getD true parentHasMVar (mvarId: MVarId): Bool := parent?.map (λ state => state.mctx.decls.contains mvarId) |>.getD true
initialize
registerTraceClass `Pantograph.Delate
end Pantograph end Pantograph

View File

@ -6,7 +6,8 @@ namespace Pantograph
-- Functions for creating contexts and states -- Functions for creating contexts and states
@[export pantograph_default_elab_context] @[export pantograph_default_elab_context]
def defaultElabContext: Elab.Term.Context := { def defaultElabContext: Elab.Term.Context := {
errToSorry := false declName? := .some `mystery,
errToSorry := false,
} }
/-- Read syntax object from string -/ /-- Read syntax object from string -/

View File

@ -25,7 +25,10 @@ def env_catalog (env: Environment): Array Name := env.constants.fold (init := #[
@[export pantograph_environment_module_of_name] @[export pantograph_environment_module_of_name]
def module_of_name (env: Environment) (name: Name): Option Name := do def module_of_name (env: Environment) (name: Name): Option Name := do
let moduleId ← env.getModuleIdxFor? name let moduleId ← env.getModuleIdxFor? name
return env.allImportedModuleNames.get! moduleId.toNat if h : moduleId.toNat < env.allImportedModuleNames.size then
return env.allImportedModuleNames[moduleId.toNat]
else
.none
def toCompactSymbolName (n: Name) (info: ConstantInfo): String := def toCompactSymbolName (n: Name) (info: ConstantInfo): String :=
let pref := match info with let pref := match info with
@ -43,6 +46,22 @@ def toFilteredSymbol (n: Lean.Name) (info: Lean.ConstantInfo): Option String :=
if isNameInternal n || info.isUnsafe if isNameInternal n || info.isUnsafe
then Option.none then Option.none
else Option.some <| toCompactSymbolName n info else Option.some <| toCompactSymbolName n info
def describe (_: Protocol.EnvDescribe): CoreM Protocol.EnvDescribeResult := do
let env ← Lean.MonadEnv.getEnv
return {
imports := env.header.imports.map toString,
modules := env.header.moduleNames.map (·.toString),
}
def moduleRead (args: Protocol.EnvModuleRead): CoreM Protocol.EnvModuleReadResult := do
let env ← Lean.MonadEnv.getEnv
let .some i := env.header.moduleNames.findIdx? (· == args.module.toName) |
throwError s!"Module not found {args.module}"
let data := env.header.moduleData[i]!
return {
imports := data.imports.map toString,
constNames := data.constNames.map (·.toString),
extraConstNames := data.extraConstNames.map (·.toString),
}
def catalog (_: Protocol.EnvCatalog): CoreM Protocol.EnvCatalogResult := do def catalog (_: Protocol.EnvCatalog): CoreM Protocol.EnvCatalogResult := do
let env ← Lean.MonadEnv.getEnv let env ← Lean.MonadEnv.getEnv
let names := env.constants.fold (init := #[]) (λ acc name info => let names := env.constants.fold (init := #[]) (λ acc name info =>
@ -50,15 +69,13 @@ def catalog (_: Protocol.EnvCatalog): CoreM Protocol.EnvCatalogResult := do
| .some x => acc.push x | .some x => acc.push x
| .none => acc) | .none => acc)
return { symbols := names } return { symbols := names }
def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Protocol.CR Protocol.EnvInspectResult) := do def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): Protocol.FallibleT CoreM Protocol.EnvInspectResult := do
let env ← Lean.MonadEnv.getEnv let env ← Lean.MonadEnv.getEnv
let name := args.name.toName let name := args.name.toName
let info? := env.find? name let info? := env.find? name
let info ← match info? with let .some info := info? | Protocol.throw $ Protocol.errorIndex s!"Symbol not found {args.name}"
| none => return .error $ Protocol.errorIndex s!"Symbol not found {args.name}"
| some info => pure info
let module? := env.getModuleIdxFor? name >>= let module? := env.getModuleIdxFor? name >>=
(λ idx => env.allImportedModuleNames.get? idx.toNat) |>.map toString (λ idx => env.allImportedModuleNames[idx.toNat]?)
let value? := match args.value?, info with let value? := match args.value?, info with
| .some true, _ => info.value? | .some true, _ => info.value?
| .some false, _ => .none | .some false, _ => .none
@ -72,7 +89,6 @@ def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Pr
isUnsafe := info.isUnsafe, isUnsafe := info.isUnsafe,
value? := ← value?.mapM (λ v => serializeExpression options v |>.run'), value? := ← value?.mapM (λ v => serializeExpression options v |>.run'),
publicName? := Lean.privateToUserName? name |>.map (·.toString), publicName? := Lean.privateToUserName? name |>.map (·.toString),
-- BUG: Warning: getUsedConstants here will not include projections. This is a known bug.
typeDependency? := if args.dependency?.getD false typeDependency? := if args.dependency?.getD false
then .some <| type.getUsedConstants.map (λ n => serializeName n) then .some <| type.getUsedConstants.map (λ n => serializeName n)
else .none, else .none,
@ -80,7 +96,7 @@ def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Pr
then value?.map (λ e => then value?.map (λ e =>
e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) ) e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
else .none, else .none,
module? := module? module? := module?.map (·.toString)
} }
let result ← match info with let result ← match info with
| .inductInfo induct => pure { core with inductInfo? := .some { | .inductInfo induct => pure { core with inductInfo? := .some {
@ -113,44 +129,70 @@ def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Pr
k := r.k, k := r.k,
} } } }
| _ => pure core | _ => pure core
return .ok result let result ← if args.source?.getD false then
def addDecl (args: Protocol.EnvAdd): CoreM (Protocol.CR Protocol.EnvAddResult) := do let srcSearchPath ← initSrcSearchPath
let sourceUri? ← module?.bindM (Server.documentUriFromModule srcSearchPath ·)
let declRange? ← findDeclarationRanges? name
let sourceStart? := declRange?.map (·.range.pos)
let sourceEnd? := declRange?.map (·.range.endPos)
.pure {
result with
sourceUri?,
sourceStart?,
sourceEnd?,
}
else
.pure result
return result
/-- Elaborates and adds a declaration to the `CoreM` environment. -/
@[export pantograph_env_add_m]
def addDecl (name: String) (levels: Array String := #[]) (type?: Option String) (value: String) (isTheorem: Bool)
: Protocol.FallibleT CoreM Protocol.EnvAddResult := do
let env ← Lean.MonadEnv.getEnv let env ← Lean.MonadEnv.getEnv
let tvM: Elab.TermElabM (Except String (Expr × Expr)) := do let levelParams := levels.toList.map (·.toName)
let type ← match parseTerm env args.type with let tvM: Elab.TermElabM (Except String (Expr × Expr)) :=
| .ok syn => do Elab.Term.withLevelNames levelParams do do
match ← elabTerm syn with let expectedType?? : Except String (Option Expr) ← ExceptT.run $ type?.mapM λ type => do
match parseTerm env type with
| .ok syn => elabTerm syn
| .error e => MonadExceptOf.throw e
let expectedType? ← match expectedType?? with
| .ok t? => pure t?
| .error e => return .error e | .error e => return .error e
| .ok expr => pure expr let value ← match parseTerm env value with
| .error e => return .error e
let value ← match parseTerm env args.value with
| .ok syn => do | .ok syn => do
try try
let expr ← Elab.Term.elabTerm (stx := syn) (expectedType? := .some type) let expr ← Elab.Term.elabTerm (stx := syn) (expectedType? := expectedType?)
Lean.Elab.Term.synthesizeSyntheticMVarsNoPostponing Lean.Elab.Term.synthesizeSyntheticMVarsNoPostponing
let expr ← instantiateMVars expr let expr ← instantiateMVars expr
pure $ expr pure $ expr
catch ex => return .error (← ex.toMessageData.toString) catch ex => return .error (← ex.toMessageData.toString)
| .error e => return .error e | .error e => return .error e
pure $ .ok (type, value) Elab.Term.synthesizeSyntheticMVarsNoPostponing
let type ← match expectedType? with
| .some t => pure t
| .none => Meta.inferType value
pure $ .ok (← instantiateMVars type, ← instantiateMVars value)
let (type, value) ← match ← tvM.run' (ctx := {}) |>.run' with let (type, value) ← match ← tvM.run' (ctx := {}) |>.run' with
| .ok t => pure t | .ok t => pure t
| .error e => return .error $ Protocol.errorExpr e | .error e => Protocol.throw $ Protocol.errorExpr e
let constant := Lean.Declaration.defnDecl <| Lean.mkDefinitionValEx let decl := if isTheorem then
(name := args.name.toName) Lean.Declaration.thmDecl <| Lean.mkTheoremValEx
(levelParams := []) (name := name.toName)
(levelParams := levelParams)
(type := type)
(value := value)
(all := [])
else
Lean.Declaration.defnDecl <| Lean.mkDefinitionValEx
(name := name.toName)
(levelParams := levelParams)
(type := type) (type := type)
(value := value) (value := value)
(hints := Lean.mkReducibilityHintsRegularEx 1) (hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe) (safety := Lean.DefinitionSafety.safe)
(all := []) (all := [])
let env' ← match env.addDecl (← getOptions) constant with Lean.addDecl decl
| .error e => do return {}
let options ← Lean.MonadOptions.getOptions
let desc ← (e.toMessageData options).toString
return .error $ { error := "kernel", desc }
| .ok env' => pure env'
Lean.MonadEnv.modifyEnv (λ _ => env')
return .ok {}
end Pantograph.Environment end Pantograph.Environment

View File

@ -40,6 +40,7 @@ def stxByteRange (stx : Syntax) : String.Pos × String.Pos :=
abbrev FrontendM := Elab.Frontend.FrontendM abbrev FrontendM := Elab.Frontend.FrontendM
structure CompilationStep where structure CompilationStep where
scope : Elab.Command.Scope
fileName : String fileName : String
fileMap : FileMap fileMap : FileMap
src : Substring src : Substring
@ -67,14 +68,14 @@ def processOneCommand: FrontendM (CompilationStep × Bool) := do
let s := (← get).commandState let s := (← get).commandState
let before := s.env let before := s.env
let done ← Elab.Frontend.processCommand let done ← Elab.Frontend.processCommand
let stx := (← get).commands.back let stx := (← get).commands.back!
let src := (← read).inputCtx.input.toSubstring.extract (← get).cmdPos (← get).parserState.pos let src := (← read).inputCtx.input.toSubstring.extract (← get).cmdPos (← get).parserState.pos
let s' := (← get).commandState let s' := (← get).commandState
let after := s'.env let after := s'.env
let msgs := s'.messages.toList.drop s.messages.toList.length let msgs := s'.messages.toList.drop s.messages.toList.length
let trees := s'.infoState.trees.drop s.infoState.trees.size let trees := s'.infoState.trees.drop s.infoState.trees.size
let ⟨_, fileName, fileMap⟩ := (← read).inputCtx let ⟨_, fileName, fileMap⟩ := (← read).inputCtx
return ({ fileName, fileMap, src, stx, before, after, msgs, trees }, done) return ({ scope := s.scopes.head!, fileName, fileMap, src, stx, before, after, msgs, trees }, done)
partial def mapCompilationSteps { α } (f: CompilationStep → IO α) : FrontendM (List α) := do partial def mapCompilationSteps { α } (f: CompilationStep → IO α) : FrontendM (List α) := do
let (cmd, done) ← processOneCommand let (cmd, done) ← processOneCommand

View File

@ -80,10 +80,10 @@ def collectTactics (t : Elab.InfoTree) : List TacticInvocation :=
@[export pantograph_frontend_collect_tactics_from_compilation_step_m] @[export pantograph_frontend_collect_tactics_from_compilation_step_m]
def collectTacticsFromCompilationStep (step : CompilationStep) : IO (List Protocol.InvokedTactic) := do def collectTacticsFromCompilationStep (step : CompilationStep) : IO (List Protocol.InvokedTactic) := do
let tacticInfoTrees := step.trees.bind λ tree => tree.filter λ let tacticInfoTrees := step.trees.flatMap λ tree => tree.filter λ
| info@(.ofTacticInfo _) => info.isOriginal | info@(.ofTacticInfo _) => info.isOriginal
| _ => false | _ => false
let tactics := tacticInfoTrees.bind collectTactics let tactics := tacticInfoTrees.flatMap collectTactics
tactics.mapM λ invocation => do tactics.mapM λ invocation => do
let goalBefore := (Format.joinSep (← invocation.goalState) "\n").pretty let goalBefore := (Format.joinSep (← invocation.goalState) "\n").pretty
let goalAfter := (Format.joinSep (← invocation.goalStateAfter) "\n").pretty let goalAfter := (Format.joinSep (← invocation.goalStateAfter) "\n").pretty
@ -104,14 +104,20 @@ structure InfoWithContext where
info: Elab.Info info: Elab.Info
context?: Option Elab.ContextInfo := .none context?: Option Elab.ContextInfo := .none
private def collectSorrysInTree (t : Elab.InfoTree) : IO (List InfoWithContext) := do structure GoalCollectionOptions where
collectTypeErrors : Bool := false
private def collectSorrysInTree (t : Elab.InfoTree) (options : GoalCollectionOptions := {})
: IO (List InfoWithContext) := do
let infos ← t.findAllInfoM none fun i ctx? => match i with let infos ← t.findAllInfoM none fun i ctx? => match i with
| .ofTermInfo { expectedType?, expr, stx, lctx, .. } => do | .ofTermInfo { expectedType?, expr, stx, lctx, isBinder := false, .. } => do
let .some ctx := ctx? | return (false, true) let .some ctx := ctx? | return (false, true)
if expr.isSorry ∧ stx.isOfKind `Lean.Parser.Term.sorry then if expr.isSorry ∧ stx.isOfKind `Lean.Parser.Term.sorry then
if expectedType?.isNone then if expectedType?.isNone then
throw $ .userError "Sorry of indeterminant type is not allowed" throw $ .userError "Sorry of indeterminant type is not allowed"
return (true, false) return (true, false)
unless options.collectTypeErrors do
return (false, true)
let .some expectedType := expectedType? | return (false, true) let .some expectedType := expectedType? | return (false, true)
let typeMatch ← ctx.runMetaM lctx do let typeMatch ← ctx.runMetaM lctx do
let type ← Meta.inferType expr let type ← Meta.inferType expr
@ -130,8 +136,9 @@ private def collectSorrysInTree (t : Elab.InfoTree) : IO (List InfoWithContext)
-- NOTE: Plural deliberately not spelled "sorries" -- NOTE: Plural deliberately not spelled "sorries"
@[export pantograph_frontend_collect_sorrys_m] @[export pantograph_frontend_collect_sorrys_m]
def collectSorrys (step: CompilationStep) : IO (List InfoWithContext) := do def collectSorrys (step: CompilationStep) (options : GoalCollectionOptions := {})
return (← step.trees.mapM collectSorrysInTree).join : IO (List InfoWithContext) := do
return (← step.trees.mapM $ λ tree => collectSorrysInTree tree options).flatten
structure AnnotatedGoalState where structure AnnotatedGoalState where
state : GoalState state : GoalState
@ -141,6 +148,9 @@ structure AnnotatedGoalState where
Since we cannot directly merge `MetavarContext`s, we have to get creative. This Since we cannot directly merge `MetavarContext`s, we have to get creative. This
function duplicates frozen mvars in term and tactic info nodes, and add them to function duplicates frozen mvars in term and tactic info nodes, and add them to
the current `MetavarContext`. the current `MetavarContext`.
WARNING: Behaviour is unstable when there are multiple `sorry`s. Consider using
the draft tactic instead.
-/ -/
@[export pantograph_frontend_sorrys_to_goal_state_m] @[export pantograph_frontend_sorrys_to_goal_state_m]
def sorrysToGoalState (sorrys : List InfoWithContext) : MetaM AnnotatedGoalState := do def sorrysToGoalState (sorrys : List InfoWithContext) : MetaM AnnotatedGoalState := do
@ -149,13 +159,18 @@ def sorrysToGoalState (sorrys : List InfoWithContext) : MetaM AnnotatedGoalState
match i.info with match i.info with
| .ofTermInfo termInfo => do | .ofTermInfo termInfo => do
let mvarId ← MetaTranslate.translateMVarFromTermInfo termInfo i.context? let mvarId ← MetaTranslate.translateMVarFromTermInfo termInfo i.context?
if (← mvarId.getType).hasSorry then
throwError s!"Coupling is not allowed in drafting"
return [(mvarId, stxByteRange termInfo.stx)] return [(mvarId, stxByteRange termInfo.stx)]
| .ofTacticInfo tacticInfo => do | .ofTacticInfo tacticInfo => do
let mvarIds ← MetaTranslate.translateMVarFromTacticInfoBefore tacticInfo i.context? let mvarIds ← MetaTranslate.translateMVarFromTacticInfoBefore tacticInfo i.context?
for mvarId in mvarIds do
if (← mvarId.getType).hasSorry then
throwError s!"Coupling is not allowed in drafting"
let range := stxByteRange tacticInfo.stx let range := stxByteRange tacticInfo.stx
return mvarIds.map (·, range) return mvarIds.map (·, range)
| _ => panic! "Invalid info" | _ => panic! "Invalid info"
let annotatedGoals := List.join (← goalsM.run {} |>.run' {}) let annotatedGoals := List.flatten (← goalsM.run {} |>.run' {})
let goals := annotatedGoals.map Prod.fst let goals := annotatedGoals.map Prod.fst
let srcBoundaries := annotatedGoals.map Prod.snd let srcBoundaries := annotatedGoals.map Prod.snd
let root := match goals with let root := match goals with

View File

@ -25,7 +25,9 @@ protected def Info.stx? : Info → Option Syntax
| .ofCustomInfo info => info.stx | .ofCustomInfo info => info.stx
| .ofFVarAliasInfo _ => none | .ofFVarAliasInfo _ => none
| .ofFieldRedeclInfo info => info.stx | .ofFieldRedeclInfo info => info.stx
| .ofOmissionInfo info => info.stx | .ofChoiceInfo info => info.stx
| .ofPartialTermInfo info => info.stx
| .ofDelabTermInfo info => info.stx
/-- Is the `Syntax` for this `Lean.Elab.Info` original, or synthetic? -/ /-- Is the `Syntax` for this `Lean.Elab.Info` original, or synthetic? -/
protected def Info.isOriginal (i : Info) : Bool := protected def Info.isOriginal (i : Info) : Bool :=
match i.stx? with match i.stx? with
@ -87,9 +89,9 @@ partial def InfoTree.filter (p : Info → Bool) (m : MVarId → Bool := fun _ =>
| .context ctx tree => tree.filter p m |>.map (.context ctx) | .context ctx tree => tree.filter p m |>.map (.context ctx)
| .node info children => | .node info children =>
if p info then if p info then
[.node info (children.toList.map (filter p m)).join.toPArray'] [.node info (children.toList.map (filter p m)).flatten.toPArray']
else else
(children.toList.map (filter p m)).join (children.toList.map (filter p m)).flatten
| .hole mvar => if m mvar then [.hole mvar] else [] | .hole mvar => if m mvar then [.hole mvar] else []
/-- Analogue of `Lean.Elab.InfoTree.findInfo?`, but that returns a list of all results. -/ /-- Analogue of `Lean.Elab.InfoTree.findInfo?`, but that returns a list of all results. -/
@ -103,7 +105,7 @@ partial def InfoTree.findAllInfo
| .context inner t => findAllInfo t (inner.mergeIntoOuter? context?) haltOnMatch pred | .context inner t => findAllInfo t (inner.mergeIntoOuter? context?) haltOnMatch pred
| .node i children => | .node i children =>
let head := if pred i then [(i, context?, children)] else [] let head := if pred i then [(i, context?, children)] else []
let tail := if haltOnMatch ∧ !head.isEmpty then [] else children.toList.bind (fun t => findAllInfo t context? haltOnMatch pred) let tail := if haltOnMatch ∧ !head.isEmpty then [] else children.toList.flatMap (fun t => findAllInfo t context? haltOnMatch pred)
head ++ tail head ++ tail
| _ => [] | _ => []
@ -119,7 +121,7 @@ partial def InfoTree.findAllInfoM [Monad m]
let (flagCollect, flagRecurse) ← pred i context? let (flagCollect, flagRecurse) ← pred i context?
let head := if flagCollect then [(i, context?, children)] else [] let head := if flagCollect then [(i, context?, children)] else []
let tail := if ¬ flagRecurse then pure [] else children.toList.mapM (fun t => t.findAllInfoM context? pred) let tail := if ¬ flagRecurse then pure [] else children.toList.mapM (fun t => t.findAllInfoM context? pred)
return head ++ (← tail).join return head ++ (← tail).flatten
| _ => return [] | _ => return []
@[export pantograph_infotree_to_string_m] @[export pantograph_infotree_to_string_m]
@ -140,7 +142,9 @@ partial def InfoTree.toString (t : InfoTree) (ctx?: Option Elab.ContextInfo := .
| .ofCustomInfo _ => pure "[custom]" | .ofCustomInfo _ => pure "[custom]"
| .ofFVarAliasInfo _ => pure "[fvar]" | .ofFVarAliasInfo _ => pure "[fvar]"
| .ofFieldRedeclInfo _ => pure "[field_redecl]" | .ofFieldRedeclInfo _ => pure "[field_redecl]"
| .ofOmissionInfo _ => pure "[omission]" | .ofChoiceInfo _ => pure "[choice]"
| .ofPartialTermInfo _ => pure "[partial_term]"
| .ofDelabTermInfo _ => pure "[delab_term]"
let children := "\n".intercalate (← children.toList.mapM λ t' => do pure $ indent $ ← t'.toString ctx) let children := "\n".intercalate (← children.toList.mapM λ t' => do pure $ indent $ ← t'.toString ctx)
return s!"{node}\n{children}" return s!"{node}\n{children}"
else throw <| IO.userError "No `ContextInfo` available." else throw <| IO.userError "No `ContextInfo` available."

View File

@ -62,13 +62,14 @@ private partial def translateExpr (srcExpr: Expr) : MetaTranslateM Expr := do
let sourceMCtx ← getSourceMCtx let sourceMCtx ← getSourceMCtx
-- We want to create as few mvars as possible -- We want to create as few mvars as possible
let (srcExpr, _) := instantiateMVarsCore (mctx := sourceMCtx) srcExpr let (srcExpr, _) := instantiateMVarsCore (mctx := sourceMCtx) srcExpr
--IO.println s!"Transform src: {srcExpr}" trace[Pantograph.Frontend.MetaTranslate] "Transform src: {srcExpr}"
let result ← Core.transform srcExpr λ e => do let result ← Core.transform srcExpr λ e => do
let state ← get let state ← get
match e with match e with
| .fvar fvarId => | .fvar fvarId =>
let .some fvarId' := state.fvarMap[fvarId]? | panic! s!"FVar id not registered: {fvarId.name}" let .some fvarId' := state.fvarMap[fvarId]? | panic! s!"FVar id not registered: {fvarId.name}"
assert! (← getLCtx).contains fvarId' -- Delegating this to `Meta.check` later
--assert! (← getLCtx).contains fvarId'
return .done $ .fvar fvarId' return .done $ .fvar fvarId'
| .mvar mvarId => do | .mvar mvarId => do
-- Must not be assigned -- Must not be assigned
@ -99,10 +100,10 @@ partial def translateLocalDecl (srcLocalDecl: LocalDecl) : MetaTranslateM LocalD
addTranslatedFVar srcLocalDecl.fvarId fvarId addTranslatedFVar srcLocalDecl.fvarId fvarId
match srcLocalDecl with match srcLocalDecl with
| .cdecl index _ userName type bi kind => do | .cdecl index _ userName type bi kind => do
--IO.println s!"[CD] {userName} {toString type}" trace[Pantograph.Frontend.MetaTranslate] "[CD] {userName} {toString type}"
return .cdecl index fvarId userName (← translateExpr type) bi kind return .cdecl index fvarId userName (← translateExpr type) bi kind
| .ldecl index _ userName type value nonDep kind => do | .ldecl index _ userName type value nonDep kind => do
--IO.println s!"[LD] {toString type} := {toString value}" trace[Pantograph.Frontend.MetaTranslate] "[LD] {toString type} := {toString value}"
return .ldecl index fvarId userName (← translateExpr type) (← translateExpr value) nonDep kind return .ldecl index fvarId userName (← translateExpr type) (← translateExpr value) nonDep kind
partial def translateLCtx : MetaTranslateM LocalContext := do partial def translateLCtx : MetaTranslateM LocalContext := do
@ -117,6 +118,7 @@ partial def translateLCtx : MetaTranslateM LocalContext := do
partial def translateMVarId (srcMVarId: MVarId) : MetaTranslateM MVarId := do partial def translateMVarId (srcMVarId: MVarId) : MetaTranslateM MVarId := do
if let .some mvarId' := (← get).mvarMap[srcMVarId]? then if let .some mvarId' := (← get).mvarMap[srcMVarId]? then
trace[Pantograph.Frontend.MetaTranslate] "Existing mvar id {srcMVarId.name} → {mvarId'.name}"
return mvarId' return mvarId'
let mvarId' ← Meta.withLCtx .empty #[] do let mvarId' ← Meta.withLCtx .empty #[] do
let srcDecl := (← getSourceMCtx).findDecl? srcMVarId |>.get! let srcDecl := (← getSourceMCtx).findDecl? srcMVarId |>.get!
@ -133,6 +135,7 @@ partial def translateMVarId (srcMVarId: MVarId) : MetaTranslateM MVarId := do
let fvars' ← mvarIdPending'.withContext $ fvars.mapM translateExpr let fvars' ← mvarIdPending'.withContext $ fvars.mapM translateExpr
assignDelayedMVar mvarId' fvars' mvarIdPending' assignDelayedMVar mvarId' fvars' mvarIdPending'
pure mvarId' pure mvarId'
trace[Pantograph.Frontend.MetaTranslate] "Translated {srcMVarId.name} → {mvarId'.name}"
addTranslatedMVar srcMVarId mvarId' addTranslatedMVar srcMVarId mvarId'
return mvarId' return mvarId'
end end
@ -147,6 +150,7 @@ def translateMVarFromTermInfo (termInfo : Elab.TermInfo) (context? : Option Elab
let lctx' ← translateLCtx let lctx' ← translateLCtx
let mvar ← Meta.withLCtx lctx' #[] do let mvar ← Meta.withLCtx lctx' #[] do
let type' ← translateExpr type let type' ← translateExpr type
trace[Pantograph.Frontend.MetaTranslate] "Translating from term info {← Meta.ppExpr type'}"
Meta.mkFreshExprSyntheticOpaqueMVar type' Meta.mkFreshExprSyntheticOpaqueMVar type'
return mvar.mvarId! return mvar.mvarId!
@ -161,4 +165,7 @@ end MetaTranslate
export MetaTranslate (MetaTranslateM) export MetaTranslate (MetaTranslateM)
initialize
registerTraceClass `Pantograph.Frontend.MetaTranslate
end Pantograph.Frontend end Pantograph.Frontend

View File

@ -74,27 +74,35 @@ protected def GoalState.metaState (state: GoalState): Meta.State :=
protected def GoalState.coreState (state: GoalState): Core.SavedState := protected def GoalState.coreState (state: GoalState): Core.SavedState :=
state.savedState.term.meta.core state.savedState.term.meta.core
protected def GoalState.withContext (state: GoalState) (mvarId: MVarId) (m: MetaM α): MetaM α := do protected def GoalState.withContext' (state: GoalState) (mvarId: MVarId) (m: MetaM α): MetaM α := do
mvarId.withContext m |>.run' (← read) state.metaState mvarId.withContext m |>.run' (← read) state.metaState
protected def GoalState.withContext { m } [MonadControlT MetaM m] [Monad m] (state: GoalState) (mvarId: MVarId) : m α → m α :=
Meta.mapMetaM <| state.withContext' mvarId
protected def GoalState.withParentContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α := protected def GoalState.withParentContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.parentMVar?.get! Meta.mapMetaM <| state.withContext' state.parentMVar?.get!
protected def GoalState.withRootContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α := protected def GoalState.withRootContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.root Meta.mapMetaM <| state.withContext' state.root
private def GoalState.mvars (state: GoalState): SSet MVarId := private def GoalState.mvars (state: GoalState): SSet MVarId :=
state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k
protected def GoalState.restoreMetaM (state: GoalState): MetaM Unit := -- Restore the name generator and macro scopes of the core state
protected def GoalState.restoreCoreMExtra (state: GoalState): CoreM Unit := do
let savedCore := state.coreState
modifyGetThe Core.State (fun st => ((),
{ st with nextMacroScope := savedCore.nextMacroScope, ngen := savedCore.ngen }))
protected def GoalState.restoreMetaM (state: GoalState): MetaM Unit := do
state.restoreCoreMExtra
state.savedState.term.meta.restore state.savedState.term.meta.restore
protected def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit := protected def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit := do
state.restoreCoreMExtra
state.savedState.term.restore state.savedState.term.restore
private def GoalState.restoreTacticM (state: GoalState) (goal: MVarId): Elab.Tactic.TacticM Unit := do private def GoalState.restoreTacticM (state: GoalState) (goal: MVarId): Elab.Tactic.TacticM Unit := do
state.savedState.restore state.restoreElabM
Elab.Tactic.setGoals [goal] Elab.Tactic.setGoals [goal]
@[export pantograph_goal_state_focus] @[export pantograph_goal_state_focus]
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId let goal ← state.savedState.tactic.goals[goalId]?
return { return {
state with state with
savedState := { savedState := {
@ -105,11 +113,14 @@ protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState
} }
/-- Immediately bring all parent goals back into scope. Used in automatic mode -/ /-- Immediately bring all parent goals back into scope. Used in automatic mode -/
@[export pantograph_goal_state_immediate_resume_parent] @[export pantograph_goal_state_immediate_resume]
protected def GoalState.immediateResume (state: GoalState) (parent: GoalState): GoalState := protected def GoalState.immediateResume (state: GoalState) (parent: GoalState): GoalState :=
-- Prune parents solved goals -- Prune parents solved goals
let mctx := state.mctx let mctx := state.mctx
let parentGoals := parent.goals.filter $ λ goal => mctx.eAssignment.contains goal let parentGoals := parent.goals.filter λ goal =>
let isDuplicate := state.goals.contains goal
let isSolved := mctx.eAssignment.contains goal || mctx.dAssignment.contains goal
(¬ isDuplicate) && (¬ isSolved)
{ {
state with state with
savedState := { savedState := {
@ -119,19 +130,18 @@ protected def GoalState.immediateResume (state: GoalState) (parent: GoalState):
} }
/-- /--
Brings into scope a list of goals Brings into scope a list of goals. User must ensure `goals` is distinct.
-/ -/
@[export pantograph_goal_state_resume] @[export pantograph_goal_state_resume]
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState := protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState := do
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then if ¬ (goals.all (λ goal => state.mvars.contains goal)) then
let invalid_goals := goals.filter (λ goal => ¬ state.mvars.contains goal) |>.map (·.name.toString) let invalid_goals := goals.filter (λ goal => ¬ state.mvars.contains goal) |>.map (·.name.toString)
.error s!"Goals {invalid_goals} are not in scope" .error s!"Goals {invalid_goals} are not in scope"
else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic. -- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal => let unassigned := goals.filter λ goal =>
let mctx := state.mctx let isSolved := state.mctx.eAssignment.contains goal || state.mctx.dAssignment.contains goal
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal)) ¬ isSolved
.ok { return {
state with state with
savedState := { savedState := {
term := state.savedState.term, term := state.savedState.term,
@ -156,13 +166,13 @@ protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := do
.none .none
let expr ← goalState.mctx.eAssignment.find? goalState.root let expr ← goalState.mctx.eAssignment.find? goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr) let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
if expr.hasExprMVar then
-- Must not assert that the goal state is empty here. We could be in a branch goal.
--assert! ¬goalState.goals.isEmpty
.none
else
assert! goalState.goals.isEmpty
return expr return expr
@[export pantograph_goal_state_is_solved]
protected def GoalState.isSolved (goalState : GoalState) : Bool :=
let solvedRoot := match goalState.rootExpr? with
| .some e => ¬ e.hasExprMVar
| .none => true
goalState.goals.isEmpty && solvedRoot
@[export pantograph_goal_state_parent_expr] @[export pantograph_goal_state_parent_expr]
protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do
let parent ← goalState.parentMVar? let parent ← goalState.parentMVar?
@ -183,7 +193,8 @@ private def collectAllErroredMVars (src : MVarId) : Elab.TermElabM (List MVarId)
-- to one of these seed mvars, it means an error has occurred when a tactic -- to one of these seed mvars, it means an error has occurred when a tactic
-- was executing on `src`. `evalTactic`, will not capture these mvars, so we -- was executing on `src`. `evalTactic`, will not capture these mvars, so we
-- need to manually find them and save them into the goal list. -- need to manually find them and save them into the goal list.
let descendants ← Meta.getMVars $ ← instantiateMVars (.mvar src)
let descendants ← Meta.getMVars (.mvar src)
--let _ ← Elab.Term.logUnassignedUsingErrorInfos descendants --let _ ← Elab.Term.logUnassignedUsingErrorInfos descendants
let mut alreadyVisited : MVarIdSet := {} let mut alreadyVisited : MVarIdSet := {}
let mut result : MVarIdSet := {} let mut result : MVarIdSet := {}
@ -213,7 +224,7 @@ protected def GoalState.step (state: GoalState) (goal: MVarId) (tacticM: Elab.Ta
goal.checkNotAssigned `GoalState.step goal.checkNotAssigned `GoalState.step
let (_, { goals }) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] } let (_, { goals }) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
let nextElabState ← MonadBacktrack.saveState let nextElabState ← MonadBacktrack.saveState
Elab.Term.synthesizeSyntheticMVarsNoPostponing --Elab.Term.synthesizeSyntheticMVarsNoPostponing
let goals ← if guardMVarErrors then let goals ← if guardMVarErrors then
pure $ mergeMVarLists goals (← collectAllErroredMVars goal) pure $ mergeMVarLists goals (← collectAllErroredMVars goal)
@ -229,7 +240,7 @@ protected def GoalState.step (state: GoalState) (goal: MVarId) (tacticM: Elab.Ta
/-- Response for executing a tactic -/ /-- Response for executing a tactic -/
inductive TacticResult where inductive TacticResult where
-- Goes to next state -- Goes to next state
| success (state: GoalState) | success (state : GoalState) (messages : Array String)
-- Tactic failed with messages -- Tactic failed with messages
| failure (messages : Array String) | failure (messages : Array String)
-- Could not parse tactic -- Could not parse tactic
@ -237,25 +248,34 @@ inductive TacticResult where
-- The given action cannot be executed in the state -- The given action cannot be executed in the state
| invalidAction (message : String) | invalidAction (message : String)
private def dumpMessageLog (prevMessageLength : Nat) : CoreM (Bool × Array String) := do
let newMessages := (← Core.getMessageLog).toList.drop prevMessageLength
let hasErrors := newMessages.any (·.severity == .error)
let newMessages ← newMessages.mapM λ m => m.toString
Core.resetMessageLog
return (hasErrors, newMessages.toArray)
/-- Executes a `TacticM` monad on this `GoalState`, collecting the errors as necessary -/ /-- Executes a `TacticM` monad on this `GoalState`, collecting the errors as necessary -/
protected def GoalState.tryTacticM (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit) (guardMVarErrors : Bool := false): protected def GoalState.tryTacticM
Elab.TermElabM TacticResult := do (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit)
(guardMVarErrors : Bool := false)
: Elab.TermElabM TacticResult := do
let prevMessageLength := state.coreState.messages.toList.length
try try
let nextState ← state.step goal tacticM guardMVarErrors let nextState ← state.step goal tacticM guardMVarErrors
-- Check if error messages have been generated in the core. -- Check if error messages have been generated in the core.
let newMessages ← (← Core.getMessageLog).toList.drop state.coreState.messages.toList.length let (hasError, newMessages) ← dumpMessageLog prevMessageLength
|>.filterMapM λ m => do if hasError then
if m.severity == .error then return .failure newMessages
return .some $ ← m.toString
else else
return .none return .success nextState newMessages
Core.resetMessageLog
if ¬ newMessages.isEmpty then
return .failure newMessages.toArray
return .success nextState
catch exception => catch exception =>
return .failure #[← exception.toMessageData.toString] match exception with
| .internal _ =>
let (_, messages) ← dumpMessageLog prevMessageLength
return .failure messages
| _ => return .failure #[← exception.toMessageData.toString]
/-- Execute a string tactic on given state. Restores TermElabM -/ /-- Execute a string tactic on given state. Restores TermElabM -/
@[export pantograph_goal_state_try_tactic_m] @[export pantograph_goal_state_try_tactic_m]
@ -269,6 +289,7 @@ protected def GoalState.tryTactic (state: GoalState) (goal: MVarId) (tactic: Str
(fileName := ← getFileName) with (fileName := ← getFileName) with
| .ok stx => pure $ stx | .ok stx => pure $ stx
| .error error => return .parseError error | .error error => return .parseError error
assert! ¬ (← goal.isAssigned)
state.tryTacticM goal (Elab.Tactic.evalTactic tactic) true state.tryTacticM goal (Elab.Tactic.evalTactic tactic) true
protected def GoalState.tryAssign (state: GoalState) (goal: MVarId) (expr: String): protected def GoalState.tryAssign (state: GoalState) (goal: MVarId) (expr: String):
@ -322,7 +343,7 @@ protected def GoalState.conv (state: GoalState) (goal: MVarId):
parentMVar? := .some goal, parentMVar? := .some goal,
convMVar? := .some (convRhs, goal, otherGoals), convMVar? := .some (convRhs, goal, otherGoals),
calcPrevRhs? := .none calcPrevRhs? := .none
} } #[]
catch exception => catch exception =>
return .failure #[← exception.toMessageData.toString] return .failure #[← exception.toMessageData.toString]
@ -359,7 +380,7 @@ protected def GoalState.convExit (state: GoalState):
parentMVar? := .some convGoal, parentMVar? := .some convGoal,
convMVar? := .none convMVar? := .none
calcPrevRhs? := .none calcPrevRhs? := .none
} } #[]
catch exception => catch exception =>
return .failure #[← exception.toMessageData.toString] return .failure #[← exception.toMessageData.toString]
@ -437,7 +458,7 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
}, },
parentMVar? := .some goal, parentMVar? := .some goal,
calcPrevRhs? calcPrevRhs?
} } #[]
catch exception => catch exception =>
return .failure #[← exception.toMessageData.toString] return .failure #[← exception.toMessageData.toString]

View File

@ -3,6 +3,7 @@ import Pantograph.Goal
import Pantograph.Protocol import Pantograph.Protocol
import Pantograph.Delate import Pantograph.Delate
import Pantograph.Version import Pantograph.Version
import Lean import Lean
namespace Lean namespace Lean
@ -40,8 +41,6 @@ namespace Pantograph
def runMetaM { α } (metaM: MetaM α): CoreM α := def runMetaM { α } (metaM: MetaM α): CoreM α :=
metaM.run' metaM.run'
def runTermElabM { α } (termElabM: Elab.TermElabM α): CoreM α :=
termElabM.run' (ctx := defaultElabContext) |>.run'
def errorI (type desc: String): Protocol.InteractionError := { error := type, desc := desc } def errorI (type desc: String): Protocol.InteractionError := { error := type, desc := desc }
@ -75,63 +74,45 @@ def createCoreState (imports: Array String): IO Core.State := do
(trustLevel := 1) (trustLevel := 1)
return { env := env } return { env := env }
@[export pantograph_env_add_m]
def envAdd (name: String) (type: String) (value: String) (isTheorem: Bool):
CoreM (Protocol.CR Protocol.EnvAddResult) :=
Environment.addDecl { name, type, value, isTheorem }
@[export pantograph_parse_elab_type_m] @[export pantograph_parse_elab_type_m]
def parseElabType (type: String): Elab.TermElabM (Protocol.CR Expr) := do def parseElabType (type: String): Protocol.FallibleT Elab.TermElabM Expr := do
let env ← MonadEnv.getEnv let env ← MonadEnv.getEnv
let syn ← match parseTerm env type with let syn ← match parseTerm env type with
| .error str => return .error $ errorI "parsing" str | .error str => Protocol.throw $ errorI "parsing" str
| .ok syn => pure syn | .ok syn => pure syn
match ← elabType syn with match ← elabType syn with
| .error str => return .error $ errorI "elab" str | .error str => Protocol.throw $ errorI "elab" str
| .ok expr => return .ok (← instantiateMVars expr) | .ok expr => return (← instantiateMVars expr)
/-- This must be a TermElabM since the parsed expr contains extra information -/ /-- This must be a TermElabM since the parsed expr contains extra information -/
@[export pantograph_parse_elab_expr_m] @[export pantograph_parse_elab_expr_m]
def parseElabExpr (expr: String) (expectedType?: Option String := .none): Elab.TermElabM (Protocol.CR Expr) := do def parseElabExpr (expr: String) (expectedType?: Option String := .none): Protocol.FallibleT Elab.TermElabM Expr := do
let env ← MonadEnv.getEnv let env ← MonadEnv.getEnv
let expectedType? ← match ← expectedType?.mapM parseElabType with let expectedType? ← expectedType?.mapM parseElabType
| .none => pure $ .none
| .some (.ok t) => pure $ .some t
| .some (.error e) => return .error e
let syn ← match parseTerm env expr with let syn ← match parseTerm env expr with
| .error str => return .error $ errorI "parsing" str | .error str => Protocol.throw $ errorI "parsing" str
| .ok syn => pure syn | .ok syn => pure syn
match ← elabTerm syn expectedType? with match ← elabTerm syn expectedType? with
| .error str => return .error $ errorI "elab" str | .error str => Protocol.throw $ errorI "elab" str
| .ok expr => return .ok (← instantiateMVars expr) | .ok expr => return (← instantiateMVars expr)
@[export pantograph_expr_echo_m] @[export pantograph_expr_echo_m]
def exprEcho (expr: String) (expectedType?: Option String := .none) (levels: Array String := #[]) (options: @&Protocol.Options := {}): def exprEcho (expr: String) (expectedType?: Option String := .none) (options: @&Protocol.Options := {}):
CoreM (Protocol.CR Protocol.ExprEchoResult) := Protocol.FallibleT Elab.TermElabM Protocol.ExprEchoResult := do
runTermElabM $ Elab.Term.withLevelNames (levels.toList.map (·.toName)) do let expr ← parseElabExpr expr expectedType?
let expr ← match ← parseElabExpr expr expectedType? with
| .error e => return .error e
| .ok expr => pure expr
try try
let type ← unfoldAuxLemmas (← Meta.inferType expr) let type ← unfoldAuxLemmas (← Meta.inferType expr)
return .ok { return {
type := (← serializeExpression options type), type := (← serializeExpression options type),
expr := (← serializeExpression options expr) expr := (← serializeExpression options expr),
} }
catch exception => catch exception =>
return .error $ errorI "typing" (← exception.toMessageData.toString) Protocol.throw $ errorI "typing" (← exception.toMessageData.toString)
@[export pantograph_goal_start_expr_m] @[export pantograph_goal_start_expr_m]
def goalStartExpr (expr: String) (levels: Array String): CoreM (Protocol.CR GoalState) := def goalStartExpr (expr: String) : Protocol.FallibleT Elab.TermElabM GoalState := do
runTermElabM $ Elab.Term.withLevelNames (levels.toList.map (·.toName)) do let t ← parseElabType expr
let expr ← match ← parseElabType expr with GoalState.create t
| .error e => return .error e
| .ok expr => pure $ expr
return .ok $ ← GoalState.create expr
@[export pantograph_goal_resume]
def goalResume (target: GoalState) (goals: Array String): Except String GoalState :=
target.resume (goals.map (λ n => { name := n.toName }) |>.toList)
@[export pantograph_goal_serialize_m] @[export pantograph_goal_serialize_m]
def goalSerialize (state: GoalState) (options: @&Protocol.Options): CoreM (Array Protocol.Goal) := def goalSerialize (state: GoalState) (options: @&Protocol.Options): CoreM (Array Protocol.Goal) :=
@ -142,8 +123,9 @@ def goalPrint (state: GoalState) (rootExpr: Bool) (parentExpr: Bool) (goals: Boo
: CoreM Protocol.GoalPrintResult := runMetaM do : CoreM Protocol.GoalPrintResult := runMetaM do
state.restoreMetaM state.restoreMetaM
let rootExpr? := state.rootExpr?
let root? ← if rootExpr then let root? ← if rootExpr then
state.rootExpr?.mapM λ expr => state.withRootContext do rootExpr?.mapM λ expr => state.withRootContext do
serializeExpression options (← instantiateAll expr) serializeExpression options (← instantiateAll expr)
else else
pure .none pure .none
@ -162,62 +144,45 @@ def goalPrint (state: GoalState) (rootExpr: Bool) (parentExpr: Bool) (goals: Boo
state.withContext mvarId do state.withContext mvarId do
let .some expr ← getExprMVarAssignment? mvarId | return {} let .some expr ← getExprMVarAssignment? mvarId | return {}
serializeExpression options (← instantiateAll expr) serializeExpression options (← instantiateAll expr)
let env ← getEnv
return { return {
root?, root?,
parent?, parent?,
goals, goals,
extraMVars, extraMVars,
rootHasSorry := rootExpr?.map (·.hasSorry) |>.getD false,
rootHasUnsafe := rootExpr?.map (env.hasUnsafe ·) |>.getD false,
rootHasMVar := rootExpr?.map (·.hasExprMVar) |>.getD false,
} }
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goal: MVarId) (tactic: String): CoreM TacticResult :=
runTermElabM <| state.tryTactic goal tactic
@[export pantograph_goal_assign_m]
def goalAssign (state: GoalState) (goal: MVarId) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goal expr
@[export pantograph_goal_have_m] @[export pantograph_goal_have_m]
protected def GoalState.tryHave (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult := do protected def GoalState.tryHave (state: GoalState) (goal: MVarId) (binderName: String) (type: String): Elab.TermElabM TacticResult := do
let type ← match (← parseTermM type) with let type ← match (← parseTermM type) with
| .ok syn => pure syn | .ok syn => pure syn
| .error error => return .parseError error | .error error => return .parseError error
runTermElabM do
state.restoreElabM state.restoreElabM
state.tryTacticM goal $ Tactic.evalHave binderName.toName type state.tryTacticM goal $ Tactic.evalHave binderName.toName type
@[export pantograph_goal_try_define_m] @[export pantograph_goal_try_define_m]
protected def GoalState.tryDefine (state: GoalState) (goal: MVarId) (binderName: String) (expr: String): CoreM TacticResult := do protected def GoalState.tryDefine (state: GoalState) (goal: MVarId) (binderName: String) (expr: String): Elab.TermElabM TacticResult := do
let expr ← match (← parseTermM expr) with let expr ← match (← parseTermM expr) with
| .ok syn => pure syn | .ok syn => pure syn
| .error error => return .parseError error | .error error => return .parseError error
runTermElabM do
state.restoreElabM state.restoreElabM
state.tryTacticM goal (Tactic.evalDefine binderName.toName expr) state.tryTacticM goal (Tactic.evalDefine binderName.toName expr)
@[export pantograph_goal_try_motivated_apply_m] @[export pantograph_goal_try_draft_m]
protected def GoalState.tryMotivatedApply (state: GoalState) (goal: MVarId) (recursor: String): protected def GoalState.tryDraft (state: GoalState) (goal: MVarId) (expr: String): Elab.TermElabM TacticResult := do
Elab.TermElabM TacticResult := do let expr ← match (← parseTermM expr) with
state.restoreElabM
let recursor ← match (← parseTermM recursor) with
| .ok syn => pure syn | .ok syn => pure syn
| .error error => return .parseError error | .error error => return .parseError error
state.tryTacticM goal (tacticM := Tactic.evalMotivatedApply recursor)
@[export pantograph_goal_try_no_confuse_m]
protected def GoalState.tryNoConfuse (state: GoalState) (goal: MVarId) (eq: String):
Elab.TermElabM TacticResult := do
state.restoreElabM state.restoreElabM
let eq ← match (← parseTermM eq) with state.tryTacticM goal (Tactic.evalDraft expr)
| .ok syn => pure syn
| .error error => return .parseError error -- Cancel the token after a timeout.
state.tryTacticM goal (tacticM := Tactic.evalNoConfuse eq) @[export pantograph_run_cancel_token_with_timeout_m]
@[export pantograph_goal_let_m] def runCancelTokenWithTimeout (cancelToken : IO.CancelToken) (timeout : UInt32) : IO Unit := do
def goalLet (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult := let _ ← EIO.asTask do
runTermElabM <| state.tryLet goal binderName type IO.sleep timeout
@[export pantograph_goal_conv_m] cancelToken.set
def goalConv (state: GoalState) (goal: MVarId): CoreM TacticResult := return ()
runTermElabM <| state.conv goal
@[export pantograph_goal_conv_exit_m]
def goalConvExit (state: GoalState): CoreM TacticResult :=
runTermElabM <| state.convExit
@[export pantograph_goal_calc_m]
def goalCalc (state: GoalState) (goal: MVarId) (pred: String): CoreM TacticResult :=
runTermElabM <| state.tryCalc goal pred
end Pantograph end Pantograph

View File

@ -5,6 +5,7 @@ Note that no command other than `InteractionError` may have `error` as one of
its field names to avoid confusion with error messages generated by the REPL. its field names to avoid confusion with error messages generated by the REPL.
-/ -/
import Lean.Data.Json import Lean.Data.Json
import Lean.Data.Position
namespace Pantograph.Protocol namespace Pantograph.Protocol
@ -29,6 +30,8 @@ structure Options where
printImplementationDetailHyps: Bool := false printImplementationDetailHyps: Bool := false
-- If this is set to `true`, goals will never go dormant, so you don't have to manage resumption -- If this is set to `true`, goals will never go dormant, so you don't have to manage resumption
automaticMode: Bool := true automaticMode: Bool := true
-- Timeout for tactics and operations that could potentially execute a tactic
timeout: Nat := 0
deriving Lean.ToJson deriving Lean.ToJson
abbrev OptionsT := ReaderT Options abbrev OptionsT := ReaderT Options
@ -102,15 +105,33 @@ structure StatResult where
-- Return the type of an expression -- Return the type of an expression
structure ExprEcho where structure ExprEcho where
expr: String expr: String
type?: Option String type?: Option String := .none
-- universe levels -- universe levels
levels: Option (Array String) := .none levels?: Option (Array String) := .none
deriving Lean.FromJson deriving Lean.FromJson
structure ExprEchoResult where structure ExprEchoResult where
expr: Expression expr: Expression
type: Expression type: Expression
deriving Lean.ToJson deriving Lean.ToJson
-- Describe the current state of the environment
structure EnvDescribe where
deriving Lean.FromJson
structure EnvDescribeResult where
imports : Array String
modules : Array String
deriving Lean.ToJson
-- Describe a module
structure EnvModuleRead where
module : String
deriving Lean.FromJson
structure EnvModuleReadResult where
imports: Array String
constNames: Array String
extraConstNames: Array String
deriving Lean.ToJson
-- Print all symbols in environment -- Print all symbols in environment
structure EnvCatalog where structure EnvCatalog where
deriving Lean.FromJson deriving Lean.FromJson
@ -121,11 +142,13 @@ structure EnvCatalogResult where
-- Print the type of a symbol -- Print the type of a symbol
structure EnvInspect where structure EnvInspect where
name: String name: String
-- If true/false, show/hide the value expressions; By default definitions -- Show the value expressions; By default definitions values are shown and
-- values are shown and theorem values are hidden. -- theorem values are hidden.
value?: Option Bool := .some false value?: Option Bool := .some false
-- If true, show the type and value dependencies -- Show the type and value dependencies
dependency?: Option Bool := .some false dependency?: Option Bool := .some false
-- Show source location
source?: Option Bool := .some false
deriving Lean.FromJson deriving Lean.FromJson
-- See `InductiveVal` -- See `InductiveVal`
structure InductInfo where structure InductInfo where
@ -172,13 +195,19 @@ structure EnvInspectResult where
inductInfo?: Option InductInfo := .none inductInfo?: Option InductInfo := .none
constructorInfo?: Option ConstructorInfo := .none constructorInfo?: Option ConstructorInfo := .none
recursorInfo?: Option RecursorInfo := .none recursorInfo?: Option RecursorInfo := .none
-- Location in source
sourceUri?: Option String := .none
sourceStart?: Option Lean.Position := .none
sourceEnd?: Option Lean.Position := .none
deriving Lean.ToJson deriving Lean.ToJson
structure EnvAdd where structure EnvAdd where
name: String name: String
type: String levels?: Option (Array String) := .none
type?: Option String := .none
value: String value: String
isTheorem: Bool isTheorem: Bool := false
deriving Lean.FromJson deriving Lean.FromJson
structure EnvAddResult where structure EnvAddResult where
deriving Lean.ToJson deriving Lean.ToJson
@ -191,14 +220,15 @@ structure EnvSaveLoadResult where
/-- Set options; See `Options` struct above for meanings -/ /-- Set options; See `Options` struct above for meanings -/
structure OptionsSet where structure OptionsSet where
printJsonPretty?: Option Bool printJsonPretty?: Option Bool := .none
printExprPretty?: Option Bool printExprPretty?: Option Bool := .none
printExprAST?: Option Bool printExprAST?: Option Bool := .none
printDependentMVars?: Option Bool printDependentMVars?: Option Bool := .none
noRepeat?: Option Bool noRepeat?: Option Bool := .none
printAuxDecls?: Option Bool printAuxDecls?: Option Bool := .none
printImplementationDetailHyps?: Option Bool printImplementationDetailHyps?: Option Bool := .none
automaticMode?: Option Bool automaticMode?: Option Bool := .none
timeout?: Option Nat := .none
deriving Lean.FromJson deriving Lean.FromJson
structure OptionsSetResult where structure OptionsSetResult where
deriving Lean.ToJson deriving Lean.ToJson
@ -209,8 +239,8 @@ structure GoalStart where
-- Only one of the fields below may be populated. -- Only one of the fields below may be populated.
expr: Option String -- Directly parse in an expression expr: Option String -- Directly parse in an expression
-- universe levels -- universe levels
levels: Option (Array String) := .none levels?: Option (Array String) := .none
copyFrom: Option String -- Copy the type from a theorem in the environment copyFrom: Option String := .none -- Copy the type from a theorem in the environment
deriving Lean.FromJson deriving Lean.FromJson
structure GoalStartResult where structure GoalStartResult where
stateId: Nat := 0 stateId: Nat := 0
@ -229,6 +259,7 @@ structure GoalTactic where
calc?: Option String := .none calc?: Option String := .none
-- true to enter `conv`, `false` to exit. In case of exit the `goalId` is ignored. -- true to enter `conv`, `false` to exit. In case of exit the `goalId` is ignored.
conv?: Option Bool := .none conv?: Option Bool := .none
draft?: Option String := .none
-- In case of the `have` tactic, the new free variable name is provided here -- In case of the `have` tactic, the new free variable name is provided here
binderName?: Option String := .none binderName?: Option String := .none
@ -237,14 +268,17 @@ structure GoalTactic where
structure GoalTacticResult where structure GoalTacticResult where
-- The next goal state id. Existence of this field shows success -- The next goal state id. Existence of this field shows success
nextStateId?: Option Nat := .none nextStateId?: Option Nat := .none
-- If the array is empty, it shows the goals have been fully resolved. -- If the array is empty, it shows the goals have been fully resolved. If this
-- is .none, there has been a tactic error.
goals?: Option (Array Goal) := .none goals?: Option (Array Goal) := .none
-- Existence of this field shows tactic execution failure messages? : Option (Array String) := .some #[]
tacticErrors?: Option (Array String) := .none
-- Existence of this field shows the tactic parsing has failed -- Existence of this field shows the tactic parsing has failed
parseError? : Option String := .none parseError? : Option String := .none
hasSorry : Bool := false
hasUnsafe : Bool := false
deriving Lean.ToJson deriving Lean.ToJson
structure GoalContinue where structure GoalContinue where
-- State from which the continuation acquires the context -- State from which the continuation acquires the context
@ -288,6 +322,10 @@ structure GoalPrintResult where
parent?: Option Expression := .none parent?: Option Expression := .none
goals: Array Goal := #[] goals: Array Goal := #[]
extraMVars: Array Expression := #[] extraMVars: Array Expression := #[]
rootHasSorry : Bool := false
rootHasUnsafe : Bool := false
rootHasMVar : Bool := true
deriving Lean.ToJson deriving Lean.ToJson
-- Diagnostic Options, not available in REPL -- Diagnostic Options, not available in REPL
@ -319,11 +357,17 @@ structure FrontendProcess where
-- One of these two must be supplied: Either supply the file name or the content. -- One of these two must be supplied: Either supply the file name or the content.
fileName?: Option String := .none fileName?: Option String := .none
file?: Option String := .none file?: Option String := .none
-- If set to true, collect tactic invocations -- Whether to read the header
readHeader : Bool := false
-- Alter the REPL environment after the compilation units.
inheritEnv : Bool := false
-- collect tactic invocations
invocations: Bool := false invocations: Bool := false
-- If set to true, collect `sorry`s -- collect `sorry`s
sorrys: Bool := false sorrys: Bool := false
-- If set to true, extract new constants -- collect type errors
typeErrorsAsGoals: Bool := false
-- list new constants from each compilation step
newConstants: Bool := false newConstants: Bool := false
deriving Lean.FromJson deriving Lean.FromJson
structure InvokedTactic where structure InvokedTactic where
@ -353,6 +397,9 @@ structure FrontendProcessResult where
units: List CompilationUnit units: List CompilationUnit
deriving Lean.ToJson deriving Lean.ToJson
abbrev CR α := Except InteractionError α abbrev FallibleT := ExceptT InteractionError
abbrev throw {m : Type v → Type w} [MonadExceptOf InteractionError m] {α : Type v} (e : InteractionError) : m α :=
throwThe InteractionError e
end Pantograph.Protocol end Pantograph.Protocol

View File

@ -59,6 +59,12 @@ and then add the new constants.
def environmentPickle (env : Environment) (path : System.FilePath) : IO Unit := def environmentPickle (env : Environment) (path : System.FilePath) : IO Unit :=
Pantograph.pickle path (env.header.imports, env.constants.map₂) Pantograph.pickle path (env.header.imports, env.constants.map₂)
def resurrectEnvironment
(imports : Array Import)
(map₂ : PHashMap Name ConstantInfo)
: IO Environment := do
let env ← importModules imports {} 0
env.replay (Std.HashMap.ofList map₂.toList)
/-- /--
Unpickle an `Environment` from disk. Unpickle an `Environment` from disk.
@ -68,8 +74,7 @@ and then replace the new constants.
@[export pantograph_env_unpickle_m] @[export pantograph_env_unpickle_m]
def environmentUnpickle (path : System.FilePath) : IO (Environment × CompactedRegion) := unsafe do def environmentUnpickle (path : System.FilePath) : IO (Environment × CompactedRegion) := unsafe do
let ((imports, map₂), region) ← Pantograph.unpickle (Array Import × PHashMap Name ConstantInfo) path let ((imports, map₂), region) ← Pantograph.unpickle (Array Import × PHashMap Name ConstantInfo) path
let env ← importModules imports {} 0 return (← resurrectEnvironment imports map₂, region)
return (← env.replay (Std.HashMap.ofList map₂.toList), region)
open Lean.Core in open Lean.Core in
@ -88,7 +93,9 @@ def goalStatePickle (goalState : GoalState) (path : System.FilePath) : IO Unit :
savedState := { savedState := {
term := { term := {
meta := { meta := {
core, core := {
env, nextMacroScope, ngen, ..
},
meta, meta,
} }
«elab», «elab»,
@ -100,9 +107,10 @@ def goalStatePickle (goalState : GoalState) (path : System.FilePath) : IO Unit :
convMVar?, convMVar?,
calcPrevRhs?, calcPrevRhs?,
} := goalState } := goalState
--let env := core.env
Pantograph.pickle path ( Pantograph.pickle path (
({ core with } : CompactCoreState), env.constants.map₂,
({ nextMacroScope, ngen } : CompactCoreState),
meta, meta,
«elab», «elab»,
tactic, tactic,
@ -117,6 +125,8 @@ def goalStatePickle (goalState : GoalState) (path : System.FilePath) : IO Unit :
def goalStateUnpickle (path : System.FilePath) (env : Environment) def goalStateUnpickle (path : System.FilePath) (env : Environment)
: IO (GoalState × CompactedRegion) := unsafe do : IO (GoalState × CompactedRegion) := unsafe do
let (( let ((
map₂,
compactCore, compactCore,
meta, meta,
«elab», «elab»,
@ -127,6 +137,8 @@ def goalStateUnpickle (path : System.FilePath) (env : Environment)
convMVar?, convMVar?,
calcPrevRhs?, calcPrevRhs?,
), region) ← Pantograph.unpickle ( ), region) ← Pantograph.unpickle (
PHashMap Name ConstantInfo ×
CompactCoreState × CompactCoreState ×
Meta.State × Meta.State ×
Elab.Term.State × Elab.Term.State ×
@ -137,6 +149,7 @@ def goalStateUnpickle (path : System.FilePath) (env : Environment)
Option (MVarId × MVarId × List MVarId) × Option (MVarId × MVarId × List MVarId) ×
Option (MVarId × Expr) Option (MVarId × Expr)
) path ) path
let env ← env.replay (Std.HashMap.ofList map₂.toList)
let goalState := { let goalState := {
savedState := { savedState := {
term := { term := {

View File

@ -1,5 +1,2 @@
import Pantograph.Tactic.Assign import Pantograph.Tactic.Assign
import Pantograph.Tactic.Congruence
import Pantograph.Tactic.MotivatedApply
import Pantograph.Tactic.NoConfuse
import Pantograph.Tactic.Prograde import Pantograph.Tactic.Prograde

View File

@ -27,5 +27,39 @@ def evalAssign : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
goal.assign expr goal.assign expr
Elab.Tactic.replaceMainGoal nextGoals Elab.Tactic.replaceMainGoal nextGoals
def sorryToHole (src : Expr) : StateRefT (List MVarId) MetaM Expr := do
Meta.transform src λ expr =>
if expr.isSorry then do
let type ← instantiateMVars (expr.getArg! 0 |>.bindingBody!)
if type.hasSorry then
throwError s!"Coupling is not allowed in draft tactic: {← Meta.ppExpr type}"
let mvar ← Meta.mkFreshExprSyntheticOpaqueMVar type
modify (mvar.mvarId! :: .)
pure $ .done mvar
else
pure .continue
-- Given a complete (no holes) expression, extract the sorry's from it and convert them into goals.
def draft (goal : MVarId) (expr : Expr) : MetaM (List MVarId) := do
goal.checkNotAssigned `Pantograph.Tactic.draft
let exprType ← Meta.inferType expr
let goalType ← goal.getType
unless ← Meta.isDefEq goalType exprType do
throwError s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} ≠ {← Meta.ppExpr goalType}"
let (expr', holes) ← sorryToHole expr |>.run []
goal.assign expr'
return holes.reverse
def evalDraft : Elab.Tactic.Tactic := fun stx ↦ Elab.Tactic.withMainContext do
let target ← Elab.Tactic.getMainTarget
let goal ← Elab.Tactic.getMainGoal
let (expr, holeGoals) ← Elab.Tactic.elabTermWithHoles stx
(expectedType? := .some target)
(tagSuffix := .anonymous)
(allowNaturalHoles := true)
let draftGoals ← draft goal expr
Elab.Tactic.replaceMainGoal $ holeGoals ++ draftGoals
end Pantograph.Tactic end Pantograph.Tactic

View File

@ -1,98 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def congruenceArg (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceArg
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let f ← Meta.mkFreshExprSyntheticOpaqueMVar (.forallE .anonymous α β .default)
(tag := userName ++ `f)
let a₁ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₂)
let h ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq a₁ a₂)
(tag := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f a₁) (.app f a₂)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrArg f h)
let result := [α, a₁, a₂, f, h, conduit]
return result.map (·.mvarId!)
def evalCongruenceArg: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceArg goal
Elab.Tactic.replaceMainGoal nextGoals
def congruenceFun (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceFun
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₂)
let a ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a)
let h ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq f₁ f₂)
(tag := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a) (.app f₂ a)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrFun h a)
let result := [α, f₁, f₂, h, a, conduit]
return result.map (·.mvarId!)
def evalCongruenceFun: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceFun goal
Elab.Tactic.replaceMainGoal nextGoals
def congruence (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruence
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprSyntheticOpaqueMVar (mkSort u)
(tag := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprSyntheticOpaqueMVar fType
(tag := userName ++ `f₂)
let a₁ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprSyntheticOpaqueMVar α
(tag := userName ++ `a₂)
let h₁ ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq f₁ f₂)
(tag := userName ++ `h₁)
let h₂ ← Meta.mkFreshExprSyntheticOpaqueMVar (← Meta.mkEq a₁ a₂)
(tag := userName ++ `h₂)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a₁) (.app f₂ a₂)) target
let conduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType
(tag := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongr h₁ h₂)
let result := [α, f₁, f₂, a₁, a₂, h₁, h₂, conduit]
return result.map (·.mvarId!)
def evalCongruence: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruence goal
Elab.Tactic.replaceMainGoal nextGoals
end Pantograph.Tactic

View File

@ -1,106 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def getForallArgsBody: Expr → List Expr × Expr
| .forallE _ d b _ =>
let (innerArgs, innerBody) := getForallArgsBody b
(d :: innerArgs, innerBody)
| e => ([], e)
def replaceForallBody: Expr → Expr → Expr
| .forallE param domain body binderInfo, target =>
let body := replaceForallBody body target
.forallE param domain body binderInfo
| _, target => target
structure RecursorWithMotive where
args: List Expr
body: Expr
-- .bvar index for the motive and major from the body
iMotive: Nat
namespace RecursorWithMotive
protected def nArgs (info: RecursorWithMotive): Nat := info.args.length
protected def getMotiveType (info: RecursorWithMotive): Expr :=
let level := info.nArgs - info.iMotive - 1
let a := info.args.get! level
a
protected def surrogateMotiveType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveType := Expr.instantiateRev info.getMotiveType mvars
let resultantType ← Meta.inferType resultant
return replaceForallBody motiveType resultantType
protected def conduitType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveCall := Expr.instantiateRev info.body mvars
Meta.mkEq motiveCall resultant
end RecursorWithMotive
def getRecursorInformation (recursorType: Expr): Option RecursorWithMotive := do
let (args, body) := getForallArgsBody recursorType
if ¬ body.isApp then
.none
let iMotive ← match body.getAppFn with
| .bvar iMotive => pure iMotive
| _ => .none
return {
args,
body,
iMotive,
}
def collectMotiveArguments (forallBody: Expr): SSet Nat :=
match forallBody with
| .app (.bvar i) _ => SSet.empty.insert i
| _ => SSet.empty
/-- Applies a symbol of the type `∀ (motive: α → Sort u) (a: α)..., (motive α)` -/
def motivatedApply (mvarId: MVarId) (recursor: Expr) : MetaM (Array Meta.InductionSubgoal) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.motivatedApply
let recursorType ← Meta.inferType recursor
let resultant ← mvarId.getType
let tag ← mvarId.getTag
let info ← match getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Recursor return type does not correspond with the invocation of a motive: {← Meta.ppExpr recursorType}"
let rec go (i: Nat) (prev: Array Expr): MetaM (Array Expr) := do
if i ≥ info.nArgs then
return prev
else
let argType := info.args.get! i
-- If `argType` has motive references, its goal needs to be placed in it
let argType := argType.instantiateRev prev
let bvarIndex := info.nArgs - i - 1
let argGoal ← if bvarIndex = info.iMotive then
let surrogateMotiveType ← info.surrogateMotiveType prev resultant
Meta.mkFreshExprSyntheticOpaqueMVar surrogateMotiveType (tag := tag ++ `motive)
else
Meta.mkFreshExprSyntheticOpaqueMVar argType (tag := .anonymous)
let prev := prev ++ [argGoal]
go (i + 1) prev
termination_by info.nArgs - i
let mut newMVars ← go 0 #[]
-- Create the conduit type which proves the result of the motive is equal to the goal
let conduitType ← info.conduitType newMVars resultant
let goalConduit ← Meta.mkFreshExprSyntheticOpaqueMVar conduitType (tag := `conduit)
mvarId.assign $ ← Meta.mkEqMP goalConduit (mkAppN recursor newMVars)
newMVars := newMVars ++ [goalConduit]
return newMVars.map (λ mvar => { mvarId := mvar.mvarId!})
def evalMotivatedApply : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let recursor ← Elab.Term.elabTerm (stx := stx) .none
let nextGoals ← motivatedApply (← Elab.Tactic.getMainGoal) recursor
Elab.Tactic.replaceMainGoal $ nextGoals.toList.map (·.mvarId)
end Pantograph.Tactic

View File

@ -1,22 +0,0 @@
import Lean
open Lean
namespace Pantograph.Tactic
def noConfuse (mvarId: MVarId) (h: Expr): MetaM Unit := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.noConfuse
let target ← mvarId.getType
let noConfusion ← Meta.mkNoConfusion (target := target) (h := h)
unless ← Meta.isDefEq (← Meta.inferType noConfusion) target do
throwError "invalid noConfuse call: The resultant type {← Meta.ppExpr $ ← Meta.inferType noConfusion} cannot be unified with {← Meta.ppExpr target}"
mvarId.assign noConfusion
def evalNoConfuse: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
let h ← goal.withContext $ Elab.Term.elabTerm (stx := stx) .none
noConfuse goal h
Elab.Tactic.replaceMainGoal []
end Pantograph.Tactic

View File

@ -40,7 +40,7 @@ def «have» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResul
let fvarId ← mkFreshFVarId let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let mvarUpstream ← let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do Meta.withLCtx lctxUpstream #[] do
Meta.withNewLocalInstances #[.fvar fvarId] 0 do Meta.withNewLocalInstances #[.fvar fvarId] 0 do
let mvarUpstream ← mkUpstreamMVar mvarId let mvarUpstream ← mkUpstreamMVar mvarId
--let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream --let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream

View File

@ -1,6 +1,6 @@
namespace Pantograph namespace Pantograph
@[export pantograph_version] @[export pantograph_version]
def version := "0.2.23" def version := "0.3.1"
end Pantograph end Pantograph

View File

@ -81,7 +81,7 @@ the environment might be setup like this:
``` sh ``` sh
LIB="../lib" LIB="../lib"
LIB_MATHLIB="$LIB/mathlib4/.lake" LIB_MATHLIB="$LIB/mathlib4/.lake"
export LEAN_PATH="$LIB/mathlib4/build/lib:$LIB_MATHLIB/aesop/build/lib:$LIB_MATHLIB/Qq/build/lib:$LIB_MATHLIB/std/build/lib" export LEAN_PATH="$LIB_MATHLIB:$LIB_MATHLIB/aesop/build/lib:$LIB_MATHLIB/Qq/build/lib:$LIB_MATHLIB/std/build/lib"
LEAN_PATH=$LEAN_PATH build/bin/pantograph $@ LEAN_PATH=$LEAN_PATH build/bin/pantograph $@
``` ```

452
Repl.lean
View File

@ -3,8 +3,12 @@ import Pantograph
namespace Pantograph.Repl namespace Pantograph.Repl
open Lean
set_option trace.Pantograph.Frontend.MetaTranslate true
structure Context where structure Context where
imports: List String coreContext : Core.Context
/-- Stores state of the REPL -/ /-- Stores state of the REPL -/
structure State where structure State where
@ -12,8 +16,19 @@ structure State where
nextId : Nat := 0 nextId : Nat := 0
goalStates : Std.HashMap Nat GoalState := Std.HashMap.empty goalStates : Std.HashMap Nat GoalState := Std.HashMap.empty
/-- Main state monad for executing commands -/ env : Environment
abbrev MainM := ReaderT Context (StateT State Lean.CoreM) -- Parser state
scope : Elab.Command.Scope := { header := "" }
/-- Main monad for executing commands -/
abbrev MainM := ReaderT Context $ StateRefT State IO
/-- Main with possible exception -/
abbrev EMainM := Protocol.FallibleT $ ReaderT Context $ StateRefT State IO
def getMainState : MainM State := get
instance : MonadEnv MainM where
getEnv := return (← get).env
modifyEnv f := modify fun s => { s with env := f s.env }
def newGoalState (goalState: GoalState) : MainM Nat := do def newGoalState (goalState: GoalState) : MainM Nat := do
let state ← get let state ← get
@ -24,30 +39,165 @@ def newGoalState (goalState: GoalState) : MainM Nat := do
} }
return stateId return stateId
def runCoreM { α } (coreM : CoreM α) : EMainM α := do
let scope := (← get).scope
let options :=(← get).options
let cancelTk? ← match options.timeout with
| 0 => pure .none
| _ => .some <$> IO.CancelToken.new
let coreCtx : Core.Context := {
(← read).coreContext with
currNamespace := scope.currNamespace,
openDecls := scope.openDecls,
options := scope.opts,
initHeartbeats := ← IO.getNumHeartbeats,
cancelTk?,
}
let coreState : Core.State := {
env := (← get).env
}
-- Remap the coreM to capture every exception
let coreM' : CoreM _ :=
try
Except.ok <$> coreM
catch ex =>
let desc ← ex.toMessageData.toString
return Except.error $ ({ error := "exception", desc } : Protocol.InteractionError)
finally
for {msg, ..} in (← getTraceState).traces do
IO.eprintln (← msg.format.toIO)
resetTraceState
if let .some token := cancelTk? then
runCancelTokenWithTimeout token (timeout := .ofBitVec options.timeout)
let (result, state') ← match ← (coreM'.run coreCtx coreState).toIO' with
| Except.error (Exception.error _ msg) => Protocol.throw $ { error := "core", desc := ← msg.toString }
| Except.error (Exception.internal id _) => Protocol.throw $ { error := "internal", desc := (← id.getName).toString }
| Except.ok a => pure a
if result matches .ok _ then
modifyEnv λ _ => state'.env
liftExcept result
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables def runCoreM' { α } (coreM : Protocol.FallibleT CoreM α) : EMainM α := do
-- certain monadic features in `MainM` liftExcept $ ← runCoreM coreM.run
abbrev CR α := Except Protocol.InteractionError α
def runMetaInMainM { α } (metaM: Lean.MetaM α): MainM α :=
metaM.run' def liftMetaM { α } (metaM : MetaM α): EMainM α :=
def runTermElabInMainM { α } (termElabM: Lean.Elab.TermElabM α) : MainM α := runCoreM metaM.run'
termElabM.run' (ctx := defaultElabContext) |>.run' def liftTermElabM { α } (termElabM: Elab.TermElabM α) (levelNames : List Name := [])
: EMainM α := do
let scope := (← get).scope
let context := {
errToSorry := false,
isNoncomputableSection := scope.isNoncomputable,
}
let state := {
levelNames := scope.levelNames ++ levelNames,
}
runCoreM $ termElabM.run' context state |>.run'
section Frontend
structure CompilationUnit where
-- Should be the penultimate environment, but this is ok
env : Environment
boundary : Nat × Nat
invocations : List Protocol.InvokedTactic
sorrys : List Frontend.InfoWithContext
messages : Array String
newConstants : List Name
def frontend_process_inner (args: Protocol.FrontendProcess): EMainM Protocol.FrontendProcessResult := do
let options := (← getMainState).options
let (fileName, file) ← match args.fileName?, args.file? with
| .some fileName, .none => do
let file ← IO.FS.readFile fileName
pure (fileName, file)
| .none, .some file =>
pure ("<anonymous>", file)
| _, _ => Protocol.throw $ errorI "arguments" "Exactly one of {fileName, file} must be supplied"
let env?: Option Environment ← if args.readHeader then
pure .none
else do
.some <$> getEnv
let (context, state) ← do Frontend.createContextStateFromFile file fileName env? {}
let frontendM: Elab.Frontend.FrontendM (List CompilationUnit) :=
Frontend.mapCompilationSteps λ step => do
let boundary := (step.src.startPos.byteIdx, step.src.stopPos.byteIdx)
let invocations: Option (List Protocol.InvokedTactic) ← if args.invocations then
Frontend.collectTacticsFromCompilationStep step
else
pure []
let sorrys ← if args.sorrys then
Frontend.collectSorrys step (options := { collectTypeErrors := args.typeErrorsAsGoals })
else
pure []
let messages ← step.messageStrings
let newConstants ← if args.newConstants then
Frontend.collectNewDefinedConstants step
else
pure []
return {
env := step.before,
boundary,
invocations,
sorrys,
messages,
newConstants
}
let (li, state') ← frontendM.run context |>.run state
if args.inheritEnv then
setEnv state'.commandState.env
if let .some scope := state'.commandState.scopes.head? then
-- modify the scope
set { ← getMainState with scope }
let units ← li.mapM λ step => withEnv step.env do
let newConstants? := if args.newConstants then
.some $ step.newConstants.toArray.map λ name => name.toString
else
.none
let (goalStateId?, goals?, goalSrcBoundaries?) ← if step.sorrys.isEmpty then
pure (.none, .none, .none)
else do
let ({ state, srcBoundaries }, goals) ← liftMetaM do
let result@{state, .. } ← Frontend.sorrysToGoalState step.sorrys
let goals ← goalSerialize state options
pure (result, goals)
let stateId ← newGoalState state
let srcBoundaries := srcBoundaries.toArray.map (λ (b, e) => (b.byteIdx, e.byteIdx))
pure (.some stateId, .some goals, .some srcBoundaries)
let invocations? := if args.invocations then .some step.invocations else .none
return {
boundary := step.boundary,
messages := step.messages,
invocations?,
goalStateId?,
goals?,
goalSrcBoundaries?,
newConstants?,
}
return { units }
end Frontend
/-- Main loop command of the REPL -/ /-- Main loop command of the REPL -/
def execute (command: Protocol.Command): MainM Lean.Json := do def execute (command: Protocol.Command): MainM Json := do
let run { α β: Type } [Lean.FromJson α] [Lean.ToJson β] (comm: α → MainM (CR β)): MainM Lean.Json := let run { α β: Type } [FromJson α] [ToJson β] (comm: α → EMainM β): MainM Json :=
match Lean.fromJson? command.payload with
| .ok args => do
match (← comm args) with
| .ok result => return Lean.toJson result
| .error ierror => return Lean.toJson ierror
| .error error => return Lean.toJson $ errorCommand s!"Unable to parse json: {error}"
try try
match fromJson? command.payload with
| .ok args => do
match (← comm args |>.run) with
| .ok result => return toJson result
| .error ierror => return toJson ierror
| .error error => return toJson $ errorCommand s!"Unable to parse json: {error}"
catch ex : IO.Error =>
let error : Protocol.InteractionError := { error := "io", desc := ex.toString }
return toJson error
match command.cmd with match command.cmd with
| "reset" => run reset | "reset" => run reset
| "stat" => run stat | "stat" => run stat
| "expr.echo" => run expr_echo | "expr.echo" => run expr_echo
| "env.describe" => run env_describe
| "env.module_read" => run env_module_read
| "env.catalog" => run env_catalog | "env.catalog" => run env_catalog
| "env.inspect" => run env_inspect | "env.inspect" => run env_inspect
| "env.add" => run env_add | "env.add" => run env_add
@ -66,46 +216,49 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
| cmd => | cmd =>
let error: Protocol.InteractionError := let error: Protocol.InteractionError :=
errorCommand s!"Unknown command {cmd}" errorCommand s!"Unknown command {cmd}"
return Lean.toJson error return toJson error
catch ex => do
let error ← ex.toMessageData.toString
return Lean.toJson $ errorIO error
where where
errorCommand := errorI "command" errorCommand := errorI "command"
errorIndex := errorI "index" errorIndex := errorI "index"
errorIO := errorI "io" errorIO := errorI "io"
-- Command Functions -- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do reset (_: Protocol.Reset): EMainM Protocol.StatResult := do
let state ← get let state ← getMainState
let nGoals := state.goalStates.size let nGoals := state.goalStates.size
set { state with nextId := 0, goalStates := .empty } set { state with nextId := 0, goalStates := .empty }
Lean.Core.resetMessageLog return { nGoals }
return .ok { nGoals } stat (_: Protocol.Stat): EMainM Protocol.StatResult := do
stat (_: Protocol.Stat): MainM (CR Protocol.StatResult) := do let state ← getMainState
let state ← get
let nGoals := state.goalStates.size let nGoals := state.goalStates.size
return .ok { nGoals } return { nGoals }
env_catalog (args: Protocol.EnvCatalog): MainM (CR Protocol.EnvCatalogResult) := do env_describe (args: Protocol.EnvDescribe): EMainM Protocol.EnvDescribeResult := do
let result ← Environment.catalog args let result ← runCoreM $ Environment.describe args
return .ok result return result
env_inspect (args: Protocol.EnvInspect): MainM (CR Protocol.EnvInspectResult) := do env_module_read (args: Protocol.EnvModuleRead): EMainM Protocol.EnvModuleReadResult := do
let state ← get runCoreM $ Environment.moduleRead args
Environment.inspect args state.options env_catalog (args: Protocol.EnvCatalog): EMainM Protocol.EnvCatalogResult := do
env_add (args: Protocol.EnvAdd): MainM (CR Protocol.EnvAddResult) := do let result ← runCoreM $ Environment.catalog args
Environment.addDecl args return result
env_save (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do env_inspect (args: Protocol.EnvInspect): EMainM Protocol.EnvInspectResult := do
let env ← Lean.MonadEnv.getEnv let state ← getMainState
runCoreM' $ Environment.inspect args state.options
env_add (args: Protocol.EnvAdd): EMainM Protocol.EnvAddResult := do
runCoreM' $ Environment.addDecl args.name (args.levels?.getD #[]) args.type? args.value args.isTheorem
env_save (args: Protocol.EnvSaveLoad): EMainM Protocol.EnvSaveLoadResult := do
let env ← MonadEnv.getEnv
environmentPickle env args.path environmentPickle env args.path
return .ok {} return {}
env_load (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do env_load (args: Protocol.EnvSaveLoad): EMainM Protocol.EnvSaveLoadResult := do
let (env, _) ← environmentUnpickle args.path let (env, _) ← environmentUnpickle args.path
Lean.setEnv env setEnv env
return .ok {} return {}
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do expr_echo (args: Protocol.ExprEcho): EMainM Protocol.ExprEchoResult := do
let state ← get let state ← getMainState
exprEcho args.expr (expectedType? := args.type?) (levels := args.levels.getD #[]) (options := state.options) let levelNames := (args.levels?.getD #[]).toList.map (·.toName)
options_set (args: Protocol.OptionsSet): MainM (CR Protocol.OptionsSetResult) := do liftExcept $ ← liftTermElabM (levelNames := levelNames) do
let state ← get (exprEcho args.expr (expectedType? := args.type?) (options := state.options)).run
options_set (args: Protocol.OptionsSet): EMainM Protocol.OptionsSetResult := do
let state ← getMainState
let options := state.options let options := state.options
set { state with set { state with
options := { options := {
@ -118,187 +271,138 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls, printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls,
printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps
automaticMode := args.automaticMode?.getD options.automaticMode, automaticMode := args.automaticMode?.getD options.automaticMode,
timeout := args.timeout?.getD options.timeout,
} }
} }
return .ok { } return { }
options_print (_: Protocol.OptionsPrint): MainM (CR Protocol.Options) := do options_print (_: Protocol.OptionsPrint): EMainM Protocol.Options := do
return .ok (← get).options return (← getMainState).options
goal_start (args: Protocol.GoalStart): MainM (CR Protocol.GoalStartResult) := do goal_start (args: Protocol.GoalStart): EMainM Protocol.GoalStartResult := do
let env ← Lean.MonadEnv.getEnv let levelNames := (args.levels?.getD #[]).toList.map (·.toName)
let expr?: Except _ GoalState ← runTermElabInMainM (match args.expr, args.copyFrom with let expr?: Except _ GoalState ← liftTermElabM (levelNames := levelNames) do
| .some expr, .none => goalStartExpr expr (args.levels.getD #[]) match args.expr, args.copyFrom with
| .none, .some copyFrom => | .some expr, .none => goalStartExpr expr |>.run
(match env.find? <| copyFrom.toName with | .none, .some copyFrom => do
(match (← getEnv).find? <| copyFrom.toName with
| .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}" | .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}"
| .some cInfo => return .ok (← GoalState.create cInfo.type)) | .some cInfo => return .ok (← GoalState.create cInfo.type))
| _, _ => | _, _ =>
return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied") return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied"
match expr? with match expr? with
| .error error => return .error error | .error error => Protocol.throw error
| .ok goalState => | .ok goalState =>
let stateId ← newGoalState goalState let stateId ← newGoalState goalState
return .ok { stateId, root := goalState.root.name.toString } return { stateId, root := goalState.root.name.toString }
goal_tactic (args: Protocol.GoalTactic): MainM (CR Protocol.GoalTacticResult) := do goal_tactic (args: Protocol.GoalTactic): EMainM Protocol.GoalTacticResult := do
let state ← get let state ← getMainState
let .some goalState := state.goalStates[args.stateId]? | let .some goalState := state.goalStates[args.stateId]? |
return .error $ errorIndex s!"Invalid state index {args.stateId}" Protocol.throw $ errorIndex s!"Invalid state index {args.stateId}"
let .some goal := goalState.goals.get? args.goalId | let .some goal := goalState.goals[args.goalId]? |
return .error $ errorIndex s!"Invalid goal index {args.goalId}" Protocol.throw $ errorIndex s!"Invalid goal index {args.goalId}"
let nextGoalState?: Except _ TacticResult ← runTermElabInMainM do let nextGoalState?: Except _ TacticResult ← liftTermElabM do
match args.tactic?, args.expr?, args.have?, args.let?, args.calc?, args.conv? with -- NOTE: Should probably use a macro to handle this...
| .some tactic, .none, .none, .none, .none, .none => do match args.tactic?, args.expr?, args.have?, args.let?, args.calc?, args.conv?, args.draft? with
| .some tactic, .none, .none, .none, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryTactic goal tactic pure <| Except.ok <| ← goalState.tryTactic goal tactic
| .none, .some expr, .none, .none, .none, .none => do | .none, .some expr, .none, .none, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryAssign goal expr pure <| Except.ok <| ← goalState.tryAssign goal expr
| .none, .none, .some type, .none, .none, .none => do | .none, .none, .some type, .none, .none, .none, .none => do
let binderName := args.binderName?.getD "" let binderName := args.binderName?.getD ""
pure <| Except.ok <| ← goalState.tryHave goal binderName type pure <| Except.ok <| ← goalState.tryHave goal binderName type
| .none, .none, .none, .some type, .none, .none => do | .none, .none, .none, .some type, .none, .none, .none => do
let binderName := args.binderName?.getD "" let binderName := args.binderName?.getD ""
pure <| Except.ok <| ← goalState.tryLet goal binderName type pure <| Except.ok <| ← goalState.tryLet goal binderName type
| .none, .none, .none, .none, .some pred, .none => do | .none, .none, .none, .none, .some pred, .none, .none => do
pure <| Except.ok <| ← goalState.tryCalc goal pred pure <| Except.ok <| ← goalState.tryCalc goal pred
| .none, .none, .none, .none, .none, .some true => do | .none, .none, .none, .none, .none, .some true, .none => do
pure <| Except.ok <| ← goalState.conv goal pure <| Except.ok <| ← goalState.conv goal
| .none, .none, .none, .none, .none, .some false => do | .none, .none, .none, .none, .none, .some false, .none => do
pure <| Except.ok <| ← goalState.convExit pure <| Except.ok <| ← goalState.convExit
| _, _, _, _, _, _ => | .none, .none, .none, .none, .none, .none, .some draft => do
let error := errorI "arguments" "Exactly one of {tactic, expr, have, calc, conv} must be supplied" pure <| Except.ok <| ← goalState.tryDraft goal draft
pure $ Except.error $ error | _, _, _, _, _, _, _ =>
let error := errorI "arguments" "Exactly one of {tactic, expr, have, let, calc, conv, draft} must be supplied"
pure $ .error error
match nextGoalState? with match nextGoalState? with
| .error error => return .error error | .error error => Protocol.throw error
| .ok (.success nextGoalState) => do | .ok (.success nextGoalState messages) => do
let nextGoalState ← match state.options.automaticMode, args.conv? with let nextGoalState ← match state.options.automaticMode, args.conv? with
| true, .none => do | true, .none => do
let .ok result := nextGoalState.resume (nextGoalState.goals ++ goalState.goals) | pure $ nextGoalState.immediateResume goalState
throwError "Resuming known goals"
pure result
| true, .some true => pure nextGoalState | true, .some true => pure nextGoalState
| true, .some false => do | true, .some false => do
let .some (_, _, dormantGoals) := goalState.convMVar? | let .some (_, _, dormantGoals) := goalState.convMVar? |
throwError "If conv exit succeeded this should not fail" Protocol.throw $ errorIO "If conv exit succeeded this should not fail"
let .ok result := nextGoalState.resume (nextGoalState.goals ++ dormantGoals) | let .ok result := nextGoalState.resume (nextGoalState.goals ++ dormantGoals) |
throwError "Resuming known goals" Protocol.throw $ errorIO "Resuming known goals"
pure result pure result
| false, _ => pure nextGoalState | false, _ => pure nextGoalState
let nextStateId ← newGoalState nextGoalState let nextStateId ← newGoalState nextGoalState
let goals ← nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run' let parentExpr := nextGoalState.parentExpr?.get!
return .ok { let goals ← runCoreM $ nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run'
return {
nextStateId? := .some nextStateId, nextStateId? := .some nextStateId,
goals? := .some goals, goals? := .some goals,
messages? := .some messages,
hasSorry := parentExpr.hasSorry,
hasUnsafe := (← getEnv).hasUnsafe parentExpr,
} }
| .ok (.parseError message) => | .ok (.parseError message) =>
return .ok { parseError? := .some message } return { messages? := .none, parseError? := .some message }
| .ok (.invalidAction message) => | .ok (.invalidAction message) =>
return .error $ errorI "invalid" message Protocol.throw $ errorI "invalid" message
| .ok (.failure messages) => | .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages } return { messages? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do goal_continue (args: Protocol.GoalContinue): EMainM Protocol.GoalContinueResult := do
let state ← get let state ← getMainState
let .some target := state.goalStates[args.target]? | let .some target := state.goalStates[args.target]? |
return .error $ errorIndex s!"Invalid state index {args.target}" Protocol.throw $ errorIndex s!"Invalid state index {args.target}"
let nextState? ← match args.branch?, args.goals? with let nextGoalState? : GoalState ← match args.branch?, args.goals? with
| .some branchId, .none => do | .some branchId, .none => do
match state.goalStates[branchId]? with match state.goalStates[branchId]? with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}" | .none => Protocol.throw $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ target.continue branch | .some branch => pure $ target.continue branch
| .none, .some goals => | .none, .some goals =>
pure $ goalResume target goals let goals := goals.toList.map (λ n => { name := n.toName })
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied" pure $ target.resume goals
match nextState? with | _, _ => Protocol.throw $ errorI "arguments" "Exactly one of {branch, goals} must be supplied"
| .error error => return .error <| errorI "structure" error match nextGoalState? with
| .error error => Protocol.throw $ errorI "structure" error
| .ok nextGoalState => | .ok nextGoalState =>
let nextStateId ← newGoalState nextGoalState let nextStateId ← newGoalState nextGoalState
let goals ← goalSerialize nextGoalState (options := state.options) let goals ← liftMetaM $ goalSerialize nextGoalState (options := state.options)
return .ok { return {
nextStateId, nextStateId,
goals, goals,
} }
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do goal_delete (args: Protocol.GoalDelete): EMainM Protocol.GoalDeleteResult := do
let state ← get let state ← getMainState
let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates
set { state with goalStates } set { state with goalStates }
return .ok {} return {}
goal_print (args: Protocol.GoalPrint): MainM (CR Protocol.GoalPrintResult) := do goal_print (args: Protocol.GoalPrint): EMainM Protocol.GoalPrintResult := do
let state ← get let state ← getMainState
let .some goalState := state.goalStates[args.stateId]? | let .some goalState := state.goalStates[args.stateId]? |
return .error $ errorIndex s!"Invalid state index {args.stateId}" Protocol.throw $ errorIndex s!"Invalid state index {args.stateId}"
let result ← runMetaInMainM <| goalPrint let result ← liftMetaM <| goalPrint
goalState goalState
(rootExpr := args.rootExpr?.getD False) (rootExpr := args.rootExpr?.getD False)
(parentExpr := args.parentExpr?.getD False) (parentExpr := args.parentExpr?.getD False)
(goals := args.goals?.getD False) (goals := args.goals?.getD False)
(extraMVars := args.extraMVars?.getD #[]) (extraMVars := args.extraMVars?.getD #[])
(options := state.options) (options := state.options)
return .ok result return result
goal_save (args: Protocol.GoalSave): MainM (CR Protocol.GoalSaveResult) := do goal_save (args: Protocol.GoalSave): EMainM Protocol.GoalSaveResult := do
let state ← get let state ← getMainState
let .some goalState := state.goalStates[args.id]? | let .some goalState := state.goalStates[args.id]? |
return .error $ errorIndex s!"Invalid state index {args.id}" Protocol.throw $ errorIndex s!"Invalid state index {args.id}"
goalStatePickle goalState args.path goalStatePickle goalState args.path
return .ok {} return {}
goal_load (args: Protocol.GoalLoad): MainM (CR Protocol.GoalLoadResult) := do goal_load (args: Protocol.GoalLoad): EMainM Protocol.GoalLoadResult := do
let (goalState, _) ← goalStateUnpickle args.path (← Lean.MonadEnv.getEnv) let (goalState, _) ← goalStateUnpickle args.path (← MonadEnv.getEnv)
let id ← newGoalState goalState let id ← newGoalState goalState
return .ok { id } return { id }
frontend_process (args: Protocol.FrontendProcess): MainM (CR Protocol.FrontendProcessResult) := do frontend_process (args: Protocol.FrontendProcess): EMainM Protocol.FrontendProcessResult := do
let options := (← get).options frontend_process_inner args
try
let (fileName, file) ← match args.fileName?, args.file? with
| .some fileName, .none => do
let file ← IO.FS.readFile fileName
pure (fileName, file)
| .none, .some file =>
pure ("<anonymous>", file)
| _, _ => return .error <| errorI "arguments" "Exactly one of {fileName, file} must be supplied"
let env?: Option Lean.Environment ← if args.fileName?.isSome then
pure .none
else do
let env ← Lean.MonadEnv.getEnv
pure <| .some env
let (context, state) ← do Frontend.createContextStateFromFile file fileName env? {}
let frontendM := Frontend.mapCompilationSteps λ step => do
let boundary := (step.src.startPos.byteIdx, step.src.stopPos.byteIdx)
let invocations?: Option (List Protocol.InvokedTactic) ← if args.invocations then
let invocations ← Frontend.collectTacticsFromCompilationStep step
pure $ .some invocations
else
pure .none
let sorrys ← if args.sorrys then
Frontend.collectSorrys step
else
pure []
let messages ← step.messageStrings
let newConstants ← if args.newConstants then
Frontend.collectNewDefinedConstants step
else
pure []
return (step.before, boundary, invocations?, sorrys, messages, newConstants)
let li ← frontendM.run context |>.run' state
let units ← li.mapM λ (env, boundary, invocations?, sorrys, messages, newConstants) => Lean.withEnv env do
let newConstants? := if args.newConstants then
.some $ newConstants.toArray.map λ name => name.toString
else
.none
let (goalStateId?, goals?, goalSrcBoundaries?) ← if sorrys.isEmpty then do
pure (.none, .none, .none)
else do
let { state, srcBoundaries } ← runMetaInMainM $ Frontend.sorrysToGoalState sorrys
let stateId ← newGoalState state
let goals ← goalSerialize state options
let srcBoundaries := srcBoundaries.toArray.map (λ (b, e) => (b.byteIdx, e.byteIdx))
pure (.some stateId, .some goals, .some srcBoundaries)
return {
boundary,
messages,
invocations?,
goalStateId?,
goals?,
goalSrcBoundaries?,
newConstants?,
}
return .ok { units }
catch e =>
return .error $ errorI "frontend" (← e.toMessageData.toString)
end Pantograph.Repl end Pantograph.Repl

View File

@ -48,6 +48,12 @@ namespace Condensed
deriving instance BEq, Repr for LocalDecl deriving instance BEq, Repr for LocalDecl
deriving instance BEq, Repr for Goal deriving instance BEq, Repr for Goal
-- Enable string interpolation
instance : ToString FVarId where
toString id := id.name.toString
instance : ToString MVarId where
toString id := id.name.toString
protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl := protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl :=
{ {
decl with fvarId := { name := .anonymous } decl with fvarId := { name := .anonymous }
@ -61,11 +67,11 @@ protected def Goal.devolatilize (goal: Goal): Goal :=
end Condensed end Condensed
def GoalState.get! (state: GoalState) (i: Nat): MVarId := state.goals.get! i def GoalState.get! (state: GoalState) (i: Nat): MVarId := state.goals[i]!
def GoalState.tacticOn (state: GoalState) (goalId: Nat) (tactic: String) := state.tryTactic (state.goals.get! goalId) tactic def GoalState.tacticOn (state: GoalState) (goalId: Nat) (tactic: String) := state.tryTactic (state.get! goalId) tactic
def TacticResult.toString : TacticResult → String def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)" | .success state _messages => s!".success ({state.goals.length} goals)"
| .failure messages => | .failure messages =>
let messages := "\n".intercalate messages.toList let messages := "\n".intercalate messages.toList
s!".failure {messages}" s!".failure {messages}"
@ -102,7 +108,7 @@ def strToTermSyntax (s: String): CoreM Syntax := do
(input := s) (input := s)
(fileName := ← getFileName) | panic! s!"Failed to parse {s}" (fileName := ← getFileName) | panic! s!"Failed to parse {s}"
return stx return stx
def parseSentence (s: String): Elab.TermElabM Expr := do def parseSentence (s : String) (expectedType? : Option Expr := .none) : Elab.TermElabM Expr := do
let stx ← match Parser.runParserCategory let stx ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv) (env := ← MonadEnv.getEnv)
(catName := `term) (catName := `term)
@ -110,7 +116,7 @@ def parseSentence (s: String): Elab.TermElabM Expr := do
(fileName := ← getFileName) with (fileName := ← getFileName) with
| .ok syn => pure syn | .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}" | .error error => throwError "Failed to parse: {error}"
Elab.Term.elabTerm (stx := stx) .none Elab.Term.elabTerm (stx := stx) expectedType?
def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] } let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
@ -143,6 +149,8 @@ def runTest (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done Prod.snd <$> t.run LSpec.TestSeq.done
def runTestWithResult { α } (t: TestT m α): m (α × LSpec.TestSeq) := def runTestWithResult { α } (t: TestT m α): m (α × LSpec.TestSeq) :=
t.run LSpec.TestSeq.done t.run LSpec.TestSeq.done
def runTestCoreM (env: Environment) (coreM: TestT CoreM Unit) (options: Array String := #[]): IO LSpec.TestSeq := do
runCoreMSeq env (runTest coreM) options
end Monadic end Monadic

View File

@ -3,10 +3,9 @@ import Pantograph.Delate
import Test.Common import Test.Common
import Lean import Lean
open Lean open Lean Pantograph
namespace Pantograph.Test.Delate
open Pantograph namespace Pantograph.Test.Delate
deriving instance Repr, DecidableEq for Protocol.BoundExpression deriving instance Repr, DecidableEq for Protocol.BoundExpression
@ -35,7 +34,7 @@ def test_sexp_of_symbol (env: Environment): IO LSpec.TestSeq := do
("Nat.add", "(:forall a (:c Nat) (:forall a (:c Nat) (:c Nat)))"), ("Nat.add", "(:forall a (:c Nat) (:forall a (:c Nat) (:c Nat)))"),
-- These ones are normal and easy -- These ones are normal and easy
("Nat.add_one", "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"), ("Nat.add_one", "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"),
("Nat.le_of_succ_le", "(:forall n (:c Nat) (:forall m (:c Nat) (:forall h ((:c LE.le) (:c Nat) (:c instLENat) ((:c Nat.succ) 1) 0) ((:c LE.le) (:c Nat) (:c instLENat) 2 1)) :implicit) :implicit)"), ("Nat.le_of_succ_le", "(:forall n (:c Nat) (:forall m (:c Nat) (:forall h ((:c LE.le) (:c Nat) (:c instLENat) ((:c Nat.succ) 1) 0) ((:c LE.le) (:c Nat) (:c instLENat) 2 1)) :i) :i)"),
-- Handling of higher order types -- Handling of higher order types
("Or", "(:forall a (:sort 0) (:forall b (:sort 0) (:sort 0)))"), ("Or", "(:forall a (:sort 0) (:forall b (:sort 0) (:sort 0)))"),
("List", "(:forall α (:sort (+ u 1)) (:sort (+ u 1)))") ("List", "(:forall α (:sort (+ u 1)) (:sort (+ u 1)))")
@ -50,8 +49,8 @@ def test_sexp_of_elab (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × (List Name) × String) := [ let entries: List (String × (List Name) × String) := [
("λ x: Nat × Bool => x.1", [], "(:lambda x ((:c Prod) (:c Nat) (:c Bool)) ((:c Prod.fst) (:c Nat) (:c Bool) 0))"), ("λ x: Nat × Bool => x.1", [], "(:lambda x ((:c Prod) (:c Nat) (:c Bool)) ((:c Prod.fst) (:c Nat) (:c Bool) 0))"),
("λ x: Array Nat => x.data", [], "(:lambda x ((:c Array) (:c Nat)) ((:c Array.data) (:c Nat) 0))"), ("λ x: Array Nat => x.data", [], "(:lambda x ((:c Array) (:c Nat)) ((:c Array.data) (:c Nat) 0))"),
("λ {α: Sort (u + 1)} => List α", [`u], "(:lambda α (:sort (+ u 1)) ((:c List) 0) :implicit)"), ("λ {α: Sort (u + 1)} => List α", [`u], "(:lambda α (:sort (+ u 1)) ((:c List) 0) :i)"),
("λ {α} => List α", [], "(:lambda α (:sort (+ (:mv _uniq.4) 1)) ((:c List) 0) :implicit)"), ("λ {α} => List α", [], "(:lambda α (:sort (+ (:mv _uniq.4) 1)) ((:c List) 0) :i)"),
("(2: Nat) <= (5: Nat)", [], "((:c LE.le) (:mv _uniq.18) (:mv _uniq.19) ((:c OfNat.ofNat) (:mv _uniq.4) (:lit 2) (:mv _uniq.5)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))"), ("(2: Nat) <= (5: Nat)", [], "((:c LE.le) (:mv _uniq.18) (:mv _uniq.19) ((:c OfNat.ofNat) (:mv _uniq.4) (:lit 2) (:mv _uniq.5)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))"),
] ]
entries.foldlM (λ suites (source, levels, target) => entries.foldlM (λ suites (source, levels, target) =>
@ -77,7 +76,7 @@ def test_sexp_of_expr (env: Environment): IO LSpec.TestSeq := do
.default) .default)
.implicit) .implicit)
.implicit, .implicit,
"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda k ((:c And) 1 0) ((:c And.right) _ _ 0)) :implicit) :implicit)" "(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda k ((:c And) 1 0) ((:c And.right) _ _ 0)) :i) :i)"
), ),
] ]
let termElabM: Elab.TermElabM LSpec.TestSeq := entries.foldlM (λ suites (expr, target) => do let termElabM: Elab.TermElabM LSpec.TestSeq := entries.foldlM (λ suites (expr, target) => do
@ -96,6 +95,30 @@ def test_instance (env: Environment): IO LSpec.TestSeq :=
let _expr := (← runTermElabMInMeta <| elabTerm s) |>.toOption |>.get! let _expr := (← runTermElabMInMeta <| elabTerm s) |>.toOption |>.get!
return LSpec.TestSeq.done return LSpec.TestSeq.done
def test_projection_prod (env: Environment) : IO LSpec.TestSeq:= runTest do
let struct := .app (.bvar 1) (.bvar 0)
let expr := .proj `Prod 1 struct
let .field projector numParams := analyzeProjection env expr |
fail "`Prod has fields"
checkEq "projector" projector `Prod.snd
checkEq "numParams" numParams 2
def test_projection_exists (env: Environment) : IO LSpec.TestSeq:= runTest do
let struct := .app (.bvar 1) (.bvar 0)
let expr := .proj `Exists 1 struct
let .singular recursor numParams numFields := analyzeProjection env expr |
fail "`Exists has no projectors"
checkEq "recursor" recursor `Exists.recOn
checkEq "numParams" numParams 2
checkEq "numFields" numFields 2
def test_matcher : TestT Elab.TermElabM Unit := do
let t ← parseSentence "Nat → Nat"
let e ← parseSentence "fun (n : Nat) => match n with | 0 => 0 | k => k" (.some t)
let .some _ ← Meta.matchMatcherApp? e.bindingBody! | fail "Must be a matcher app"
let e' ← instantiateAll e
checkTrue "ok" <| ← Meta.isTypeCorrect e'
def suite (env: Environment): List (String × IO LSpec.TestSeq) := def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[ [
("serializeName", do pure test_serializeName), ("serializeName", do pure test_serializeName),
@ -104,6 +127,9 @@ def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
("Sexp from elaborated expr", test_sexp_of_elab env), ("Sexp from elaborated expr", test_sexp_of_elab env),
("Sexp from expr", test_sexp_of_expr env), ("Sexp from expr", test_sexp_of_expr env),
("Instance", test_instance env), ("Instance", test_instance env),
("Projection Prod", test_projection_prod env),
("Projection Exists", test_projection_exists env),
("Matcher", runTestTermElabM env test_matcher),
] ]
end Pantograph.Test.Delate end Pantograph.Test.Delate

View File

@ -97,11 +97,37 @@ def test_inspect: IO LSpec.TestSeq := do
) LSpec.TestSeq.done ) LSpec.TestSeq.done
runCoreMSeq env inner runCoreMSeq env inner
def test_symbol_location : TestT IO Unit := do
let env: Environment ← importModules
(imports := #[`Init])
(opts := {})
(trustLevel := 1)
addTest $ ← runTestCoreM env do
let .ok result ← (Environment.inspect { name := "Nat.le_of_succ_le", source? := .some true } (options := {})).run | fail "Inspect failed"
checkEq "module" result.module? <| .some "Init.Data.Nat.Basic"
-- Extraction of source doesn't work for symbols in `Init` for some reason
checkTrue "file" result.sourceUri?.isNone
checkEq "pos" (result.sourceStart?.map (·.column)) <| .some 0
checkEq "pos" (result.sourceEnd?.map (·.column)) <| .some 88
let { imports, constNames, .. } ← Environment.moduleRead ⟨"Init.Data.Nat.Basic"⟩
checkEq "imports" imports #["Init.SimpLemmas", "Init.Data.NeZero"]
checkTrue "constNames" $ constNames.contains "Nat.succ_add"
def test_matcher : TestT IO Unit := do
let env: Environment ← importModules
(imports := #[`Init])
(opts := {})
(trustLevel := 1)
checkTrue "not matcher" $ ¬ Meta.isMatcherCore env `Nat.strongRecOn
def suite: List (String × IO LSpec.TestSeq) := def suite: List (String × IO LSpec.TestSeq) :=
[ [
("Catalog", test_catalog), ("Catalog", test_catalog),
("Symbol Visibility", test_symbol_visibility), ("Symbol Visibility", test_symbol_visibility),
("Inspect", test_inspect), ("Inspect", test_inspect),
("Symbol Location", runTest test_symbol_location),
("Matcher", runTest test_matcher),
] ]
end Pantograph.Test.Environment end Pantograph.Test.Environment

View File

@ -1,16 +1,34 @@
import LSpec
import Pantograph import Pantograph
import Repl import Repl
import Test.Common import Test.Common
import LSpec
open Lean Pantograph open Lean Pantograph
namespace Pantograph.Test.Frontend namespace Pantograph.Test.Frontend
def collectSorrysFromSource (source: String) : MetaM (List GoalState) := do def runFrontend { α } (source: String) (f : Frontend.CompilationStep → IO α) : MetaM (List α) := do
let filename := "<anonymous>"
let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {}
let m := Frontend.mapCompilationSteps f
m.run context |>.run' state
def test_open : TestT MetaM Unit := do
let sketch := "
open Nat
example : ∀ (n : Nat), n + 1 = Nat.succ n := by
intro
apply add_one
"
let errors ← runFrontend sketch λ step => step.msgs.mapM (·.toString)
checkEq "errors" errors [[], []]
def collectSorrysFromSource (source: String) (options : Frontend.GoalCollectionOptions := {})
: MetaM (List GoalState) := do
let filename := "<anonymous>" let filename := "<anonymous>"
let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {} let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {}
let m := Frontend.mapCompilationSteps λ step => do let m := Frontend.mapCompilationSteps λ step => do
return (step.before, ← Frontend.collectSorrys step) return (step.before, ← Frontend.collectSorrys step options)
let li ← m.run context |>.run' state let li ← m.run context |>.run' state
let goalStates ← li.filterMapM λ (env, sorrys) => withEnv env do let goalStates ← li.filterMapM λ (env, sorrys) => withEnv env do
if sorrys.isEmpty then if sorrys.isEmpty then
@ -181,9 +199,10 @@ def test_capture_type_mismatch : TestT MetaM Unit := do
let input := " let input := "
def mystery (k: Nat) : Nat := true def mystery (k: Nat) : Nat := true
" "
let goalStates ← (collectSorrysFromSource input).run' {} let options := { collectTypeErrors := true }
let goalStates ← (collectSorrysFromSource input options).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}" let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
checkEq "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize)) #[ checkEq "goals" ((← goalState.serializeGoals).map (·.devolatilize)) #[
{ {
target := { pp? := "Nat" }, target := { pp? := "Nat" },
vars := #[{ vars := #[{
@ -193,6 +212,16 @@ def mystery (k: Nat) : Nat := true
} }
] ]
def test_capture_type_mismatch_in_binder : TestT MetaM Unit := do
let input := "
example (p: Prop) (h: (∀ (x: Prop), Nat) → p): p := h (λ (y: Nat) => 5)
"
let options := { collectTypeErrors := true }
let goalStates ← (collectSorrysFromSource input options).run' {}
let [goalState] := goalStates | panic! s!"Incorrect number of states: {goalStates.length}"
checkEq "goals" ((← goalState.serializeGoals (options := {})).map (·.devolatilize)) #[
]
def collectNewConstants (source: String) : MetaM (List (List Name)) := do def collectNewConstants (source: String) : MetaM (List (List Name)) := do
let filename := "<anonymous>" let filename := "<anonymous>"
let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {} let (context, state) ← do Frontend.createContextStateFromFile source filename (← getEnv) {}
@ -221,12 +250,14 @@ theorem mystery [SizeOf α] (as : List α) (i : Fin as.length) : sizeOf (as.get
def suite (env : Environment): List (String × IO LSpec.TestSeq) := def suite (env : Environment): List (String × IO LSpec.TestSeq) :=
let tests := [ let tests := [
("open", test_open),
("multiple_sorrys_in_proof", test_multiple_sorrys_in_proof), ("multiple_sorrys_in_proof", test_multiple_sorrys_in_proof),
("sorry_in_middle", test_sorry_in_middle), ("sorry_in_middle", test_sorry_in_middle),
("sorry_in_induction", test_sorry_in_induction), ("sorry_in_induction", test_sorry_in_induction),
("sorry_in_coupled", test_sorry_in_coupled), ("sorry_in_coupled", test_sorry_in_coupled),
("environment_capture", test_environment_capture), ("environment_capture", test_environment_capture),
("capture_type_mismatch", test_capture_type_mismatch), ("capture_type_mismatch", test_capture_type_mismatch),
--("capture_type_mismatch_in_binder", test_capture_type_mismatch_in_binder),
("collect_one_constant", test_collect_one_constant), ("collect_one_constant", test_collect_one_constant),
("collect_one_theorem", test_collect_one_theorem), ("collect_one_theorem", test_collect_one_theorem),
] ]

View File

@ -8,23 +8,33 @@ import Test.Common
namespace Pantograph.Test.Integration namespace Pantograph.Test.Integration
open Pantograph.Repl open Pantograph.Repl
def step { α } [Lean.ToJson α] (cmd: String) (payload: List (String × Lean.Json)) deriving instance Lean.ToJson for Protocol.EnvInspect
(expected: α) (name? : Option String := .none): MainM LSpec.TestSeq := do deriving instance Lean.ToJson for Protocol.EnvAdd
let payload := Lean.Json.mkObj payload deriving instance Lean.ToJson for Protocol.ExprEcho
deriving instance Lean.ToJson for Protocol.OptionsSet
deriving instance Lean.ToJson for Protocol.OptionsPrint
deriving instance Lean.ToJson for Protocol.GoalStart
deriving instance Lean.ToJson for Protocol.GoalPrint
deriving instance Lean.ToJson for Protocol.GoalTactic
deriving instance Lean.ToJson for Protocol.FrontendProcess
def step { α β } [Lean.ToJson α] [Lean.ToJson β] (cmd: String) (payload: α)
(expected: β) (name? : Option String := .none): MainM LSpec.TestSeq := do
let payload := Lean.toJson payload
let name := name?.getD s!"{cmd} {payload.compress}" let name := name?.getD s!"{cmd} {payload.compress}"
let result ← Repl.execute { cmd, payload } let result ← Repl.execute { cmd, payload }
return LSpec.test name (toString result = toString (Lean.toJson expected)) return LSpec.test name (result.pretty = (Lean.toJson expected).pretty)
abbrev Test := List (MainM LSpec.TestSeq) abbrev Test := List (MainM LSpec.TestSeq)
def test_elab : Test := def test_expr_echo : Test :=
[ [
step "expr.echo" step "expr.echo"
[("expr", .str "λ {α : Sort (u + 1)} => List α"), ("levels", .arr #["u"])] ({ expr := "λ {α : Sort (u + 1)} => List α", levels? := .some #["u"]}: Protocol.ExprEcho)
(Lean.toJson ({ ({
type := { pp? := .some "{α : Type u} → Type u" }, type := { pp? := .some "{α : Type u} → Type u" },
expr := { pp? := .some "fun {α} => List α" } expr := { pp? := .some "fun {α} => List α" }
}: Protocol.ExprEchoResult)), }: Protocol.ExprEchoResult),
] ]
def test_option_modify : Test := def test_option_modify : Test :=
@ -33,50 +43,77 @@ def test_option_modify : Test :=
let module? := Option.some "Init.Data.Nat.Basic" let module? := Option.some "Init.Data.Nat.Basic"
let options: Protocol.Options := {} let options: Protocol.Options := {}
[ [
step "env.inspect" [("name", .str "Nat.add_one")] step "env.inspect" ({ name := "Nat.add_one" } : Protocol.EnvInspect)
({ type := { pp? }, module? }: Protocol.EnvInspectResult), ({ type := { pp? }, module? }: Protocol.EnvInspectResult),
step "options.set" [("printExprAST", .bool true)] step "options.set" ({ printExprAST? := .some true } : Protocol.OptionsSet)
({ }: Protocol.OptionsSetResult), ({ }: Protocol.OptionsSetResult),
step "env.inspect" [("name", .str "Nat.add_one")] step "env.inspect" ({ name := "Nat.add_one" } : Protocol.EnvInspect)
({ type := { pp?, sexp? }, module? }: Protocol.EnvInspectResult), ({ type := { pp?, sexp? }, module? }: Protocol.EnvInspectResult),
step "options.print" [] step "options.print" ({} : Protocol.OptionsPrint)
({ options with printExprAST := true }: Protocol.Options), ({ options with printExprAST := true }: Protocol.Options),
] ]
def test_malformed_command : Test := def test_malformed_command : Test :=
let invalid := "invalid" let invalid := "invalid"
[ [
step invalid [("name", .str "Nat.add_one")] step invalid ({ name := "Nat.add_one" }: Protocol.EnvInspect)
({ error := "command", desc := s!"Unknown command {invalid}" }: Protocol.InteractionError) ({ error := "command", desc := s!"Unknown command {invalid}" }: Protocol.InteractionError)
(name? := .some "Invalid Command"), (name? := .some "Invalid Command"),
step "expr.echo" [(invalid, .str "Random garbage data")] step "expr.echo" (Lean.Json.mkObj [(invalid, .str "Random garbage data")])
({ error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected" }: ({ error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected" }:
Protocol.InteractionError) Protocol.InteractionError)
(name? := .some "JSON Deserialization") (name? := .some "JSON Deserialization")
] ]
def test_tactic : Test := def test_tactic : Test :=
let varX := { name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}
let goal1: Protocol.Goal := { let goal1: Protocol.Goal := {
name := "_uniq.11", name := "_uniq.11",
target := { pp? := .some "∀ (q : Prop), x q → q x" }, target := { pp? := .some "∀ (q : Prop), x q → q x" },
vars := #[{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}], vars := #[varX],
} }
let goal2: Protocol.Goal := { let goal2: Protocol.Goal := {
name := "_uniq.17", name := "_uniq.14",
target := { pp? := .some "x y → y x" }, target := { pp? := .some "x y → y x" },
vars := #[ vars := #[
{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}, varX,
{ name := "_uniq.16", userName := "y", type? := .some { pp? := .some "Prop" }} { name := "_uniq.13", userName := "y", type? := .some { pp? := .some "Prop" }}
], ],
} }
[ [
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")] step "goal.start" ({ expr := "∀ (p q: Prop), p q → q p" }: Protocol.GoalStart)
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult), ({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro x")] step "goal.tactic" ({ stateId := 0, tactic? := .some "intro x" }: Protocol.GoalTactic)
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult), ({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.print" [("stateId", .num 1), ("parentExpr", .bool true), ("rootExpr", .bool true)] step "goal.print" ({ stateId := 1, parentExpr? := .some true, rootExpr? := .some true }: Protocol.GoalPrint)
({ parent? := .some { pp? := .some "fun x => ?m.12 x" }, }: Protocol.GoalPrintResult), ({
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "intro y")] root? := .some { pp? := "fun x => ?m.11"},
parent? := .some { pp? := .some "fun x => ?m.11" },
}: Protocol.GoalPrintResult),
step "goal.tactic" ({ stateId := 1, tactic? := .some "intro y" }: Protocol.GoalTactic)
({ nextStateId? := .some 2, goals? := #[goal2], }: Protocol.GoalTacticResult), ({ nextStateId? := .some 2, goals? := #[goal2], }: Protocol.GoalTacticResult),
step "goal.tactic" ({ stateId := 1, tactic? := .some "apply Nat.le_of_succ_le" }: Protocol.GoalTactic)
({ messages? := .some #["tactic 'apply' failed, failed to unify\n ∀ {m : Nat}, Nat.succ ?n ≤ m → ?n ≤ m\nwith\n ∀ (q : Prop), x q → q x\nx : Prop\n⊢ ∀ (q : Prop), x q → q x"] }:
Protocol.GoalTacticResult),
step "goal.tactic" ({ stateId := 0, tactic? := .some "sorry" }: Protocol.GoalTactic)
({ nextStateId? := .some 3, goals? := .some #[], hasSorry := true }: Protocol.GoalTacticResult),
] ]
example : (1 : Nat) + (2 * 3) = 1 + (4 - 3) + (6 - 4) + 3 := by
simp
def test_tactic_timeout : Test :=
[
step "goal.start" ({ expr := "(1 : Nat) + (2 * 3) = 1 + (4 - 3) + (6 - 4) + 3" }: Protocol.GoalStart)
({ stateId := 0, root := "_uniq.319" }: Protocol.GoalStartResult),
-- timeout of 10 milliseconds
step "options.set" ({ timeout? := .some 10 } : Protocol.OptionsSet)
({ }: Protocol.OptionsSetResult),
step "goal.tactic" ({ stateId := 0, expr? := .some "by\nsleep 1000; simp" }: Protocol.GoalTactic)
({ error := "internal", desc := "interrupt" }: Protocol.InteractionError),
-- ensure graceful recovery
step "options.set" ({ timeout? := .some 0 } : Protocol.OptionsSet)
({ }: Protocol.OptionsSetResult),
step "goal.tactic" ({ stateId := 0, tactic? := .some "simp" }: Protocol.GoalTactic)
({ nextStateId? := .some 1, goals? := .some #[], }: Protocol.GoalTacticResult),
]
def test_automatic_mode (automatic: Bool): Test := def test_automatic_mode (automatic: Bool): Test :=
let varsPQ := #[ let varsPQ := #[
{ name := "_uniq.10", userName := "p", type? := .some { pp? := .some "Prop" }}, { name := "_uniq.10", userName := "p", type? := .some { pp? := .some "Prop" }},
@ -90,75 +127,89 @@ def test_automatic_mode (automatic: Bool): Test :=
], ],
} }
let goal2l: Protocol.Goal := { let goal2l: Protocol.Goal := {
name := "_uniq.59", name := "_uniq.61",
userName? := .some "inl", userName? := .some "inl",
target := { pp? := .some "q p" }, target := { pp? := .some "q p" },
vars := varsPQ ++ #[ vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true} { name := "_uniq.49", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
], ],
} }
let goal2r: Protocol.Goal := { let goal2r: Protocol.Goal := {
name := "_uniq.72", name := "_uniq.74",
userName? := .some "inr", userName? := .some "inr",
target := { pp? := .some "q p" }, target := { pp? := .some "q p" },
vars := varsPQ ++ #[ vars := varsPQ ++ #[
{ name := "_uniq.60", userName := "h✝", type? := .some { pp? := .some "q" }, isInaccessible := true} { name := "_uniq.62", userName := "h✝", type? := .some { pp? := .some "q" }, isInaccessible := true}
], ],
} }
let goal3l: Protocol.Goal := { let goal3l: Protocol.Goal := {
name := "_uniq.78", name := "_uniq.80",
userName? := .some "inl.h", userName? := .some "inl.h",
target := { pp? := .some "p" }, target := { pp? := .some "p" },
vars := varsPQ ++ #[ vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true} { name := "_uniq.49", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
], ],
} }
[ [
step "options.set" [("automaticMode", .bool automatic)] step "options.set" ({automaticMode? := .some automatic}: Protocol.OptionsSet)
({}: Protocol.OptionsSetResult), ({}: Protocol.OptionsSetResult),
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")] step "goal.start" ({ expr := "∀ (p q: Prop), p q → q p"} : Protocol.GoalStart)
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult), ({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro p q h")] step "goal.tactic" ({ stateId := 0, tactic? := .some "intro p q h" }: Protocol.GoalTactic)
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult), ({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "cases h")] step "goal.tactic" ({ stateId := 1, tactic? := .some "cases h" }: Protocol.GoalTactic)
({ nextStateId? := .some 2, goals? := #[goal2l, goal2r], }: Protocol.GoalTacticResult), ({ nextStateId? := .some 2, goals? := #[goal2l, goal2r], }: Protocol.GoalTacticResult),
let goals? := if automatic then #[goal3l, goal2r] else #[goal3l] let goals? := if automatic then #[goal3l, goal2r] else #[goal3l]
step "goal.tactic" [("stateId", .num 2), ("goalId", .num 0), ("tactic", .str "apply Or.inr")] step "goal.tactic" ({ stateId := 2, tactic? := .some "apply Or.inr" }: Protocol.GoalTactic)
({ nextStateId? := .some 3, goals?, }: Protocol.GoalTacticResult), ({ nextStateId? := .some 3, goals?, }: Protocol.GoalTacticResult),
] ]
def test_env_add_inspect : Test := def test_env_add_inspect : Test :=
let name1 := "Pantograph.mystery" let name1 := "Pantograph.mystery"
let name2 := "Pantograph.mystery2" let name2 := "Pantograph.mystery2"
let name3 := "Pantograph.mystery3"
[ [
step "env.add" step "env.add"
[ ({
("name", .str name1), name := name1,
("type", .str "Prop → Prop → Prop"), value := "λ (a b: Prop) => Or a b",
("value", .str "λ (a b: Prop) => Or a b"), isTheorem := false
("isTheorem", .bool false) }: Protocol.EnvAdd)
]
({}: Protocol.EnvAddResult), ({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name1)] step "env.inspect" ({name := name1, value? := .some true} : Protocol.EnvInspect)
({ ({
value? := .some { pp? := .some "fun a b => a b" }, value? := .some { pp? := .some "fun a b => a b" },
type := { pp? := .some "Prop → Prop → Prop" }, type := { pp? := .some "Prop → Prop → Prop" },
}: }:
Protocol.EnvInspectResult), Protocol.EnvInspectResult),
step "env.add" step "env.add"
[ ({
("name", .str name2), name := name2,
("type", .str "Nat → Int"), type? := "Nat → Int",
("value", .str "λ (a: Nat) => a + 1"), value := "λ (a: Nat) => a + 1",
("isTheorem", .bool false) isTheorem := false
] }: Protocol.EnvAdd)
({}: Protocol.EnvAddResult), ({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name2)] step "env.inspect" ({name := name2, value? := .some true} : Protocol.EnvInspect)
({ ({
value? := .some { pp? := .some "fun a => ↑a + 1" }, value? := .some { pp? := .some "fun a => ↑a + 1" },
type := { pp? := .some "Nat → Int" }, type := { pp? := .some "Nat → Int" },
}: }:
Protocol.EnvInspectResult) Protocol.EnvInspectResult),
step "env.add"
({
name := name3,
levels? := .some #["u"]
type? := "(α : Type u) → α → (α × α)",
value := "λ (α : Type u) (x : α) => (x, x)",
isTheorem := false
}: Protocol.EnvAdd)
({}: Protocol.EnvAddResult),
step "env.inspect" ({name := name3} : Protocol.EnvInspect)
({
type := { pp? := .some "(α : Type u) → αα × α" },
}:
Protocol.EnvInspectResult),
] ]
example : ∀ (p: Prop), p → p := by example : ∀ (p: Prop), p → p := by
@ -166,16 +217,14 @@ example : ∀ (p: Prop), p → p := by
exact h exact h
def test_frontend_process : Test := def test_frontend_process : Test :=
[
let file := "example : ∀ (p q: Prop), p → p q := by\n intro p q h\n exact Or.inl h" let file := "example : ∀ (p q: Prop), p → p q := by\n intro p q h\n exact Or.inl h"
let goal1 := "p q : Prop\nh : p\n⊢ p q" let goal1 := "p q : Prop\nh : p\n⊢ p q"
step "frontend.process"
[ [
("file", .str file), step "frontend.process"
("invocations", .bool true), ({
("sorrys", .bool false), file? := .some file,
("newConstants", .bool false), invocations := true,
] }: Protocol.FrontendProcess)
({ ({
units := [{ units := [{
boundary := (0, file.utf8ByteSize), boundary := (0, file.utf8ByteSize),
@ -211,12 +260,10 @@ def test_frontend_process_sorry : Test :=
vars := #[{ name := "_uniq.4", userName := "p", type? := .some { pp? := .some "Prop" }}], vars := #[{ name := "_uniq.4", userName := "p", type? := .some { pp? := .some "Prop" }}],
} }
step "frontend.process" step "frontend.process"
[ ({
("file", .str file), file? := .some file,
("invocations", .bool false), sorrys := true,
("sorrys", .bool true), }: Protocol.FrontendProcess)
("newConstants", .bool false),
]
({ ({
units := [{ units := [{
boundary := (0, solved.utf8ByteSize), boundary := (0, solved.utf8ByteSize),
@ -230,30 +277,85 @@ def test_frontend_process_sorry : Test :=
}: Protocol.FrontendProcessResult), }: Protocol.FrontendProcessResult),
] ]
def test_import_open : Test :=
let header := "import Init\nopen Nat\nuniverse u"
let goal1: Protocol.Goal := {
name := "_uniq.67",
target := { pp? := .some "n + 1 = n.succ" },
vars := #[{ name := "_uniq.66", userName := "n", type? := .some { pp? := .some "Nat" }}],
}
[
step "frontend.process"
({
file? := .some header,
readHeader := true,
inheritEnv := true,
}: Protocol.FrontendProcess)
({
units := [
{ boundary := (12, 21) },
{ boundary := (21, header.utf8ByteSize) },
],
}: Protocol.FrontendProcessResult),
step "goal.start" ({ expr := "∀ (n : Nat), n + 1 = Nat.succ n"} : Protocol.GoalStart)
({ stateId := 0, root := "_uniq.65" }: Protocol.GoalStartResult),
step "goal.tactic" ({ stateId := 0, tactic? := .some "intro n" }: Protocol.GoalTactic)
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.tactic" ({ stateId := 1, tactic? := .some "apply add_one" }: Protocol.GoalTactic)
({ nextStateId? := .some 2, goals? := .some #[], }: Protocol.GoalTacticResult),
step "goal.start" ({ expr := "∀ (x : Sort u), Sort (u + 1)"} : Protocol.GoalStart)
({ stateId := 3, root := "_uniq.5" }: Protocol.GoalStartResult),
]
/-- Ensure there cannot be circular references -/
def test_frontend_process_circular : Test :=
let withSorry := "theorem mystery : 1 + 2 = 2 + 3 := sorry"
[
let goal1: Protocol.Goal := {
name := "_uniq.2",
target := { pp? := .some "1 + 2 = 2 + 3" },
vars := #[],
}
step "frontend.process"
({
file? := .some withSorry,
sorrys := true,
}: Protocol.FrontendProcess)
({
units := [{
boundary := (0, withSorry.utf8ByteSize),
goalStateId? := .some 0,
goals? := .some #[goal1],
goalSrcBoundaries? := .some #[(35, 40)],
messages := #["<anonymous>:1:8: warning: declaration uses 'sorry'\n"],
}],
}: Protocol.FrontendProcessResult),
step "goal.tactic" ({ stateId := 0, tactic? := .some "exact?" }: Protocol.GoalTactic)
({ messages? := .some #["`exact?` could not close the goal. Try `apply?` to see partial suggestions."] }
: Protocol.GoalTacticResult),
]
def runTest (env: Lean.Environment) (steps: Test): IO LSpec.TestSeq := do def runTest (env: Lean.Environment) (steps: Test): IO LSpec.TestSeq := do
-- Setup the environment for execution -- Setup the environment for execution
let context: Context := { let coreContext ← createCoreContext #[]
imports := ["Init"] let mainM : MainM LSpec.TestSeq :=
} steps.foldlM (λ suite step => do return suite ++ (← step)) LSpec.TestSeq.done
let commands: MainM LSpec.TestSeq := mainM.run { coreContext } |>.run' { env }
steps.foldlM (λ suite step => do
let result ← step
return suite ++ result) LSpec.TestSeq.done
runCoreMSeq env <| commands.run context |>.run' {}
def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) := def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) :=
let tests := [ let tests := [
("expr.echo", test_elab), ("expr.echo", test_expr_echo),
("options.set options.print", test_option_modify), ("options.set options.print", test_option_modify),
("Malformed command", test_malformed_command), ("Malformed command", test_malformed_command),
("Tactic", test_tactic), ("Tactic", test_tactic),
("Tactic Timeout", test_tactic_timeout),
("Manual Mode", test_automatic_mode false), ("Manual Mode", test_automatic_mode false),
("Automatic Mode", test_automatic_mode true), ("Automatic Mode", test_automatic_mode true),
("env.add env.inspect", test_env_add_inspect), ("env.add env.inspect", test_env_add_inspect),
("frontend.process invocation", test_frontend_process), ("frontend.process invocation", test_frontend_process),
("frontend.process sorry", test_frontend_process_sorry), ("frontend.process sorry", test_frontend_process_sorry),
("frontend.process import", test_import_open),
("frontend.process circular", test_frontend_process_circular),
] ]
tests.map (fun (name, test) => (name, runTest env test)) tests.map (fun (name, test) => (name, runTest env test))

View File

@ -8,15 +8,18 @@ open Pantograph
namespace Pantograph.Test.Library namespace Pantograph.Test.Library
def runTermElabM { α } (termElabM: Elab.TermElabM α): CoreM α :=
termElabM.run' (ctx := defaultElabContext) |>.run'
def test_expr_echo (env: Environment): IO LSpec.TestSeq := do def test_expr_echo (env: Environment): IO LSpec.TestSeq := do
let inner: CoreM LSpec.TestSeq := do let inner: CoreM LSpec.TestSeq := do
let prop_and_proof := "⟨∀ (x: Prop), x → x, λ (x: Prop) (h: x) => h⟩" let prop_and_proof := "⟨∀ (x: Prop), x → x, λ (x: Prop) (h: x) => h⟩"
let tests := LSpec.TestSeq.done let tests := LSpec.TestSeq.done
let echoResult ← exprEcho prop_and_proof (options := {}) let echoResult ← runTermElabM $ exprEcho prop_and_proof (options := {})
let tests := tests.append (LSpec.test "fail" (echoResult.toOption == .some { let tests := tests.append (LSpec.test "fail" (echoResult.toOption == .some {
type := { pp? := "?m.2" }, expr := { pp? := "?m.3" } type := { pp? := "?m.2" }, expr := { pp? := "?m.3" }
})) }))
let echoResult ← exprEcho prop_and_proof (expectedType? := .some "Σ' p:Prop, p") (options := { printExprAST := true }) let echoResult ← runTermElabM $ exprEcho prop_and_proof (expectedType? := .some "Σ' p:Prop, p") (options := { printExprAST := true })
let tests := tests.append (LSpec.test "fail" (echoResult.toOption == .some { let tests := tests.append (LSpec.test "fail" (echoResult.toOption == .some {
type := { type := {
pp? := "(p : Prop) ×' p", pp? := "(p : Prop) ×' p",

View File

@ -17,9 +17,9 @@ def addPrefix (pref: String) (tests: List (String × α)): List (String × α)
tests.map (λ (name, x) => (pref ++ "/" ++ name, x)) tests.map (λ (name, x) => (pref ++ "/" ++ name, x))
/-- Runs test in parallel. Filters test name if given -/ /-- Runs test in parallel. Filters test name if given -/
def runTestGroup (filter: Option String) (tests: List (String × IO LSpec.TestSeq)): IO LSpec.TestSeq := do def runTestGroup (nameFilter?: Option String) (tests: List (String × IO LSpec.TestSeq)): IO LSpec.TestSeq := do
let tests: List (String × IO LSpec.TestSeq) := match filter with let tests: List (String × IO LSpec.TestSeq) := match nameFilter? with
| .some filter => tests.filter (λ (name, _) => filter.isPrefixOf name) | .some nameFilter => tests.filter (λ (name, _) => nameFilter.isPrefixOf name)
| .none => tests | .none => tests
let tasks: List (String × Task _) ← tests.mapM (λ (name, task) => do let tasks: List (String × Task _) ← tests.mapM (λ (name, task) => do
return (name, ← EIO.asTask task)) return (name, ← EIO.asTask task))
@ -37,7 +37,7 @@ open Pantograph.Test
/-- Main entry of tests; Provide an argument to filter tests by prefix -/ /-- Main entry of tests; Provide an argument to filter tests by prefix -/
def main (args: List String) := do def main (args: List String) := do
let name_filter := args.head? let nameFilter? := args.head?
Lean.initSearchPath (← Lean.findSysroot) Lean.initSearchPath (← Lean.findSysroot)
let env_default: Lean.Environment ← Lean.importModules let env_default: Lean.Environment ← Lean.importModules
(imports := #[`Init]) (imports := #[`Init])
@ -53,10 +53,9 @@ def main (args: List String) := do
("Proofs", Proofs.suite env_default), ("Proofs", Proofs.suite env_default),
("Delate", Delate.suite env_default), ("Delate", Delate.suite env_default),
("Serial", Serial.suite env_default), ("Serial", Serial.suite env_default),
("Tactic/Congruence", Tactic.Congruence.suite env_default), ("Tactic/Assign", Tactic.Assign.suite env_default),
("Tactic/Motivated Apply", Tactic.MotivatedApply.suite env_default),
("Tactic/No Confuse", Tactic.NoConfuse.suite env_default),
("Tactic/Prograde", Tactic.Prograde.suite env_default), ("Tactic/Prograde", Tactic.Prograde.suite env_default),
("Tactic/Special", Tactic.Special.suite env_default),
] ]
let tests: List (String × IO LSpec.TestSeq) := suites.foldl (λ acc (name, suite) => acc ++ (addPrefix name suite)) [] let tests: List (String × IO LSpec.TestSeq) := suites.foldl (λ acc (name, suite) => acc ++ (addPrefix name suite)) []
LSpec.lspecIO (← runTestGroup name_filter tests) LSpec.lspecEachIO [()] (λ () => runTestGroup nameFilter? tests)

View File

@ -79,20 +79,20 @@ def test_m_couple: TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"]) #[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone checkTrue "(1 root)" $ ¬ state1.isSolved
-- Set m to 3 -- Set m to 3
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 3") with let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 3") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone checkTrue "(1b root)" $ ¬ state2.isSolved
let state1b ← match state2.continue state1 with let state1b ← match state2.continue state1 with
| .error msg => do | .error msg => do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
@ -100,7 +100,7 @@ def test_m_couple: TestM Unit := do
| .ok state => pure state | .ok state => pure state
addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check "exact 3" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 3", .some "3 ≤ 5"]) #[.some "2 ≤ 3", .some "3 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone checkTrue "(2 root)" $ ¬ state1b.isSolved
def test_m_couple_simp: TestM Unit := do def test_m_couple_simp: TestM Unit := do
let state? ← startProof "(2: Nat) ≤ 5" let state? ← startProof "(2: Nat) ≤ 5"
@ -111,7 +111,7 @@ def test_m_couple_simp: TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -122,11 +122,11 @@ def test_m_couple_simp: TestM Unit := do
#[#["_uniq.38"], #["_uniq.38"], #[]]) #[#["_uniq.38"], #["_uniq.38"], #[]])
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 2") with let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 2") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.test "(1b root)" state2.rootExpr?.isNone checkTrue "(1b root)" $ ¬ state2.isSolved
let state1b ← match state2.continue state1 with let state1b ← match state2.continue state1 with
| .error msg => do | .error msg => do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
@ -134,9 +134,9 @@ def test_m_couple_simp: TestM Unit := do
| .ok state => pure state | .ok state => pure state
addTest $ LSpec.check "exact 2" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check "exact 2" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 2", .some "2 ≤ 5"]) #[.some "2 ≤ 2", .some "2 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone checkTrue "(2 root)" $ ¬ state1b.isSolved
let state3 ← match ← state1b.tacticOn (goalId := 0) (tactic := "simp") with let state3 ← match ← state1b.tacticOn (goalId := 0) (tactic := "simp") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -146,7 +146,7 @@ def test_m_couple_simp: TestM Unit := do
return () return ()
| .ok state => pure state | .ok state => pure state
let state5 ← match ← state4.tacticOn (goalId := 0) (tactic := "simp") with let state5 ← match ← state4.tacticOn (goalId := 0) (tactic := "simp") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -173,7 +173,7 @@ def test_proposition_generation: TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply PSigma.mk") with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -184,27 +184,27 @@ def test_proposition_generation: TestM Unit := do
]) ])
if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then if let #[goal1, goal2] := ← state1.serializeGoals (options := { (← read) with printExprAST := true }) then
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})") addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone checkTrue "(1 root)" $ ¬ state1.isSolved
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := "λ (x: Nat) => _") with let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "?m.29 x"]) #[.some "?m.30 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone checkTrue "(2 root)" $ ¬ state2.isSolved
let assign := "Eq.refl x" let assign := "Eq.refl x"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := assign) with let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := assign) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check s!":= {assign}" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check s!":= {assign}" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[]) #[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome checkTrue "(3 root)" state3.isSolved
return () return ()
def test_partial_continuation: TestM Unit := do def test_partial_continuation: TestM Unit := do
@ -216,7 +216,7 @@ def test_partial_continuation: TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -224,7 +224,7 @@ def test_partial_continuation: TestM Unit := do
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"]) #[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "apply Nat.succ") with let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "apply Nat.succ") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -238,23 +238,23 @@ def test_partial_continuation: TestM Unit := do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
return () return ()
| .ok state => pure state | .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check "(continue 1)" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m.succ", .some "?m.succ ≤ 5", .some "Nat"]) #[.some "2 ≤ Nat.succ ?m", .some "Nat.succ ?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone checkTrue "(2 root)" state1b.rootExpr?.get!.hasExprMVar
-- Roundtrip -- Roundtrip
--let coupled_goals := coupled_goals.map (λ g => --let coupled_goals := coupled_goals.map (λ g =>
-- { name := str_to_name $ serializeName g.name (sanitize := false)}) -- { name := str_to_name $ serializeName g.name (sanitize := false)})
let coupled_goals := coupled_goals.map (λ g => serializeName g.name (sanitize := false)) let coupled_goals := coupled_goals.map (·.name.toString)
let coupled_goals := coupled_goals.map (λ g => { name := g.toName }) let coupled_goals := coupled_goals.map ({ name := ·.toName })
let state1b ← match state2.resume (goals := coupled_goals) with let state1b ← match state2.resume (goals := coupled_goals) with
| .error msg => do | .error msg => do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
return () return ()
| .ok state => pure state | .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) = addTest $ LSpec.check "(continue 2)" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m.succ", .some "?m.succ ≤ 5", .some "Nat"]) #[.some "2 ≤ Nat.succ ?m", .some "Nat.succ ?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone checkTrue "(2 root)" state1b.rootExpr?.get!.hasExprMVar
-- Continuation should fail if the state does not exist: -- Continuation should fail if the state does not exist:
match state0.resume coupled_goals with match state0.resume coupled_goals with

View File

@ -89,7 +89,7 @@ def test_identity: TestM Unit := do
let tactic := "intro p h" let tactic := "intro p h"
let state1 ← match ← state0.tacticOn 0 tactic with let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -97,7 +97,7 @@ def test_identity: TestM Unit := do
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.name) = addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.name) =
#[inner]) #[inner])
let state1parent ← state1.withParentContext do let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false) serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda h 0 (:subst (:mv {inner}) 1 0)))") addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda h 0 (:subst (:mv {inner}) 1 0)))")
-- Individual test cases -- Individual test cases
@ -116,7 +116,7 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn 0 "intro n m" with let state1 ← match ← state0.tacticOn 0 "intro n m" with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -130,7 +130,7 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
let state2 ← match ← state1.tacticOn 0 "rw [Nat.add_comm]" with let state2 ← match ← state1.tacticOn 0 "rw [Nat.add_comm]" with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -148,14 +148,14 @@ def test_delta_variable: TestM Unit := do
return () return ()
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "intro n") with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "intro n") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) = addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) =
#[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"]) #[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"])
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "intro m") with let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "intro m") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -187,27 +187,27 @@ def test_arith: TestM Unit := do
let tactic := "intros" let tactic := "intros"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check tactic (state1.goals.length = 1) addTest $ LSpec.check tactic (state1.goals.length = 1)
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone checkTrue "(1 root)" state1.rootExpr?.get!.hasExprMVar
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check "simp ..." (state2.goals.length = 1) addTest $ LSpec.check "simp ..." (state2.goals.length = 1)
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone checkTrue "(2 root)" state2.rootExpr?.get!.hasExprMVar
let tactic := "assumption" let tactic := "assumption"
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.test tactic state3.goals.isEmpty addTest $ LSpec.test tactic state3.goals.isEmpty
addTest $ LSpec.check "(3 root)" state3.rootExpr?.isSome checkTrue "(3 root)" $ ¬ state3.rootExpr?.get!.hasExprMVar
return () return ()
-- Two ways to write the same theorem -- Two ways to write the same theorem
@ -237,17 +237,19 @@ def test_or_comm: TestM Unit := do
let tactic := "intro p q h" let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
let fvP := "_uniq.10" let [state1g0] := state1.goals | fail "Should have 1 goal"
let fvQ := "_uniq.13" let (fvP, fvQ, fvH) ← state1.withContext state1g0 do
let fvH := "_uniq.16" let lctx ← getLCtx
let state1g0 := "_uniq.17" let #[fvP, fvQ, fvH] := lctx.getFVarIds.map (toString ·.name) |
panic! "Incorrect number of decls"
pure (fvP, fvQ, fvH)
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)) = addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)) =
#[{ #[{
name := state1g0, name := state1g0.name.toString,
target := { pp? := .some "q p" }, target := { pp? := .some "q p" },
vars := #[ vars := #[
{ name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } }, { name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } },
@ -255,28 +257,30 @@ def test_or_comm: TestM Unit := do
{ name := fvH, userName := "h", type? := .some { pp? := .some "p q" } } { name := fvH, userName := "h", type? := .some { pp? := .some "p q" } }
] ]
}]) }])
addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome checkTrue "(1 parent)" state1.parentExpr?.isSome
addTest $ LSpec.check "(1 root)" state1.rootExpr?.isNone checkTrue "(1 root)" $ ¬ state1.isSolved
let state1parent ← state1.withParentContext do let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false) serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda h ((:c Or) 1 0) (:subst (:mv {state1g0}) 2 1 0))))") addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda h ((:c Or) 1 0) (:subst (:mv {state1g0}) 2 1 0))))")
let tactic := "cases h" let tactic := "cases h"
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := tactic) with let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) = addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[branchGoal "inl" "p", branchGoal "inr" "q"]) #[branchGoal "inl" "p", branchGoal "inr" "q"])
let (caseL, caseR) := ("_uniq.64", "_uniq.77") let [state2g0, state2g1] := state2.goals |
fail s!"Should have 2 goals, but it has {state2.goals.length}"
let (caseL, caseR) := (state2g0.name.toString, state2g1.name.toString)
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.name) = addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.name) =
#[caseL, caseR]) #[caseL, caseR])
addTest $ LSpec.check "(2 parent exists)" state2.parentExpr?.isSome checkTrue "(2 parent exists)" state2.parentExpr?.isSome
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone checkTrue "(2 root)" $ ¬ state2.isSolved
let state2parent ← state2.withParentContext do let state2parent ← state2.withParentContext do
serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!) (sanitize := false) serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!)
let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))" let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))"
let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))" let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))"
let motive := s!"(:lambda t {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))" let motive := s!"(:lambda t {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))"
@ -287,56 +291,57 @@ def test_or_comm: TestM Unit := do
s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})") s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})")
let state3_1 ← match ← state2.tacticOn (goalId := 0) (tactic := "apply Or.inr") with let state3_1 ← match ← state2.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
let state3_1parent ← state3_1.withParentContext do let state3_1parent ← state3_1.withParentContext do
serializeExpressionSexp (← instantiateAll state3_1.parentExpr?.get!) (sanitize := false) serializeExpressionSexp (← instantiateAll state3_1.parentExpr?.get!)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == s!"((:c Or.inr) (:fv {fvQ}) (:fv {fvP}) (:mv _uniq.91))") let [state3_1goal0] := state3_1.goals | fail "Should have 1 goal"
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == s!"((:c Or.inr) (:fv {fvQ}) (:fv {fvP}) (:mv {state3_1goal0}))")
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1) addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check " assumption" state4_1.goals.isEmpty addTest $ LSpec.check " assumption" state4_1.goals.isEmpty
let state4_1parent ← instantiateAll state4_1.parentExpr?.get! let state4_1parent ← instantiateAll state4_1.parentExpr?.get!
addTest $ LSpec.test "(4_1 parent)" state4_1parent.isFVar addTest $ LSpec.test "(4_1 parent)" state4_1parent.isFVar
addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isNone checkTrue "(4_1 root)" $ ¬ state4_1.isSolved
let state3_2 ← match ← state2.tacticOn (goalId := 1) (tactic := "apply Or.inl") with let state3_2 ← match ← state2.tacticOn (goalId := 1) (tactic := "apply Or.inl") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1) addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1)
let state4_2 ← match ← state3_2.tacticOn (goalId := 0) (tactic := "assumption") with let state4_2 ← match ← state3_2.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check " assumption" state4_2.goals.isEmpty addTest $ LSpec.check " assumption" state4_2.goals.isEmpty
addTest $ LSpec.check "(4_2 root)" state4_2.rootExpr?.isNone checkTrue "(4_2 root)" $ ¬ state4_2.isSolved
-- Ensure the proof can continue from `state4_2`. -- Ensure the proof can continue from `state4_2`.
let state2b ← match state4_2.continue state2 with let state2b ← match state4_2.continue state2 with
| .error msg => do | .error msg => do
addTest $ assertUnreachable $ msg addTest $ assertUnreachable $ msg
return () return ()
| .ok state => pure state | .ok state => pure state
addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals.get! 0]) addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals[0]!])
let state3_1 ← match ← state2b.tacticOn (goalId := 0) (tactic := "apply Or.inr") with let state3_1 ← match ← state2b.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1) addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
addTest $ LSpec.check " assumption" state4_1.goals.isEmpty addTest $ LSpec.check " assumption" state4_1.goals.isEmpty
addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isSome checkTrue "(4_1 root)" $ ¬ state4_1.rootExpr?.get!.hasExprMVar
return () return ()
where where
@ -370,7 +375,7 @@ def test_conv: TestM Unit := do
let tactic := "intro a b c1 c2 h" let tactic := "intro a b c1 c2 h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -378,7 +383,7 @@ def test_conv: TestM Unit := do
#[interiorGoal [] "a + b + c1 = b + a + c2"]) #[interiorGoal [] "a + b + c1 = b + a + c2"])
let state2 ← match ← state1.conv (state1.get! 0) with let state2 ← match ← state1.conv (state1.get! 0) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -387,7 +392,7 @@ def test_conv: TestM Unit := do
let convTactic := "rhs" let convTactic := "rhs"
let state3R ← match ← state2.tacticOn (goalId := 0) convTactic with let state3R ← match ← state2.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -396,7 +401,7 @@ def test_conv: TestM Unit := do
let convTactic := "lhs" let convTactic := "lhs"
let state3L ← match ← state2.tacticOn (goalId := 0) convTactic with let state3L ← match ← state2.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -405,7 +410,7 @@ def test_conv: TestM Unit := do
let convTactic := "congr" let convTactic := "congr"
let state4 ← match ← state3L.tacticOn (goalId := 0) convTactic with let state4 ← match ← state3L.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -417,7 +422,7 @@ def test_conv: TestM Unit := do
let convTactic := "rw [Nat.add_comm]" let convTactic := "rw [Nat.add_comm]"
let state5_1 ← match ← state4.tacticOn (goalId := 0) convTactic with let state5_1 ← match ← state4.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -426,7 +431,7 @@ def test_conv: TestM Unit := do
let convTactic := "rfl" let convTactic := "rfl"
let state6_1 ← match ← state5_1.tacticOn (goalId := 0) convTactic with let state6_1 ← match ← state5_1.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -441,7 +446,7 @@ def test_conv: TestM Unit := do
let convTactic := "rfl" let convTactic := "rfl"
let state6 ← match ← state4_1.tacticOn (goalId := 0) convTactic with let state6 ← match ← state4_1.tacticOn (goalId := 0) convTactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -449,14 +454,14 @@ def test_conv: TestM Unit := do
#[]) #[])
let state1_1 ← match ← state6.convExit with let state1_1 ← match ← state6.convExit with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
let tactic := "exact h" let tactic := "exact h"
let stateF ← match ← state1_1.tacticOn (goalId := 0) (tactic := tactic) with let stateF ← match ← state1_1.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -483,7 +488,7 @@ def test_calc: TestM Unit := do
return () return ()
let tactic := "intro a b c d h1 h2" let tactic := "intro a b c d h1 h2"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -491,7 +496,7 @@ def test_calc: TestM Unit := do
#[interiorGoal [] "a + b = c + d"]) #[interiorGoal [] "a + b = c + d"])
let pred := "a + b = b + c" let pred := "a + b = b + c"
let state2 ← match ← state1.tryCalc (state1.get! 0) (pred := pred) with let state2 ← match ← state1.tryCalc (state1.get! 0) (pred := pred) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -505,7 +510,7 @@ def test_calc: TestM Unit := do
let tactic := "apply h1" let tactic := "apply h1"
let state2m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with let state2m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -516,7 +521,7 @@ def test_calc: TestM Unit := do
return () return ()
let pred := "_ = c + d" let pred := "_ = c + d"
let state4 ← match ← state3.tryCalc (state3.get! 0) (pred := pred) with let state4 ← match ← state3.tryCalc (state3.get! 0) (pred := pred) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -527,7 +532,7 @@ def test_calc: TestM Unit := do
addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? (state4.get! 0) |>.isNone) addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? (state4.get! 0) |>.isNone)
let tactic := "apply h2" let tactic := "apply h2"
let state4m ← match ← state4.tacticOn (goalId := 0) (tactic := tactic) with let state4m ← match ← state4.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -538,169 +543,6 @@ def test_calc: TestM Unit := do
("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free ("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free
buildGoal free target userName? buildGoal free target userName?
def test_nat_zero_add: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
#[
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal "_uniq.68" [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
])
let tactic := "exact n"
let state3b ← match ← state2.tacticOn (goalId := 1) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3b.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3b.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "exact (λ x => x + 0 = x)"
let state3c ← match ← state2b.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3c.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2c ← match state3c.continue state2b with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "intro t h"
let state3 ← match ← state2c.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("t", "Nat"), ("h", "Nat.below t")] "t + 0 = t"])
let tactic := "simp"
let state3d ← match ← state3.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state2d ← match state3d.continue state2c with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "rfl"
let stateF ← match ← state2d.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← stateF.serializeGoals (options := ← read)) =
#[])
let expr := stateF.mctx.eAssignment.find! stateF.root
let (expr, _) := instantiateMVarsCore (mctx := stateF.mctx) (e := expr)
addTest $ LSpec.check "(F root)" stateF.rootExpr?.isSome
def test_nat_zero_add_alt: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let major := "_uniq.68"
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
#[
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal major [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
])
let tactic := "intro x"
let state3m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3m.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("x", "Nat")] "Prop" (.some "motive")])
let tactic := "apply Eq"
let state3m2 ← match ← state3m.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let (eqL, eqR, eqT) := ("_uniq.88", "_uniq.89", "_uniq.87")
addTest $ LSpec.check tactic $ state3m2.goals.map (·.name.toString) = [eqL, eqR, eqT]
let [_motive, _major, _step, conduit] := state2.goals | panic! "Goals conflict"
let state2b ← match state3m2.resume [conduit] with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let cNatAdd := "(:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat))"
let cNat0 := "((:c OfNat.ofNat) (:c Nat) (:lit 0) ((:c instOfNatNat) (:lit 0)))"
let fvN := "_uniq.63"
let conduitRight := s!"((:c Eq) (:c Nat) ({cNatAdd} (:fv {fvN}) {cNat0}) (:fv {fvN}))"
let substOf (mv: String) := s!"(:subst (:mv {mv}) (:fv {fvN}) (:mv {major}))"
addTest $ LSpec.check "resume" ((← state2b.serializeGoals (options := { ← read with printExprAST := true })) =
#[
{
name := "_uniq.70",
userName? := .some "conduit",
target := {
pp? := .some "(?m.92 ?m.68 = ?m.94 ?m.68) = (n + 0 = n)",
sexp? := .some s!"((:c Eq) (:sort 0) ((:c Eq) {substOf eqT} {substOf eqL} {substOf eqR}) {conduitRight})",
},
vars := #[{
name := fvN,
userName := "n",
type? := .some { pp? := .some "Nat", sexp? := .some "(:c Nat)" },
}],
}
])
def test_tactic_failure_unresolved_goals : TestM Unit := do def test_tactic_failure_unresolved_goals : TestM Unit := do
let state? ← startProof (.expr "∀ (p : Nat → Prop), ∃ (x : Nat), p (0 + x + 0)") let state? ← startProof (.expr "∀ (p : Nat → Prop), ∃ (x : Nat), p (0 + x + 0)")
let state0 ← match state? with let state0 ← match state? with
@ -711,7 +553,7 @@ def test_tactic_failure_unresolved_goals : TestM Unit := do
let tactic := "intro p" let tactic := "intro p"
let state1 ← match ← state0.tacticOn 0 tactic with let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -720,7 +562,6 @@ def test_tactic_failure_unresolved_goals : TestM Unit := do
let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail" let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
checkEq s!"{tactic} fails" messages #[s!"{← getFileName}:0:12: error: unsolved goals\np : Nat → Prop\n⊢ p 0\n"] checkEq s!"{tactic} fails" messages #[s!"{← getFileName}:0:12: error: unsolved goals\np : Nat → Prop\n⊢ p 0\n"]
def test_tactic_failure_synthesize_placeholder : TestM Unit := do def test_tactic_failure_synthesize_placeholder : TestM Unit := do
let state? ← startProof (.expr "∀ (p q r : Prop) (h : p → q), q ∧ r") let state? ← startProof (.expr "∀ (p q r : Prop) (h : p → q), q ∧ r")
let state0 ← match state? with let state0 ← match state? with
@ -731,25 +572,47 @@ def test_tactic_failure_synthesize_placeholder : TestM Unit := do
let tactic := "intro p q r h" let tactic := "intro p q r h"
let state1 ← match ← state0.tacticOn 0 tactic with let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
let tactic := "simpa [h] using And.imp_left h _" let tactic := "simpa [h] using And.imp_left h _"
let state2 ← match ← state1.tacticOn 0 tactic with --let state2 ← match ← state1.tacticOn 0 tactic with
| .success state => pure state -- | .success state => pure state
| other => do -- | other => do
addTest $ assertUnreachable $ other.toString -- addTest $ assertUnreachable $ other.toString
-- return ()
-- Volatile behaviour. This easily changes across Lean versions
--checkEq tactic ((← state2.serializeGoals).map (·.devolatilize)) #[
-- buildGoal [("p", "Prop"), ("q", "Prop"), ("r", "Prop"), ("h", "p → q")] "p ∧ r"
--]
let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
let message := s!"<Pantograph>:0:31: error: don't know how to synthesize placeholder\ncontext:\np q r : Prop\nh : p → q\n⊢ p ∧ r\n"
checkEq s!"{tactic} fails" messages #[message]
def test_deconstruct : TestM Unit := do
let state? ← startProof (.expr "∀ (p q : Prop) (h : And p q), And q p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return () return ()
checkEq tactic ((← state2.serializeGoals).map (·.devolatilize)) #[ let tactic := "intro p q ⟨hp, hq⟩"
buildGoal [("p", "Prop"), ("q", "Prop"), ("r", "Prop"), ("h", "p → q")] "p ∧ r" let state1 ← match ← state0.tacticOn 0 tactic with
| .success state _ => pure state
| other => do
fail other.toString
return ()
checkEq tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize))
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("hp", "p"), ("hq", "q")] "q ∧ p"
] ]
--let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
--let message := s!"<Pantograph>:0:31: error: don't know how to synthesize placeholder\ncontext:\np q r : Prop\nh : p → q\n⊢ p ∧ r\n"
--checkEq s!"{tactic} fails" messages #[message]
def suite (env: Environment): List (String × IO LSpec.TestSeq) := def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
let tests := [ let tests := [
@ -761,10 +624,9 @@ def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
("Or.comm", test_or_comm), ("Or.comm", test_or_comm),
("conv", test_conv), ("conv", test_conv),
("calc", test_calc), ("calc", test_calc),
("Nat.zero_add", test_nat_zero_add),
("Nat.zero_add alt", test_nat_zero_add_alt),
("tactic failure with unresolved goals", test_tactic_failure_unresolved_goals), ("tactic failure with unresolved goals", test_tactic_failure_unresolved_goals),
("tactic failure with synthesize placeholder", test_tactic_failure_synthesize_placeholder), ("tactic failure with synthesize placeholder", test_tactic_failure_synthesize_placeholder),
("deconstruct", test_deconstruct),
] ]
tests.map (fun (name, test) => (name, proofRunner env test)) tests.map (fun (name, test) => (name, proofRunner env test))

View File

@ -47,12 +47,8 @@ def test_environment_pickling : TestM Unit := do
(hints := Lean.mkReducibilityHintsRegularEx 1) (hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe) (safety := Lean.DefinitionSafety.safe)
(all := []) (all := [])
let env' ← match (← getEnv).addDecl (← getOptions) c with addDecl c
| .error e => do environmentPickle (← getEnv) envPicklePath
let error ← (e.toMessageData (← getOptions)).toString
throwError error
| .ok env' => pure env'
environmentPickle env' envPicklePath
let _ ← runCoreM coreDst do let _ ← runCoreM coreDst do
let (env', _) ← environmentUnpickle envPicklePath let (env', _) ← environmentUnpickle envPicklePath

View File

@ -1,4 +1,3 @@
import Test.Tactic.Congruence import Test.Tactic.Assign
import Test.Tactic.MotivatedApply
import Test.Tactic.NoConfuse
import Test.Tactic.Prograde import Test.Tactic.Prograde
import Test.Tactic.Special

33
Test/Tactic/Assign.lean Normal file
View File

@ -0,0 +1,33 @@
import Lean.Meta
import Lean.Elab
import LSpec
import Test.Common
open Lean
namespace Pantograph.Test.Tactic.Assign
def test_draft : TestT Elab.TermElabM Unit := do
let expr := "forall (p : Prop), (p p) p"
let skeleton := "by\nhave a : p p := sorry\nsorry"
let expr ← parseSentence expr
Meta.forallTelescope expr $ λ _ body => do
let skeleton' ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := skeleton)
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalDraft skeleton'
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = ["p p", "(p p) p"])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("draft", test_draft),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Assign

View File

@ -1,88 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Congruence
def test_congr_arg_list : TestT Elab.TermElabM Unit := do
let expr := "λ {α} (l1 l2 : List α) (h: l1 = l2) => l1.reverse = l2.reverse"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.30"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → List α"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (l1.reverse = l2.reverse)"),
])
let f := newGoals.get! 3
let h := newGoals.get! 4
let c := newGoals.get! 5
let results ← Meta.withAssignableSyntheticOpaque do f.apply (← parseSentence "List.reverse")
addTest $ LSpec.check "apply" (results.length = 0)
addTest $ LSpec.check "h" ((← exprToStr $ ← h.getType) = "?a₁ = ?a₂")
addTest $ LSpec.check "conduit" ((← exprToStr $ ← c.getType) = "(?a₁.reverse = ?a₂.reverse) = (l1.reverse = l2.reverse)")
def test_congr_arg : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) (h: n = m) => n * n = m * m"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.70"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → Nat"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (n * n = m * m)"),
])
def test_congr_fun : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) => (n + m) + (n + m) = (n + m) * 2"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceFun target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.159"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`h, "?f₁ = ?f₂"),
(`a, "?α"),
(`conduit, "(?f₁ ?a = ?f₂ ?a) = (n + m + (n + m) = (n + m) * 2)"),
])
def test_congr : TestT Elab.TermElabM Unit := do
let expr := "λ (a b: Nat) => a = b"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruence target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.10"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`a₁, "?α"),
(`a₂, "?α"),
(`h₁, "?f₁ = ?f₂"),
(`h₂, "?a₁ = ?a₂"),
(`conduit, "(?f₁ ?a₁ = ?f₂ ?a₂) = (a = b)"),
])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("congrArg List.reverse", test_congr_arg_list),
("congrArg", test_congr_arg),
("congrFun", test_congr_fun),
("congr", test_congr),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Congruence

View File

@ -1,113 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.MotivatedApply
def test_type_extract : TestT Elab.TermElabM Unit := do
let recursor ← parseSentence "@Nat.brecOn"
let recursorType ← Meta.inferType recursor
addTest $ LSpec.check "recursorType" ("{motive : Nat → Sort ?u.1} → (t : Nat) → ((t : Nat) → Nat.below t → motive t) → motive t" =
(← exprToStr recursorType))
let info ← match Tactic.getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Failed to extract recursor info"
addTest $ LSpec.check "iMotive" (info.iMotive = 2)
let motiveType := info.getMotiveType
addTest $ LSpec.check "motiveType" ("Nat → Sort ?u.1" =
(← exprToStr motiveType))
def test_nat_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let test := LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
"?motive ?m.67 = (n + 0 = n)",
])
addTest test
def test_list_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ {α : Type} (l: List α) => l ++ [] = [] ++ l"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Type ?u.90",
"List ?m.92 → Prop",
"List ?m.92",
"∀ (t : List ?m.92), List.below t → ?motive t",
"?motive ?m.94 = (l ++ [] = [] ++ l)",
])
def test_partial_motive_instantiation : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let majorId := 67
addTest $ (LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
s!"?motive ?m.{majorId} = (n + 0 = n)",
]))
let [motive, major, step, conduit] := newGoals | panic! "Incorrect goal number"
addTest $ (LSpec.check "goal name" (major.name.toString = s!"_uniq.{majorId}"))
-- Assign motive to `λ x => x + _`
let motive_assign ← parseSentence "λ (x: Nat) => @Nat.add x + 0 = _"
motive.assign motive_assign
addTest $ ← conduit.withContext do
let t := toString (← Meta.ppExpr $ ← conduit.getType)
return LSpec.check "conduit" (t = s!"(?m.{majorId}.add + 0 = ?m.138 ?m.{majorId}) = (n + 0 = n)")
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("type_extract", test_type_extract),
("Nat.brecOn", test_nat_brec_on),
("List.brecOn", test_list_brec_on),
("Nat.brecOn partial motive instantiation", test_partial_motive_instantiation),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.MotivatedApply

View File

@ -1,72 +0,0 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.NoConfuse
def test_nat : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: 0 = n + 1) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def test_nat_fail : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: n = n) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
try
let tactic := Tactic.evalNoConfuse recursor
let _ ← runTacticOnMVar tactic target.mvarId!
addTest $ assertUnreachable "Tactic should fail"
catch _ =>
addTest $ LSpec.check "Tactic should fail" true
def test_list : TestT Elab.TermElabM Unit := do
let expr := "λ (l: List Nat) (h: [] = 1 :: l) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals"
((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("Nat", test_nat),
("Nat fail", test_nat_fail),
("List", test_list),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.NoConfuse

View File

@ -56,7 +56,7 @@ def test_define_proof : TestT Elab.TermElabM Unit := do
let state0 ← GoalState.create rootExpr let state0 ← GoalState.create rootExpr
let tactic := "intro p q h" let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -65,7 +65,7 @@ def test_define_proof : TestT Elab.TermElabM Unit := do
let expr := "Or.inl (Or.inl h)" let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -75,7 +75,7 @@ def test_define_proof : TestT Elab.TermElabM Unit := do
let evalBind := "y" let evalBind := "y"
let evalExpr := "Or.inl h" let evalExpr := "Or.inl h"
let state2 ← match ← state1.tryDefine (state1.get! 0) (binderName := evalBind) (expr := evalExpr) with let state2 ← match ← state1.tryDefine (state1.get! 0) (binderName := evalBind) (expr := evalExpr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -87,7 +87,7 @@ def test_define_proof : TestT Elab.TermElabM Unit := do
{ userName := "q", type? := .some { pp? := .some "Prop" } }, { userName := "q", type? := .some { pp? := .some "Prop" } },
{ userName := "h", type? := .some { pp? := .some "p" } }, { userName := "h", type? := .some { pp? := .some "p" } },
{ userName := "y", { userName := "y",
type? := .some { pp? := .some "p ?m.25" }, type? := .some { pp? := .some "p ?m.19" },
value? := .some { pp? := .some "Or.inl h" }, value? := .some { pp? := .some "Or.inl h" },
} }
] ]
@ -95,7 +95,7 @@ def test_define_proof : TestT Elab.TermElabM Unit := do
let expr := "Or.inl y" let expr := "Or.inl y"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -112,22 +112,22 @@ def fun_define_root_expr: ∀ (p: Prop), PProd (Nat → p) Unit → p := by
def test_define_root_expr : TestT Elab.TermElabM Unit := do def test_define_root_expr : TestT Elab.TermElabM Unit := do
--let rootExpr ← parseSentence "Nat" --let rootExpr ← parseSentence "Nat"
--let state0 ← GoalState.create rootExpr --let state0 ← GoalState.create rootExpr
--let .success state1 ← state0.tacticOn (goalId := 0) "exact 5" | addTest $ assertUnreachable "exact 5" --let .success state1 _ ← state0.tacticOn (goalId := 0) "exact 5" | addTest $ assertUnreachable "exact 5"
--let .some rootExpr := state1.rootExpr? | addTest $ assertUnreachable "Root expr" --let .some rootExpr := state1.rootExpr? | addTest $ assertUnreachable "Root expr"
--addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "5") --addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "5")
let rootExpr ← parseSentence "∀ (p: Prop), PProd (Nat → p) Unit → p" let rootExpr ← parseSentence "∀ (p: Prop), PProd (Nat → p) Unit → p"
let state0 ← GoalState.create rootExpr let state0 ← GoalState.create rootExpr
let tactic := "intro p x" let tactic := "intro p x"
let .success state1 ← state0.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic let .success state1 _ ← state0.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let binderName := `binder let binderName := `binder
let value := "x.fst" let value := "x.fst"
let expr ← state1.goals[0]!.withContext $ strToTermSyntax value let expr ← state1.goals[0]!.withContext $ strToTermSyntax value
let tacticM := Tactic.evalDefine binderName expr let tacticM := Tactic.evalDefine binderName expr
let .success state2 ← state1.tryTacticM (state1.get! 0) tacticM | addTest $ assertUnreachable s!"define {binderName} := {value}" let .success state2 _ ← state1.tryTacticM (state1.get! 0) tacticM | addTest $ assertUnreachable s!"define {binderName} := {value}"
let tactic := s!"apply {binderName}" let tactic := s!"apply {binderName}"
let .success state3 ← state2.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic let .success state3 _ ← state2.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let tactic := s!"exact 5" let tactic := s!"exact 5"
let .success state4 ← state3.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic let .success state4 _ ← state3.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr" let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr"
addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p x =>\n let binder := x.fst;\n binder 5") addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p x =>\n let binder := x.fst;\n binder 5")
@ -140,7 +140,7 @@ def test_have_proof : TestT Elab.TermElabM Unit := do
let state0 ← GoalState.create rootExpr let state0 ← GoalState.create rootExpr
let tactic := "intro p q h" let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -149,7 +149,7 @@ def test_have_proof : TestT Elab.TermElabM Unit := do
let expr := "Or.inl (Or.inl h)" let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -159,7 +159,7 @@ def test_have_proof : TestT Elab.TermElabM Unit := do
let haveBind := "y" let haveBind := "y"
let haveType := "p q" let haveType := "p q"
let state2 ← match ← state1.tryHave (state1.get! 0) (binderName := haveBind) (type := haveType) with let state2 ← match ← state1.tryHave (state1.get! 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -171,7 +171,7 @@ def test_have_proof : TestT Elab.TermElabM Unit := do
let expr := "Or.inl h" let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -185,7 +185,7 @@ def test_have_proof : TestT Elab.TermElabM Unit := do
return () return ()
let expr := "Or.inl y" let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (state2b.get! 0) (expr := expr) with let state4 ← match ← state2b.tryAssign (state2b.get! 0) (expr := expr) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -200,7 +200,7 @@ def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let state0 ← GoalState.create rootExpr let state0 ← GoalState.create rootExpr
let tactic := "intro a p h" let tactic := "intro a p h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -216,7 +216,7 @@ def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
| true => state1.tryLet (state1.get! 0) (binderName := "b") (type := letType) | true => state1.tryLet (state1.get! 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (state1.get! 0) (expr := expr) | false => state1.tryAssign (state1.get! 0) (expr := expr)
let state2 ← match result2 with let state2 ← match result2 with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -241,7 +241,7 @@ def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let tactic := "exact 1" let tactic := "exact 1"
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()
@ -274,7 +274,7 @@ def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let tactic := "exact Or.inl (Or.inl h)" let tactic := "exact Or.inl (Or.inl h)"
let state4 ← match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with let state4 ← match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state | .success state _ => pure state
| other => do | other => do
addTest $ assertUnreachable $ other.toString addTest $ assertUnreachable $ other.toString
return () return ()

23
Test/Tactic/Special.lean Normal file
View File

@ -0,0 +1,23 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Special
def test_exact_q : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "1 + 2 = 2 + 3"
let state0 ← GoalState.create rootExpr
let tactic := "exact?"
let state1? ← state0.tacticOn (goalId := 0) (tactic := tactic)
let .failure messages := state1? | fail "Must fail"
checkEq "messages" messages #["`exact?` could not close the goal. Try `apply?` to see partial suggestions."]
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("exact?", test_exact_q),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Special

View File

@ -47,11 +47,16 @@ include:
- If a tactic loses track of metavariables, it will not be caught until the end - If a tactic loses track of metavariables, it will not be caught until the end
of the proof search. This is a bug in the tactic itself. of the proof search. This is a bug in the tactic itself.
- Timeouts for executing tactics is not available. Maybe this will change in the - Although a timeout feature exists in Pantograph, it relies on the coöperative
future. multitasking from the tactic implementation. There is nothing preventing a
buggy tactic from stalling Lean if it does not check for cancellation often.
- For the same reason as above, there is no graceful way to stop a tactic which
leaks infinite memory. Users who wish to have this behaviour should run
Pantograph in a controlled environment with limited allocations. e.g.
Linux control groups.
- Interceptions of parsing errors generally cannot be turned into goals (e.g. - Interceptions of parsing errors generally cannot be turned into goals (e.g.
`def mystery : Nat := :=`) due to Lean's parsing system. `def mystery : Nat := :=`) due to Lean's parsing system. This question is also
not well-defined.
## References ## References

View File

@ -13,6 +13,8 @@ See `Pantograph/Protocol.lean` for a description of the parameters and return va
only the values of definitions are printed. only the values of definitions are printed.
* `env.save { "path": <fileName> }`, `env.load { "path": <fileName> }`: Save/Load the * `env.save { "path": <fileName> }`, `env.load { "path": <fileName> }`: Save/Load the
current environment to/from a file current environment to/from a file
* `env.module_read { "module": <name }`: Reads a list of symbols from a module
* `env.describe {}`: Describes the imports and modules in the current environment
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those * `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean` have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
@ -20,6 +22,9 @@ See `Pantograph/Protocol.lean` for a description of the parameters and return va
automatic mode (flag: `"automaticMode"`). By default it is turned on, with automatic mode (flag: `"automaticMode"`). By default it is turned on, with
all goals automatically resuming. This makes Pantograph act like a gym, all goals automatically resuming. This makes Pantograph act like a gym,
with no resumption necessary to manage your goals. with no resumption necessary to manage your goals.
Set `timeout` to a non-zero number to specify timeout (milliseconds) for all `CoreM`
operations.
* `options.print`: Display the current set of options * `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`: * `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol Start a new proof from a given expression or symbol
@ -33,6 +38,9 @@ See `Pantograph/Protocol.lean` for a description of the parameters and return va
to the previous `rhs`. to the previous `rhs`.
- `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of - `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of
exit, the goal id is ignored. exit, the goal id is ignored.
- `{ "draft": <expr> }`: Draft an expression with `sorry`s, turning them into goals. Coupling is not allowed.
If the `goals` field does not exist, the tactic execution has failed. Read
`messages` to find the reason.
* `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`: * `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`:
Execute continuation/resumption Execute continuation/resumption
- `{ "branch": <id> }`: Continue on branch state. The current state must have no goals. - `{ "branch": <id> }`: Continue on branch state. The current state must have no goals.
@ -43,12 +51,15 @@ See `Pantograph/Protocol.lean` for a description of the parameters and return va
Save/Load a goal state to/from a file. The environment is not carried with the Save/Load a goal state to/from a file. The environment is not carried with the
state. The user is responsible to ensure the sender/receiver instances share state. The user is responsible to ensure the sender/receiver instances share
the same environment. the same environment.
* `frontend.process { ["fileName": <fileName>,] ["file": <str>], invocations: * `frontend.process { ["fileName": <fileName>,] ["file": <str>], readHeader: <bool>, inheritEnv: <bool>, invocations:
<bool>, sorrys: <bool>, newConstants: <bool> }`: Executes the Lean frontend on <bool>, sorrys: <bool>, typeErrorsAsGoals: <bool>, newConstants: <bool> }`:
a file, collecting the tactic invocations (`"invocations": true`), the Executes the Lean frontend on a file, collecting the tactic invocations
sorrys and type errors into goal states (`"sorrys": true`), and new constants (`"invocations": true`), the sorrys and type errors into goal states
(`"newConstants": true`). In the case of `sorrys`, this command additionally (`"sorrys": true`), and new constants (`"newConstants": true`). In the case of
outputs the position of each captured `sorry`. `sorrys`, this command additionally outputs the position of each captured
`sorry`. Conditionally inherit the environment from executing the file.
Warning: Behaviour is unstable in case of multiple `sorry`s. Use the draft
tactic if possible.
## Errors ## Errors

View File

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib" "nixpkgs-lib": "nixpkgs-lib"
}, },
"locked": { "locked": {
"lastModified": 1730504689, "lastModified": 1743550720,
"narHash": "sha256-hgmguH29K2fvs9szpq2r3pz2/8cJd2LPS+b4tfNFCwE=", "narHash": "sha256-hIshGgKZCgWh6AYJpJmRgFdR3WUbkY04o82X05xqQiY=",
"owner": "hercules-ci", "owner": "hercules-ci",
"repo": "flake-parts", "repo": "flake-parts",
"rev": "506278e768c2a08bec68eb62932193e341f55c90", "rev": "c621e8422220273271f52058f618c94e405bb0f5",
"type": "github" "type": "github"
}, },
"original": { "original": {
@ -39,14 +39,16 @@
"lean4-nix": { "lean4-nix": {
"inputs": { "inputs": {
"flake-parts": "flake-parts_2", "flake-parts": "flake-parts_2",
"nixpkgs": "nixpkgs" "nixpkgs": [
"nixpkgs"
]
}, },
"locked": { "locked": {
"lastModified": 1731711316, "lastModified": 1743534244,
"narHash": "sha256-s5u+A2/Ea9gPveB5wwVM5dWW0NST6kamDsTeovGuLEs=", "narHash": "sha256-WnoYs2iyrfgh35eXErCOyos8E2YbW3LT1xm/EtT88/k=",
"owner": "lenianiva", "owner": "lenianiva",
"repo": "lean4-nix", "repo": "lean4-nix",
"rev": "136fc6057c48de970579e960b62421e9c295b67d", "rev": "5eb7f03be257e327fdb3cca9465392e68dc28a4d",
"type": "github" "type": "github"
}, },
"original": { "original": {
@ -55,49 +57,35 @@
"type": "github" "type": "github"
} }
}, },
"lspec": {
"flake": false,
"locked": {
"lastModified": 1728279187,
"narHash": "sha256-ZMqbvCqR/gHXRuIkuo7b0Yp9N1vOQR7xnrcy/SeIBoQ=",
"owner": "argumentcomputer",
"repo": "LSpec",
"rev": "504a8cecf8da601b9466ac727aebb6b511aae4ab",
"type": "github"
},
"original": {
"owner": "argumentcomputer",
"ref": "504a8cecf8da601b9466ac727aebb6b511aae4ab",
"repo": "LSpec",
"type": "github"
}
},
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1728500571, "lastModified": 1743975612,
"narHash": "sha256-dOymOQ3AfNI4Z337yEwHGohrVQb4yPODCW9MDUyAc4w=", "narHash": "sha256-o4FjFOUmjSRMK7dn0TFdAT0RRWUWD+WsspPHa+qEQT8=",
"owner": "nixos", "owner": "nixos",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "d51c28603def282a24fa034bcb007e2bcb5b5dd0", "rev": "a880f49904d68b5e53338d1e8c7bf80f59903928",
"type": "github" "type": "github"
}, },
"original": { "original": {
"owner": "nixos", "owner": "nixos",
"ref": "nixos-24.05", "ref": "nixos-24.11",
"repo": "nixpkgs", "repo": "nixpkgs",
"type": "github" "type": "github"
} }
}, },
"nixpkgs-lib": { "nixpkgs-lib": {
"locked": { "locked": {
"lastModified": 1730504152, "lastModified": 1743296961,
"narHash": "sha256-lXvH/vOfb4aGYyvFmZK/HlsNsr/0CVWlwYvo2rxJk3s=", "narHash": "sha256-b1EdN3cULCqtorQ4QeWgLMrd5ZGOjLSLemfa00heasc=",
"type": "tarball", "owner": "nix-community",
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz" "repo": "nixpkgs.lib",
"rev": "e4822aea2a6d1cdd36653c134cacfd64c97ff4fa",
"type": "github"
}, },
"original": { "original": {
"type": "tarball", "owner": "nix-community",
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz" "repo": "nixpkgs.lib",
"type": "github"
} }
}, },
"nixpkgs-lib_2": { "nixpkgs-lib_2": {
@ -112,28 +100,11 @@
"url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz" "url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz"
} }
}, },
"nixpkgs_2": {
"locked": {
"lastModified": 1731386116,
"narHash": "sha256-lKA770aUmjPHdTaJWnP3yQ9OI1TigenUqVC3wweqZuI=",
"owner": "nixos",
"repo": "nixpkgs",
"rev": "689fed12a013f56d4c4d3f612489634267d86529",
"type": "github"
},
"original": {
"owner": "nixos",
"ref": "nixos-24.05",
"repo": "nixpkgs",
"type": "github"
}
},
"root": { "root": {
"inputs": { "inputs": {
"flake-parts": "flake-parts", "flake-parts": "flake-parts",
"lean4-nix": "lean4-nix", "lean4-nix": "lean4-nix",
"lspec": "lspec", "nixpkgs": "nixpkgs"
"nixpkgs": "nixpkgs_2"
} }
} }
}, },

View File

@ -2,12 +2,11 @@
description = "Pantograph"; description = "Pantograph";
inputs = { inputs = {
nixpkgs.url = "github:nixos/nixpkgs/nixos-24.05"; nixpkgs.url = "github:nixos/nixpkgs/nixos-24.11";
flake-parts.url = "github:hercules-ci/flake-parts"; flake-parts.url = "github:hercules-ci/flake-parts";
lean4-nix.url = "github:lenianiva/lean4-nix"; lean4-nix = {
lspec = { url = "github:lenianiva/lean4-nix";
url = "github:argumentcomputer/LSpec?ref=504a8cecf8da601b9466ac727aebb6b511aae4ab"; inputs.nixpkgs.follows = "nixpkgs";
flake = false;
}; };
}; };
@ -16,9 +15,9 @@
nixpkgs, nixpkgs,
flake-parts, flake-parts,
lean4-nix, lean4-nix,
lspec,
... ...
} : flake-parts.lib.mkFlake { inherit inputs; } { }:
flake-parts.lib.mkFlake {inherit inputs;} {
flake = { flake = {
}; };
systems = [ systems = [
@ -27,37 +26,66 @@
"x86_64-linux" "x86_64-linux"
"x86_64-darwin" "x86_64-darwin"
]; ];
perSystem = { system, pkgs, ... }: let perSystem = {
system,
pkgs,
...
}: let
pkgs = import nixpkgs { pkgs = import nixpkgs {
inherit system; inherit system;
overlays = [(lean4-nix.readToolchainFile ./lean-toolchain)]; overlays = [(lean4-nix.readToolchainFile ./lean-toolchain)];
}; };
manifest = pkgs.lib.importJSON ./lake-manifest.json;
manifest-lspec = builtins.head manifest.packages;
lspecLib = pkgs.lean.buildLeanPackage { lspecLib = pkgs.lean.buildLeanPackage {
name = "LSpec"; name = "LSpec";
roots = [ "Main" "LSpec" ]; roots = ["LSpec"];
src = "${lspec}"; src = builtins.fetchGit {inherit (manifest-lspec) url rev;};
};
inherit (pkgs.lib.fileset) unions toSource fileFilter;
src = ./.;
set-project = unions [
./Pantograph.lean
(fileFilter (file: file.hasExt "lean") ./Pantograph)
];
set-repl = unions [
./Main.lean
./Repl.lean
];
set-test = unions [
(fileFilter (file: file.hasExt "lean") ./Test)
];
src-project = toSource {
root = src;
fileset = unions [
set-project
];
};
src-repl = toSource {
root = src;
fileset = unions [
set-project
set-repl
];
};
src-test = toSource {
root = src;
fileset = unions [
set-project
set-repl
set-test
];
}; };
project = pkgs.lean.buildLeanPackage { project = pkgs.lean.buildLeanPackage {
name = "Pantograph"; name = "Pantograph";
roots = ["Pantograph"]; roots = ["Pantograph"];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith { src = src-project;
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path) &&
!(pkgs.lib.hasSuffix "Repl.lean" path);
});
}; };
repl = pkgs.lean.buildLeanPackage { repl = pkgs.lean.buildLeanPackage {
name = "Repl"; name = "Repl";
roots = ["Main" "Repl"]; roots = ["Main" "Repl"];
deps = [project]; deps = [project];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith { src = src-repl;
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path);
});
}; };
test = pkgs.lean.buildLeanPackage { test = pkgs.lean.buildLeanPackage {
name = "Test"; name = "Test";
@ -66,11 +94,7 @@
# Environment`) and thats where `lakefile.lean` resides. # Environment`) and thats where `lakefile.lean` resides.
roots = ["Test.Main"]; roots = ["Test.Main"];
deps = [lspecLib repl]; deps = [lspecLib repl];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith { src = src-test;
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "Pantograph" path);
});
}; };
in rec { in rec {
packages = { packages = {
@ -84,13 +108,15 @@
leanPkgs = pkgs.lean; leanPkgs = pkgs.lean;
}; };
checks = { checks = {
test = pkgs.runCommand "test" { test =
pkgs.runCommand "test" {
buildInputs = [test.executable pkgs.lean.lean-all]; buildInputs = [test.executable pkgs.lean.lean-all];
} '' } ''
#export LEAN_SRC_PATH="${./.}" #export LEAN_SRC_PATH="${./.}"
${test.executable}/bin/test > $out ${test.executable}/bin/test > $out
''; '';
}; };
formatter = pkgs.alejandra;
devShells.default = pkgs.mkShell { devShells.default = pkgs.mkShell {
buildInputs = [pkgs.lean.lean-all pkgs.lean.lean]; buildInputs = [pkgs.lean.lean-all pkgs.lean.lean];
}; };

View File

@ -1,15 +1,15 @@
{"version": "1.1.0", {"version": "1.1.0",
"packagesDir": ".lake/packages", "packagesDir": ".lake/packages",
"packages": "packages":
[{"url": "https://github.com/lenianiva/LSpec.git", [{"url": "https://github.com/argumentcomputer/LSpec.git",
"type": "git", "type": "git",
"subDir": null, "subDir": null,
"scope": "", "scope": "",
"rev": "c492cecd0bc473e2f9c8b94d545d02cc0056034f", "rev": "a6652a48b5c67b0d8dd3930fad6390a97d127e8d",
"name": "LSpec", "name": "LSpec",
"manifestFile": "lake-manifest.json", "manifestFile": "lake-manifest.json",
"inputRev": "c492cecd0bc473e2f9c8b94d545d02cc0056034f", "inputRev": "a6652a48b5c67b0d8dd3930fad6390a97d127e8d",
"inherited": false, "inherited": false,
"configFile": "lakefile.lean"}], "configFile": "lakefile.toml"}],
"name": "pantograph", "name": "pantograph",
"lakeDir": ".lake"} "lakeDir": ".lake"}

View File

@ -18,7 +18,7 @@ lean_exe repl {
} }
require LSpec from git require LSpec from git
"https://github.com/lenianiva/LSpec.git" @ "c492cecd0bc473e2f9c8b94d545d02cc0056034f" "https://github.com/argumentcomputer/LSpec.git" @ "a6652a48b5c67b0d8dd3930fad6390a97d127e8d"
lean_lib Test { lean_lib Test {
} }
@[test_driver] @[test_driver]

View File

@ -1 +1 @@
leanprover/lean4:v4.12.0 leanprover/lean4:v4.18.0