feat: Extract type error and new constants #128

Merged
aniva merged 17 commits from frontend/infotree into dev 2024-12-11 01:25:36 -08:00
20 changed files with 566 additions and 180 deletions
Showing only changes of commit 4de53e0547 - Show all commits

6
.gitignore vendored
View File

@ -1,6 +1,4 @@
.*
!.gitignore
*.olean
/build
/lake-packages
*.[io]lean
/result

View File

@ -327,11 +327,11 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
-- Lean these are handled using a `#` prefix.
pure s!"{deBruijnIndex}"
| .fvar fvarId =>
let name := ofName fvarId.name
let name := fvarId.name
pure s!"(:fv {name})"
| .mvar mvarId => do
let pref := if ← mvarId.isDelayedAssigned then "mvd" else "mv"
let name := ofName mvarId.name
let name := mvarId.name
pure s!"(:{pref} {name})"
| .sort level =>
let level := serializeSortLevel level sanitize
@ -346,20 +346,20 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
let args := " ".intercalate args
pure s!"({fn'} {args})"
| .lam binderName binderType body binderInfo => do
let binderName' := ofName binderName
let binderName' := binderName.eraseMacroScopes
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:lambda {binderName'} {binderType'} {body'}{binderInfo'})"
| .forallE binderName binderType body binderInfo => do
let binderName' := ofName binderName
let binderName' := binderName.eraseMacroScopes
let binderType' ← self binderType
let body' ← self body
let binderInfo' := binderInfoSexp binderInfo
pure s!"(:forall {binderName'} {binderType'} {body'}{binderInfo'})"
| .letE name type value body _ => do
-- Dependent boolean flag diacarded
let name' := serializeName name
let name' := name.eraseMacroScopes
let type' ← self type
let value' ← self value
let body' ← self body
@ -387,7 +387,6 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
| .implicit => " :implicit"
| .strictImplicit => " :strictImplicit"
| .instImplicit => " :instImplicit"
ofName (name: Name) := serializeName name sanitize
def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.Expression := do
let pp?: Option String ← match options.printExprPretty with
@ -420,13 +419,13 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
match localDecl with
| .cdecl _ fvarId userName _ _ _ =>
return {
name := ofName fvarId.name,
name := fvarId.name.toString,
userName:= ofName userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
| .ldecl _ fvarId userName _ _ _ _ => do
return {
name := ofName fvarId.name,
name := fvarId.name.toString,
userName := toString userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
@ -436,7 +435,7 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
let userName := userName.simpMacroScopes
let type ← instantiate type
return {
name := ofName fvarId.name,
name := fvarId.name.toString,
userName:= ofName userName,
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
@ -450,7 +449,7 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
else
pure $ .none
return {
name := ofName fvarId.name,
name := fvarId.name.toString,
userName:= ofName userName,
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
@ -469,7 +468,7 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
| false => ppVar localDecl
return var::acc
return {
name := ofName goal.name,
name := goal.name.toString,
userName? := if mvarDecl.userName == .anonymous then .none else .some (ofName mvarDecl.userName),
isConversion := isLHSGoal? mvarDecl.type |>.isSome,
target := (← serializeExpression options (← instantiate mvarDecl.type)),

View File

@ -10,8 +10,6 @@ import Lean
namespace Pantograph
open Lean
def filename: String := "<pantograph>"
/--
Represents an interconnected set of metavariables, or a state in proof search
-/
@ -73,6 +71,8 @@ protected def GoalState.metaContextOfGoal (state: GoalState) (mvarId: MVarId): O
return { lctx := mvarDecl.lctx, localInstances := mvarDecl.localInstances }
protected def GoalState.metaState (state: GoalState): Meta.State :=
state.savedState.term.meta.meta
protected def GoalState.coreState (state: GoalState): Core.SavedState :=
state.savedState.term.meta.core
protected def GoalState.withContext (state: GoalState) (mvarId: MVarId) (m: MetaM α): MetaM α := do
mvarId.withContext m |>.run' (← read) state.metaState
@ -202,16 +202,27 @@ inductive TacticResult where
-- The given action cannot be executed in the state
| invalidAction (message: String)
/-- Executes a `TacticM` monads on this `GoalState`, collecting the errors as necessary -/
/-- Executes a `TacticM` monad on this `GoalState`, collecting the errors as necessary -/
protected def GoalState.tryTacticM (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit):
Elab.TermElabM TacticResult := do
try
let nextState ← state.step goal tacticM
-- Check if error messages have been generated in the core.
let newMessages ← (← Core.getMessageLog).toList.drop state.coreState.messages.toList.length
|>.filterMapM λ m => do
if m.severity == .error then
return .some $ ← m.toString
else
return .none
if ¬ newMessages.isEmpty then
return .failure newMessages.toArray
return .success nextState
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Execute a string tactic on given state. Restores TermElabM -/
@[export pantograph_goal_state_try_tactic_m]
protected def GoalState.tryTactic (state: GoalState) (goal: MVarId) (tactic: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
@ -219,7 +230,7 @@ protected def GoalState.tryTactic (state: GoalState) (goal: MVarId) (tactic: Str
(env := ← MonadEnv.getEnv)
(catName := if state.isConv then `conv else `tactic)
(input := tactic)
(fileName := filename) with
(fileName := ← getFileName) with
| .ok stx => pure $ stx
| .error error => return .parseError error
state.tryTacticM goal $ Elab.Tactic.evalTactic tactic
@ -231,7 +242,7 @@ protected def GoalState.tryAssign (state: GoalState) (goal: MVarId) (expr: Strin
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := expr)
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal $ Tactic.evalAssign expr
@ -245,7 +256,7 @@ protected def GoalState.tryLet (state: GoalState) (goal: MVarId) (binderName: St
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := type)
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal $ Tactic.evalLet binderName.toName type
@ -332,7 +343,7 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
(env := state.env)
(catName := `term)
(input := pred)
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => return .parseError error
goal.checkNotAssigned `GoalState.tryCalc
@ -353,7 +364,7 @@ protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String)
throwErrorAt pred "invalid 'calc' step, relation expected{indentExpr step}"
if let some prevRhs := calcPrevRhs? then
unless ← Meta.isDefEqGuarded lhs prevRhs do
throwErrorAt pred "invalid 'calc' step, left-hand-side is{indentD m!"{lhs} : {← Meta.inferType lhs}"}\nprevious right-hand-side is{indentD m!"{prevRhs} : {← Meta.inferType prevRhs}"}" -- "
throwErrorAt pred "invalid 'calc' step, left-hand-side is{indentD m!"{lhs} : {← Meta.inferType lhs}"}\nprevious right-hand-side is{indentD m!"{prevRhs} : {← Meta.inferType prevRhs}"}"
-- Creates a mvar to represent the proof that the calc tactic solves the
-- current branch

View File

@ -289,6 +289,19 @@ structure GoalDiag where
instantiate: Bool := true
printSexp: Bool := false
structure GoalSave where
id: Nat
path: System.FilePath
deriving Lean.FromJson
structure GoalSaveResult where
deriving Lean.ToJson
structure GoalLoad where
path: System.FilePath
deriving Lean.FromJson
structure GoalLoadResult where
id: Nat
deriving Lean.ToJson
/-- Executes the Lean compiler on a single file -/
structure FrontendProcess where

View File

@ -2,6 +2,7 @@ import Lean.Environment
import Lean.Replay
import Init.System.IOError
import Std.Data.HashMap
import Pantograph.Goal
/-!
Input/Output functions
@ -55,7 +56,7 @@ and when unpickling, we build a fresh `Environment` from the imports,
and then add the new constants.
-/
@[export pantograph_env_pickle_m]
def env_pickle (env : Environment) (path : System.FilePath) : IO Unit :=
def environmentPickle (env : Environment) (path : System.FilePath) : IO Unit :=
Pantograph.pickle path (env.header.imports, env.constants.map₂)
/--
@ -65,9 +66,97 @@ We construct a fresh `Environment` with the relevant imports,
and then replace the new constants.
-/
@[export pantograph_env_unpickle_m]
def env_unpickle (path : System.FilePath) : IO (Environment × CompactedRegion) := unsafe do
def environmentUnpickle (path : System.FilePath) : IO (Environment × CompactedRegion) := unsafe do
let ((imports, map₂), region) ← Pantograph.unpickle (Array Import × PHashMap Name ConstantInfo) path
let env ← importModules imports {} 0
return (← env.replay (Std.HashMap.ofList map₂.toList), region)
open Lean.Core in
structure CompactCoreState where
-- env : Environment
nextMacroScope : MacroScope := firstFrontendMacroScope + 1
ngen : NameGenerator := {}
-- traceState : TraceState := {}
-- cache : Cache := {}
-- messages : MessageLog := {}
-- infoState : Elab.InfoState := {}
@[export pantograph_goal_state_pickle_m]
def goalStatePickle (goalState : GoalState) (path : System.FilePath) : IO Unit :=
let {
savedState := {
term := {
meta := {
core,
meta,
}
«elab»,
},
tactic
}
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
} := goalState
--let env := core.env
Pantograph.pickle path (
({ core with } : CompactCoreState),
meta,
«elab»,
tactic,
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
)
@[export pantograph_goal_state_unpickle_m]
def goalStateUnpickle (path : System.FilePath) (env : Environment)
: IO (GoalState × CompactedRegion) := unsafe do
let ((
compactCore,
meta,
«elab»,
tactic,
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
), region) ← Pantograph.unpickle (
CompactCoreState ×
Meta.State ×
Elab.Term.State ×
Elab.Tactic.State ×
MVarId ×
Option MVarId ×
Option (MVarId × MVarId × List MVarId) ×
Option (MVarId × Expr)
) path
let goalState := {
savedState := {
term := {
meta := {
core := {
compactCore with
passedHeartbeats := 0,
env,
},
meta,
},
«elab»,
},
tactic,
},
root,
parentMVar?,
convMVar?,
calcPrevRhs?,
}
return (goalState, region)
end Pantograph

View File

@ -7,6 +7,8 @@ A Machine-to-Machine interaction system for Lean 4.
Pantograph provides interfaces to execute proofs, construct expressions, and
examine the symbol list of a Lean project for machine learning.
See [documentations](doc/) for design rationale and references.
## Installation
For Nix users, run
@ -15,7 +17,9 @@ nix build .#{sharedLib,executable}
```
to build either the shared library or executable.
Install `elan` and `lake`, and run
Install `lake` and `lean` fixed to the version of the `lean-toolchain` file, and
run
``` sh
lake build
```
@ -24,9 +28,12 @@ This builds the executable in `.lake/build/bin/pantograph-repl`.
## Executable Usage
``` sh
pantograph MODULES|LEAN_OPTIONS
pantograph-repl MODULES|LEAN_OPTIONS
```
The `pantograph-repl` executable must be run with a list of modules to import.
It can also accept lean options of the form `--key=value` e.g. `--pp.raw=true`.
The REPL loop accepts commands as single-line JSON inputs and outputs either an
`Error:` (indicating malformed command) or a JSON return value indicating the
result of a command execution. The command can be passed in one of two formats
@ -37,8 +44,6 @@ command { ... }
The list of available commands can be found in `Pantograph/Protocol.lean` and below. An
empty command aborts the REPL.
The `pantograph` executable must be run with a list of modules to import. It can
also accept lean options of the form `--key=value` e.g. `--pp.raw=true`.
Example: (~5k symbols)
```
@ -64,62 +69,7 @@ stat
```
where the application of `assumption` should lead to a failure.
### Commands
See `Pantograph/Protocol.lean` for a description of the parameters and return values in JSON.
* `reset`: Delete all cached expressions and proof trees
* `stat`: Display resource usage
* `expr.echo {"expr": <expr>, "type": <optional expected type>, ["levels": [<levels>]]}`: Determine the
type of an expression and format it.
* `env.catalog`: Display a list of all safe Lean symbols in the current environment
* `env.inspect {"name": <name>, "value": <bool>}`: Show the type and package of a
given symbol; If value flag is set, the value is printed or hidden. By default
only the values of definitions are printed.
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
One particular option for interest for machine learning researchers is the
automatic mode (flag: `"automaticMode"`). By default it is turned on, with
all goals automatically resuming. This makes Pantograph act like a gym,
with no resumption necessary to manage your goals.
* `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol
* `goal.tactic {"stateId": <id>, "goalId": <id>, ...}`: Execute a tactic string on a
given goal. The tactic is supplied as additional key-value pairs in one of the following formats:
- `{ "tactic": <tactic> }`: Execute an ordinary tactic
- `{ "expr": <expr> }`: Assign the given proof term to the current goal
- `{ "have": <expr>, "binderName": <name> }`: Execute `have` and creates a branch goal
- `{ "calc": <expr> }`: Execute one step of a `calc` tactic. Each step must
be of the form `lhs op rhs`. An `lhs` of `_` indicates that it should be set
to the previous `rhs`.
- `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of
exit, the goal id is ignored.
* `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`:
Execute continuation/resumption
- `{ "branch": <id> }`: Continue on branch state. The current state must have no goals.
- `{ "goals": <names> }`: Resume the given goals
* `goal.remove {"stateIds": [<id>]}"`: Drop the goal states specified in the list
* `goal.print {"stateId": <id>}"`: Print a goal state
* `frontend.process { ["fileName": <fileName>",] ["file": <str>], invocations:
<bool>, sorrys: <bool> }`: Executes the Lean frontend on a file, collecting
either the tactic invocations (`"invocations": true`) or the sorrys into goal
states (`"sorrys": true`)
### Errors
When an error pertaining to the execution of a command happens, the returning JSON structure is
``` json
{ "error": "type", "desc": "description" }
```
Common error forms:
* `command`: Indicates malformed command structure which results from either
invalid command or a malformed JSON structure that cannot be fed to an
individual command.
* `index`: Indicates an invariant maintained by the output of one command and
input of another is broken. For example, attempting to query a symbol not
existing in the library or indexing into a non-existent proof state.
For a list of commands, see [REPL Documentation](doc/repl.md).
### Project Environment
@ -130,7 +80,7 @@ the environment might be setup like this:
``` sh
LIB="../lib"
LIB_MATHLIB="$LIB/mathlib4/lake-packages"
LIB_MATHLIB="$LIB/mathlib4/.lake"
export LEAN_PATH="$LIB/mathlib4/build/lib:$LIB_MATHLIB/aesop/build/lib:$LIB_MATHLIB/Qq/build/lib:$LIB_MATHLIB/std/build/lib"
LEAN_PATH=$LEAN_PATH build/bin/pantograph $@

View File

@ -15,6 +15,16 @@ structure State where
/-- Main state monad for executing commands -/
abbrev MainM := ReaderT Context (StateT State Lean.CoreM)
def newGoalState (goalState: GoalState) : MainM Nat := do
let state ← get
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return stateId
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables
-- certain monadic features in `MainM`
abbrev CR α := Except Protocol.InteractionError α
@ -50,6 +60,8 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete
| "goal.print" => run goal_print
| "goal.save" => run goal_save
| "goal.load" => run goal_load
| "frontend.process" => run frontend_process
| cmd =>
let error: Protocol.InteractionError :=
@ -62,14 +74,6 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
errorCommand := errorI "command"
errorIndex := errorI "index"
errorIO := errorI "io"
newGoalState (goalState: GoalState) : MainM Nat := do
let state ← get
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return stateId
-- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do
let state ← get
@ -90,10 +94,10 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
Environment.addDecl args
env_save (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do
let env ← Lean.MonadEnv.getEnv
env_pickle env args.path
environmentPickle env args.path
return .ok {}
env_load (args: Protocol.EnvSaveLoad): MainM (CR Protocol.EnvSaveLoadResult) := do
let (env, _) ← env_unpickle args.path
let (env, _) ← environmentUnpickle args.path
Lean.setEnv env
return .ok {}
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do
@ -203,11 +207,7 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
match nextState? with
| .error error => return .error <| errorI "structure" error
| .ok nextGoalState =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert nextStateId nextGoalState,
nextId := state.nextId + 1
}
let nextStateId ← newGoalState nextGoalState
let goals ← goalSerialize nextGoalState (options := state.options)
return .ok {
nextStateId,
@ -224,6 +224,16 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
return .error $ errorIndex s!"Invalid state index {args.stateId}"
let result ← runMetaInMainM <| goalPrint goalState state.options
return .ok result
goal_save (args: Protocol.GoalSave): MainM (CR Protocol.GoalSaveResult) := do
let state ← get
let .some goalState := state.goalStates[args.id]? |
return .error $ errorIndex s!"Invalid state index {args.id}"
goalStatePickle goalState args.path
return .ok {}
goal_load (args: Protocol.GoalLoad): MainM (CR Protocol.GoalLoadResult) := do
let (goalState, _) ← goalStateUnpickle args.path (← Lean.MonadEnv.getEnv)
let id ← newGoalState goalState
return .ok { id }
frontend_process (args: Protocol.FrontendProcess): MainM (CR Protocol.FrontendProcessResult) := do
let options := (← get).options
try

View File

@ -95,19 +95,19 @@ def runTermElabMSeq (env: Environment) (termElabM: Elab.TermElabM LSpec.TestSeq)
def exprToStr (e: Expr): Lean.MetaM String := toString <$> Meta.ppExpr e
def strToTermSyntax [Monad m] [MonadEnv m] (s: String): m Syntax := do
def strToTermSyntax (s: String): CoreM Syntax := do
let .ok stx := Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) | panic! s!"Failed to parse {s}"
(fileName := ← getFileName) | panic! s!"Failed to parse {s}"
return stx
def parseSentence (s: String): Elab.TermElabM Expr := do
let stx ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
Elab.Term.elabTerm (stx := stx) .none
@ -123,13 +123,28 @@ def mvarUserNameAndType (mvarId: MVarId): MetaM (Name × String) := do
-- Monadic testing
abbrev TestT := StateT LSpec.TestSeq
abbrev TestT := StateRefT' IO.RealWorld LSpec.TestSeq
def addTest [Monad m] (test: LSpec.TestSeq): TestT m Unit := do
section Monadic
variable [Monad m] [MonadLiftT (ST IO.RealWorld) m]
def addTest (test: LSpec.TestSeq) : TestT m Unit := do
set $ (← get) ++ test
def runTest [Monad m] (t: TestT m Unit): m LSpec.TestSeq :=
def checkEq [DecidableEq α] [Repr α] (desc : String) (lhs rhs : α) : TestT m Unit := do
addTest $ LSpec.check desc (lhs = rhs)
def checkTrue (desc : String) (flag : Bool) : TestT m Unit := do
addTest $ LSpec.check desc flag
def fail (desc : String) : TestT m Unit := do
addTest $ LSpec.check desc false
def runTest (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done
def runTestWithResult { α } (t: TestT m α): m (α × LSpec.TestSeq) :=
t.run LSpec.TestSeq.done
end Monadic
def runTestTermElabM (env: Environment) (t: TestT Elab.TermElabM Unit):
IO LSpec.TestSeq :=

View File

@ -32,7 +32,7 @@ def test_expr_to_binder (env: Environment): IO LSpec.TestSeq := do
def test_sexp_of_symbol (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × String) := [
-- This one contains unhygienic variable names which must be suppressed
("Nat.add", "(:forall _ (:c Nat) (:forall _ (:c Nat) (:c Nat)))"),
("Nat.add", "(:forall a (:c Nat) (:forall a (:c Nat) (:c Nat)))"),
-- These ones are normal and easy
("Nat.add_one", "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"),
("Nat.le_of_succ_le", "(:forall n (:c Nat) (:forall m (:c Nat) (:forall h ((:c LE.le) (:c Nat) (:c instLENat) ((:c Nat.succ) 1) 0) ((:c LE.le) (:c Nat) (:c instLENat) 2 1)) :implicit) :implicit)"),

View File

@ -24,7 +24,7 @@ def test_expr_echo (env: Environment): IO LSpec.TestSeq := do
},
expr := {
pp? := "⟨∀ (x : Prop), x → x, fun x h => h⟩",
sexp? := "((:c PSigma.mk) (:sort 0) (:lambda p (:sort 0) 0) (:forall x (:sort 0) (:forall _ 0 1)) (:lambda x (:sort 0) (:lambda h 0 0)))",
sexp? := "((:c PSigma.mk) (:sort 0) (:lambda p (:sort 0) 0) (:forall x (:sort 0) (:forall a 0 1)) (:lambda x (:sort 0) (:lambda h 0 0)))",
}
}))
return tests

View File

@ -1,11 +1,12 @@
import LSpec
import Test.Delate
import Test.Environment
import Test.Frontend
import Test.Integration
import Test.Library
import Test.Metavar
import Test.Proofs
import Test.Delate
import Test.Serial
import Test.Tactic
-- Test running infrastructure
@ -51,6 +52,7 @@ def main (args: List String) := do
("Metavar", Metavar.suite env_default),
("Proofs", Proofs.suite env_default),
("Delate", Delate.suite env_default),
("Serial", Serial.suite env_default),
("Tactic/Congruence", Tactic.Congruence.suite env_default),
("Tactic/Motivated Apply", Tactic.MotivatedApply.suite env_default),
("Tactic/No Confuse", Tactic.NoConfuse.suite env_default),

View File

@ -8,10 +8,7 @@ namespace Pantograph.Test.Metavar
open Pantograph
open Lean
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options Elab.TermElabM)
def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test
abbrev TestM := TestT $ ReaderT Protocol.Options Elab.TermElabM
-- Tests that all delay assigned mvars are instantiated
def test_instantiate_mvar: TestM Unit := do
@ -32,8 +29,6 @@ def test_instantiate_mvar: TestM Unit := do
"((:c LE.le) (:c Nat) (:c instLENat) ((:c OfNat.ofNat) (:mv _uniq.2) (:lit 2) (:mv _uniq.3)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))")
return ()
def startProof (expr: String): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv
let syn? := parseTerm env expr

View File

@ -14,10 +14,7 @@ inductive Start where
| copy (name: String) -- Start from some name in the environment
| expr (expr: String) -- Start from some expression
abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options Elab.TermElabM)
def addTest (test: LSpec.TestSeq): TestM Unit := do
set $ (← get) ++ test
abbrev TestM := TestT $ ReaderT Protocol.Options $ Elab.TermElabM
def startProof (start: Start): TestM (Option GoalState) := do
let env ← Lean.MonadEnv.getEnv
@ -282,9 +279,9 @@ def test_or_comm: TestM Unit := do
serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!) (sanitize := false)
let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))"
let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))"
let motive := s!"(:lambda t._@._hyg.26 {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))"
let caseL := s!"(:lambda h._@._hyg.27 (:fv {fvP}) (:lambda h._@._hyg.28 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inl) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseL}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let caseR := s!"(:lambda h._@._hyg.29 (:fv {fvQ}) (:lambda h._@._hyg.30 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inr) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseR}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let motive := s!"(:lambda t {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))"
let caseL := s!"(:lambda h (:fv {fvP}) (:lambda h ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inl) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseL}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let caseR := s!"(:lambda h (:fv {fvQ}) (:lambda h ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inr) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseR}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let conduit := s!"((:c Eq.refl) {orPQ} (:fv {fvH}))"
addTest $ LSpec.test "(2 parent)" (state2parent ==
s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})")
@ -704,6 +701,25 @@ def test_nat_zero_add_alt: TestM Unit := do
}
])
def test_composite_tactic_failure: TestM Unit := do
let state? ← startProof (.expr "∀ (p : Nat → Prop), ∃ (x : Nat), p (0 + x + 0)")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p"
let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let tactic := "exact ⟨0, by simp⟩"
let .failure messages ← state1.tacticOn 0 tactic | addTest $ assertUnreachable s!"{tactic} should fail"
checkEq s!"{tactic} fails" messages #[s!"{← getFileName}:0:12: error: unsolved goals\np : Nat → Prop\n⊢ p 0\n"]
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("identity", test_identity),
@ -716,6 +732,7 @@ def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
("calc", test_calc),
("Nat.zero_add", test_nat_zero_add),
("Nat.zero_add alt", test_nat_zero_add_alt),
("composite tactic failure", test_composite_tactic_failure),
]
tests.map (fun (name, test) => (name, proofRunner env test))

109
Test/Serial.lean Normal file
View File

@ -0,0 +1,109 @@
import LSpec
import Test.Common
import Lean
import Pantograph.Library
open Lean
namespace Pantograph.Test.Serial
def tempPath : IO System.FilePath := do
Prod.snd <$> IO.FS.createTempFile
structure MultiState where
coreContext : Core.Context
env: Environment
abbrev TestM := TestT $ StateRefT MultiState $ IO
instance : MonadEnv TestM where
getEnv := return (← getThe MultiState).env
modifyEnv f := do modifyThe MultiState fun s => { s with env := f s.env }
def runCoreM { α } (state : Core.State) (testCoreM : TestT CoreM α) : TestM (α × Core.State) := do
let multiState ← getThe MultiState
let coreM := runTestWithResult testCoreM
match ← (coreM.run multiState.coreContext state).toBaseIO with
| .error e => do
throw $ .userError $ ← e.toMessageData.toString
| .ok ((a, tests), state') => do
set $ (← getThe LSpec.TestSeq) ++ tests
return (a, state')
def test_environment_pickling : TestM Unit := do
let coreSrc : Core.State := { env := ← getEnv }
let coreDst : Core.State := { env := ← getEnv }
let name := `mystery
let envPicklePath ← tempPath
let ((), _) ← runCoreM coreSrc do
let type: Expr := .forallE `p (.sort 0) (.forallE `h (.bvar 0) (.bvar 1) .default) .default
let value: Expr := .lam `p (.sort 0) (.lam `h (.bvar 0) (.bvar 0) .default) .default
let c := Lean.Declaration.defnDecl <| Lean.mkDefinitionValEx
(name := name)
(levelParams := [])
(type := type)
(value := value)
(hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe)
(all := [])
let env' ← match (← getEnv).addDecl (← getOptions) c with
| .error e => do
let error ← (e.toMessageData (← getOptions)).toString
throwError error
| .ok env' => pure env'
environmentPickle env' envPicklePath
let _ ← runCoreM coreDst do
let (env', _) ← environmentUnpickle envPicklePath
checkTrue s!"Has symbol {name}" (env'.find? name).isSome
let anotherName := `mystery2
checkTrue s!"Doesn't have symbol {anotherName}" (env'.find? anotherName).isNone
IO.FS.removeFile envPicklePath
def test_goal_state_pickling_simple : TestM Unit := do
let coreSrc : Core.State := { env := ← getEnv }
let coreDst : Core.State := { env := ← getEnv }
let statePath ← tempPath
let type: Expr := .forallE `p (.sort 0) (.forallE `h (.bvar 0) (.bvar 1) .default) .default
let stateGenerate : MetaM GoalState := runTermElabMInMeta do
GoalState.create type
let ((), _) ← runCoreM coreSrc do
let state ← stateGenerate.run'
goalStatePickle state statePath
let ((), _) ← runCoreM coreDst do
let (goalState, _) ← goalStateUnpickle statePath (← getEnv)
let metaM : MetaM (List Expr) := do
goalState.goals.mapM λ goal => goalState.withContext goal goal.getType
let types ← metaM.run'
checkTrue "Goals" $ types[0]!.equal type
IO.FS.removeFile statePath
structure Test where
name : String
routine: TestM Unit
protected def Test.run (test: Test) (env: Lean.Environment) : IO LSpec.TestSeq := do
-- Create the state
let state : MultiState := {
coreContext := ← createCoreContext #[],
env,
}
match ← ((runTest $ test.routine).run' state).toBaseIO with
| .ok e => return e
| .error e =>
return LSpec.check s!"Emitted exception: {e.toString}" (e.toString == "")
def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) :=
let tests: List Test := [
{ name := "environment_pickling", routine := test_environment_pickling, },
{ name := "goal_state_pickling_simple", routine := test_goal_state_pickling_simple, },
]
tests.map (fun test => (test.name, test.run env))
end Pantograph.Test.Serial

View File

@ -28,7 +28,7 @@ def test_nat_brec_on : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
@ -52,7 +52,7 @@ def test_list_brec_on : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
@ -74,7 +74,7 @@ def test_partial_motive_instantiation : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr

View File

@ -15,7 +15,7 @@ def test_nat : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
@ -32,7 +32,7 @@ def test_nat_fail : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
@ -52,7 +52,7 @@ def test_list : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic

View File

@ -15,7 +15,7 @@ def test_define : TestT Elab.TermElabM Unit := do
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "Or.inl h")
(fileName := filename) with
(fileName := ← getFileName) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic

View File

@ -4,17 +4,17 @@
<svg
width="256"
height="256"
viewBox="0 0 55.900957 55.900957"
viewBox="0 0 67.733332 67.733333"
version="1.1"
id="svg21534"
xml:space="preserve"
inkscape:version="1.2.2 (b0a8486541, 2022-12-01)"
id="svg1"
sodipodi:docname="icon.svg"
inkscape:version="1.3.2 (091e20ef0f, 2023-11-25, custom)"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns="http://www.w3.org/2000/svg"
xmlns:svg="http://www.w3.org/2000/svg"><sodipodi:namedview
id="namedview21536"
xmlns:svg="http://www.w3.org/2000/svg">
<sodipodi:namedview
id="namedview1"
pagecolor="#ffffff"
bordercolor="#111111"
borderopacity="1"
@ -23,51 +23,135 @@
inkscape:pagecheckerboard="1"
inkscape:deskcolor="#d1d1d1"
inkscape:document-units="px"
showgrid="true"
inkscape:zoom="5.1754899"
inkscape:cx="158.82554"
inkscape:cy="91.682142"
inkscape:window-width="3777"
inkscape:window-height="2093"
showguides="true"
inkscape:zoom="5.1882633"
inkscape:cx="81.819286"
inkscape:cy="132.22151"
inkscape:window-width="3774"
inkscape:window-height="2126"
inkscape:window-x="0"
inkscape:window-y="0"
inkscape:window-maximized="1"
inkscape:current-layer="layer1"><inkscape:grid
type="xygrid"
id="grid23833"
spacingx="3.4938098"
spacingy="3.4938098"
empspacing="4" /></sodipodi:namedview><defs
id="defs21531" /><g
inkscape:label="Layer 1"
inkscape:current-layer="layer2">
<sodipodi:guide
position="33.866666,69.8437"
orientation="-1,0"
id="guide1"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="-27.673679,33.866666"
orientation="0,1"
id="guide2"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="16.933333,29.94582"
orientation="-1,0"
id="guide3"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="50.799999,37.44627"
orientation="-1,0"
id="guide4"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="31.336956,16.933333"
orientation="0,1"
id="guide5"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="24.528038,25.4"
orientation="0,1"
id="guide6"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="33.866666,50.799999"
orientation="0,1"
id="guide7"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="32.770414,55.033333"
orientation="0,1"
id="guide8"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
<sodipodi:guide
position="25.347689,33.866666"
orientation="1,0"
id="guide9"
inkscape:locked="false" />
<sodipodi:guide
position="25.347689,42.333333"
orientation="0,1"
id="guide10"
inkscape:locked="false"
inkscape:label=""
inkscape:color="rgb(0,134,229)" />
</sodipodi:namedview>
<defs
id="defs1" />
<g
inkscape:groupmode="layer"
id="layer1"><rect
style="fill:#3e3e3e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:1.78013;stroke-miterlimit:3.4;stroke-dasharray:none"
id="rect26805"
width="11.502316"
height="2.2512667"
x="33.344425"
y="7.6690259"
ry="0.28140834"
rx="0.47926313" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 35.764667,9.9513013 c 0,0 -26.8581417,13.7987337 -28.0863506,14.9501437 -1.250042,1.171878 3.2347846,3.945325 3.2347846,3.945325 l 21.34979,14.934062 6.624567,0.453105 -27.599216,-17.304358 c 0,0 -0.603209,-0.08927 -0.600411,-0.762283 0.0028,-0.673015 27.32022,-16.4227356 27.32022,-16.4227356 z"
id="path27381"
sodipodi:nodetypes="csccccscc" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="M 10.97848,26.985751 40.537772,9.7943227 41.921795,9.7005084 11.210626,27.421377 Z"
id="path27479" /><path
style="fill:#3e3e3e;stroke:none;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;fill-opacity:1"
d="m 7.0509847,25.522367 c -0.8266141,1.386819 -2.4011783,4.48805 -2.4706357,4.90223 -0.069458,0.414182 0.4434324,0.513474 0.8491061,0.757041 C 5.835129,31.425204 19.33424,43.917182 19.33424,43.917182 l 0.324562,-0.539228 c 0,0 -14.2055729,-12.369493 -14.0644435,-12.868167 0.1411292,-0.498672 3.544896,-3.777392 3.544896,-3.777392 L 7.4596884,25.117508 Z"
id="path27481" /><rect
style="fill:#3e3e3e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:2.11692;stroke-miterlimit:3.4;stroke-dasharray:none;stroke-opacity:1"
id="rect27483"
width="36.38942"
height="3.6217353"
x="13.953447"
y="43.009739"
rx="0.43672624"
ry="0.43672624" /><path
style="fill:none;stroke:#000000;stroke-width:0.218363px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="M -2.1119274,7.666599 H 64.179192"
id="path27487" /></g></svg>
id="layer4"
inkscape:label="bg" />
<g
inkscape:groupmode="layer"
id="layer1"
inkscape:label="Circle">
<path
id="path1"
style="fill:#666b98;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.0191989;stroke-miterlimit:3.4;fill-opacity:1"
d="M 33.866666 0.009818522 A 33.857067 33.857067 0 0 0 0.009818522 33.866666 A 33.857067 33.857067 0 0 0 33.866666 67.723514 A 33.857067 33.857067 0 0 0 67.723514 33.866666 A 33.857067 33.857067 0 0 0 33.866666 0.009818522 z M 33.866666 4.2416015 A 29.624933 29.624933 0 0 1 63.491731 33.866666 A 29.624933 29.624933 0 0 1 33.866666 63.491731 A 29.624933 29.624933 0 0 1 4.2416015 33.866666 A 29.624933 29.624933 0 0 1 33.866666 4.2416015 z " />
</g>
<g
inkscape:groupmode="layer"
id="layer2"
inkscape:label="Pantograph-Core">
<rect
style="fill:#666b98;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.01905;stroke-miterlimit:3.4"
id="rect8"
width="16.942858"
height="4.2257233"
x="33.866665"
y="12.7"
rx="0.58070719"
ry="0.34097314" />
<rect
style="fill:#666b98;fill-opacity:1;fill-rule:evenodd;stroke:#ffffff;stroke-width:0.01905;stroke-miterlimit:3.4"
id="rect1"
width="33.885715"
height="8.4211359"
x="16.933332"
y="42.333332"
rx="0.58070719"
ry="0.34097314" />
<path
style="fill:#666b98;fill-opacity:1;stroke:none;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 42.338095,16.925724 -16.990406,8.474275 13.121218,16.923808 -4.602241,0.0095 -4.254289,0.0015 -8.564029,-16.934789 17.310554,-8.464751 z"
id="path10"
sodipodi:nodetypes="cccccccc" />
<path
style="fill:none;stroke:#666b98;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="M 46.53445,16.925724 26.018901,26.73418"
id="path11" />
<path
style="fill:none;stroke:#666b98;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
d="m 21.048348,25.399999 4.352167,16.934808"
id="path12"
sodipodi:nodetypes="cc" />
</g>
</svg>

Before

Width:  |  Height:  |  Size: 5.2 KiB

After

Width:  |  Height:  |  Size: 5.2 KiB

30
doc/rationale.md Normal file
View File

@ -0,0 +1,30 @@
# Design Rationale
A great problem in machine learning is to use ML agents to automatically prove
mathematical theorems. This sort of proof necessarily involves *search*.
Compatibility for search is the main reason for creating Pantograph. The Lean 4
LSP interface is not conducive to search. Pantograph is designed with this in
mind. It emphasizes the difference between 3 views of a proof:
- **Presentation View**: The view of a written, polished proof. e.g. Mathlib and
math papers are almost always written in this form.
- **Search View**: The view of a proof exploration trajectory. This is not
explicitly supported by Lean LSP.
- **Kernel View**: The proof viewed as a set of metavariables.
Pantograph enables proof agents to operate on the search view.
## Name
The name Pantograph is a pun. It means two things
- A pantograph is an instrument for copying down writing. As an agent explores
the vast proof search space, Pantograph records the current state to ensure
the proof is sound.
- A pantograph is also an equipment for an electric train. It supplies power to
a locomotive. In comparison the (relatively) simple Pantograph software powers
theorem proving projects.
## References
* [Pantograph Paper](https://arxiv.org/abs/2410.16429)

64
doc/repl.md Normal file
View File

@ -0,0 +1,64 @@
# REPL
## Commands
See `Pantograph/Protocol.lean` for a description of the parameters and return values in JSON.
* `reset`: Delete all cached expressions and proof trees
* `stat`: Display resource usage
* `expr.echo {"expr": <expr>, "type": <optional expected type>, ["levels": [<levels>]]}`: Determine the
type of an expression and format it.
* `env.catalog`: Display a list of all safe Lean symbols in the current environment
* `env.inspect {"name": <name>, "value": <bool>}`: Show the type and package of a
given symbol; If value flag is set, the value is printed or hidden. By default
only the values of definitions are printed.
* `env.save { "path": <fileName> }`, `env.load { "path": <fileName> }`: Save/Load the
current environment to/from a file
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
One particular option for interest for machine learning researchers is the
automatic mode (flag: `"automaticMode"`). By default it is turned on, with
all goals automatically resuming. This makes Pantograph act like a gym,
with no resumption necessary to manage your goals.
* `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol
* `goal.tactic {"stateId": <id>, "goalId": <id>, ...}`: Execute a tactic string on a
given goal. The tactic is supplied as additional key-value pairs in one of the following formats:
- `{ "tactic": <tactic> }`: Execute an ordinary tactic
- `{ "expr": <expr> }`: Assign the given proof term to the current goal
- `{ "have": <expr>, "binderName": <name> }`: Execute `have` and creates a branch goal
- `{ "calc": <expr> }`: Execute one step of a `calc` tactic. Each step must
be of the form `lhs op rhs`. An `lhs` of `_` indicates that it should be set
to the previous `rhs`.
- `{ "conv": <bool> }`: Enter or exit conversion tactic mode. In the case of
exit, the goal id is ignored.
* `goal.continue {"stateId": <id>, ["branch": <id>], ["goals": <names>]}`:
Execute continuation/resumption
- `{ "branch": <id> }`: Continue on branch state. The current state must have no goals.
- `{ "goals": <names> }`: Resume the given goals
* `goal.remove {"stateIds": [<id>]}"`: Drop the goal states specified in the list
* `goal.print {"stateId": <id>}"`: Print a goal state
* `goal.save { "id": <id>, "path": <fileName> }`, `goal.load { "path": <fileName> }`:
Save/Load a goal state to/from a file. The environment is not carried with the
state. The user is responsible to ensure the sender/receiver instances share
the same environment.
* `frontend.process { ["fileName": <fileName>,] ["file": <str>], invocations:
<bool>, sorrys: <bool> }`: Executes the Lean frontend on a file, collecting
either the tactic invocations (`"invocations": true`) or the sorrys into goal
states (`"sorrys": true`)
## Errors
When an error pertaining to the execution of a command happens, the returning JSON structure is
``` json
{ "error": "type", "desc": "description" }
```
Common error forms:
* `command`: Indicates malformed command structure which results from either
invalid command or a malformed JSON structure that cannot be fed to an
individual command.
* `index`: Indicates an invariant maintained by the output of one command and
input of another is broken. For example, attempting to query a symbol not
existing in the library or indexing into a non-existent proof state.