chore: Version 0.3 #136

Open
aniva wants to merge 523 commits from dev into main
5 changed files with 150 additions and 88 deletions
Showing only changes of commit 1b7b6a644b - Show all commits

View File

@ -10,6 +10,8 @@ def Lean.MessageLog.getErrorMessages (log : MessageLog) : MessageLog :=
namespace Pantograph
open Lean
def filename: String := "<pantograph>"
structure GoalState where
savedState : Elab.Tactic.SavedState
@ -18,9 +20,6 @@ structure GoalState where
-- New metavariables acquired in this state
newMVars: SSet MVarId
-- The id of the goal in the parent
parentGoalId: Nat := 0
-- Parent state metavariable source
parentMVar: Option MVarId
@ -56,7 +55,7 @@ private def GoalState.mvars (state: GoalState): SSet MVarId :=
state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k
private def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit :=
state.savedState.term.restore
def GoalState.restoreMetaM (state: GoalState): MetaM Unit :=
protected def GoalState.restoreMetaM (state: GoalState): MetaM Unit :=
state.savedState.term.meta.restore
/-- Inner function for executing tactic on goal state -/
@ -89,7 +88,7 @@ inductive TacticResult where
| indexError (goalId: Nat)
/-- Execute tactic on given state -/
protected def GoalState.execute (state: GoalState) (goalId: Nat) (tactic: String):
protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: String):
M TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
@ -99,7 +98,7 @@ protected def GoalState.execute (state: GoalState) (goalId: Nat) (tactic: String
(env := ← MonadEnv.getEnv)
(catName := `tactic)
(input := tactic)
(fileName := "<stdin>") with
(fileName := filename) with
| .ok stx => pure $ stx
| .error error => return .parseError error
match (← executeTactic (state := state.savedState) (goal := goal) (tactic := tactic)) with
@ -122,10 +121,48 @@ protected def GoalState.execute (state: GoalState) (goalId: Nat) (tactic: String
root := state.root,
savedState := nextSavedState
newMVars,
parentGoalId := goalId,
parentMVar := .some goal,
}
/-- Assumes elabM has already been restored -/
protected def GoalState.assign (state: GoalState) (goal: MVarId) (expr: Expr): M TacticResult := do
let goalType ← goal.getType
try
let exprType ← Meta.inferType expr
-- This elaboration is necessary
if !(← Meta.isDefEq goalType exprType) then
return .failure #["Type unification failed", toString (← Meta.ppExpr goalType), toString (← Meta.ppExpr exprType)]
goal.checkNotAssigned `GoalState.tryAssign
goal.assign expr
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map Message.data).mapM fun md => md.toString
return .failure errors
else
let prevMCtx := state.savedState.term.meta.meta.mctx
let nextMCtx ← getMCtx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
let newMVars ← nextMCtx.decls.foldlM (fun acc mvarId mvarDecl => do
if let .some prevMVarDecl := prevMCtx.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
return acc
else
return mvarId :: acc
) []
let nextGoals ← newMVars.filterM (λ mvar => do pure !(← mvar.isAssigned))
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := newMVars.toSSet,
parentMVar := .some goal,
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String): M TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
@ -135,50 +172,43 @@ protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String
(env := state.env)
(catName := `term)
(input := expr)
(fileName := "<stdin>") with
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let tacticM: Elab.Tactic.TacticM TacticResult := do
state.savedState.restore
Elab.Tactic.setGoals [goal]
try
let expr ← Elab.Term.elabTerm (stx := expr) (expectedType? := .none)
-- Attempt to unify the expression
let goalType ← goal.getType
let exprType ← Meta.inferType expr
if !(← Meta.isDefEq goalType exprType) then
return .failure #["Type unification failed", toString (← Meta.ppExpr goalType), toString (← Meta.ppExpr exprType)]
goal.checkNotAssigned `GoalState.tryAssign
goal.assign expr
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map Message.data).mapM fun md => md.toString
return .failure errors
else
let prevMCtx := state.savedState.term.meta.meta.mctx
let nextMCtx ← getMCtx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
let newMVars ← nextMCtx.decls.foldlM (fun acc mvarId mvarDecl => do
if let .some prevMVarDecl := prevMCtx.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
return acc
else
return mvarId :: acc
) []
-- The new goals are the newMVars that lack an assignment
Elab.Tactic.setGoals (← newMVars.filterM (λ mvar => do pure !(← mvar.isAssigned)))
let nextSavedState ← MonadBacktrack.saveState
return .success {
root := state.root,
savedState := nextSavedState,
newMVars := newMVars.toSSet,
parentGoalId := goalId,
parentMVar := .some goal,
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let goalType ← goal.getType
try
let expr ← Elab.Term.elabTermAndSynthesize (stx := expr) (expectedType? := .some goalType)
state.assign goal expr
catch exception =>
return .failure #[← exception.toMessageData.toString]
-- Specialized Tactics
protected def GoalState.tryHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String): M TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let type ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
try
let type ← Elab.Term.elabType (stx := type)
-- The branch created by "have"
let mvarBranch ← Meta.mkFreshExprSyntheticOpaqueMVar type
-- The main branch
let mvarUpstream ← Meta.mkFreshExprSyntheticOpaqueMVar (← goal.getType)
let expr := Expr.app (.lam binderName.toName type mvarBranch .default) mvarUpstream
state.assign goal expr
catch exception =>
return .failure #[← exception.toMessageData.toString]
/--
Brings into scope a list of goals

View File

@ -160,7 +160,7 @@ def goalStartExpr (expr: String): Lean.CoreM (Protocol.CR GoalState) :=
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goalId: Nat) (tactic: String): Lean.CoreM TacticResult :=
runTermElabM <| GoalState.execute state goalId tactic
runTermElabM <| GoalState.tryTactic state goalId tactic
@[export pantograph_goal_try_assign_m]
def goalTryAssign (state: GoalState) (goalId: Nat) (expr: String): Lean.CoreM TacticResult :=

View File

@ -251,9 +251,7 @@ protected def GoalState.serializeGoals
MetaM (Array Protocol.Goal):= do
state.restoreMetaM
let goals := state.goals.toArray
let parentDecl? := parent.bind (λ parentState =>
let parentGoal := parentState.goals.get! state.parentGoalId
parentState.mctx.findDecl? parentGoal)
let parentDecl? := parent.bind (λ parentState => parentState.mctx.findDecl? state.parentMVar.get!)
goals.mapM fun goal => do
match state.mctx.findDecl? goal with
| .some mvarDecl =>

View File

@ -84,7 +84,7 @@ def test_m_couple: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -93,7 +93,7 @@ def test_m_couple: TestM Unit := do
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 3") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -116,14 +116,14 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.execute (goalId := 2) (tactic := "exact 2") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 2") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -137,7 +137,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ LSpec.check "exact 2" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 2", .some "2 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
let state3 ← match ← state1b.execute (goalId := 0) (tactic := "simp") with
let state3 ← match ← state1b.tryTactic (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -147,7 +147,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
let state5 ← match ← state4.execute (goalId := 0) (tactic := "simp") with
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -174,7 +174,7 @@ def test_proposition_generation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply PSigma.mk") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -216,7 +216,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -224,7 +224,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.execute (goalId := 2) (tactic := "apply Nat.succ") with
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "apply Nat.succ") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString

View File

@ -75,7 +75,7 @@ def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq :=
example: ∀ (a b: Nat), a + b = b + a := by
intro n m
rw [Nat.add_comm]
def proof_nat_add_comm (manual: Bool): TestM Unit := do
def test_nat_add_comm (manual: Bool): TestM Unit := do
let state? ← startProof <| match manual with
| false => .copy "Nat.add_comm"
| true => .expr "∀ (a b: Nat), a + b = b + a"
@ -86,7 +86,7 @@ def proof_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "intro n m") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n m") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -94,13 +94,13 @@ def proof_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ LSpec.check "intro n m" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("m", "Nat")] "n + m = m + n"])
match ← state1.execute (goalId := 0) (tactic := "assumption") with
match ← state1.tryTactic (goalId := 0) (tactic := "assumption") with
| .failure #[message] =>
addTest $ LSpec.check "assumption" (message = "tactic 'assumption' failed\nn m : Nat\n⊢ n + m = m + n")
| other => do
addTest $ assertUnreachable $ other.toString
let state2 ← match ← state1.execute (goalId := 0) (tactic := "rw [Nat.add_comm]") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "rw [Nat.add_comm]") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -108,7 +108,7 @@ def proof_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ LSpec.test "rw [Nat.add_comm]" state2.goals.isEmpty
return ()
def proof_delta_variable: TestM Unit := do
def test_delta_variable: TestM Unit := do
let options: Protocol.Options := { noRepeat := true }
let state? ← startProof <| .expr "∀ (a b: Nat), a + b = b + a"
addTest $ LSpec.check "Start goal" state?.isSome
@ -118,14 +118,14 @@ def proof_delta_variable: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "intro n") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) =
#[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"])
let state2 ← match ← state1.execute (goalId := 0) (tactic := "intro m") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "intro m") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -149,7 +149,7 @@ example (w x y z : Nat) (p : Nat → Prop)
(h : p (x * y + z * w * x)) : p (x * w * z + y * x) := by
simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *
assumption
def proof_arith: TestM Unit := do
def test_arith: TestM Unit := do
let state? ← startProof (.expr "∀ (w x y z : Nat) (p : Nat → Prop) (h : p (x * y + z * w * x)), p (x * w * z + y * x)")
let state0 ← match state? with
| .some state => pure state
@ -157,21 +157,21 @@ def proof_arith: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.execute (goalId := 0) (tactic := "intros") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intros") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intros" (state1.goals.length = 1)
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.execute (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "simp ..." (state2.goals.length = 1)
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.execute (goalId := 0) (tactic := "assumption") with
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -195,7 +195,7 @@ example: ∀ (p q: Prop), p q → q p := by
assumption
. apply Or.inl
assumption
def proof_or_comm: TestM Unit := do
def test_or_comm: TestM Unit := do
let state? ← startProof (.expr "∀ (p q: Prop), p q → q p")
let state0 ← match state? with
| .some state => pure state
@ -205,16 +205,16 @@ def proof_or_comm: TestM Unit := do
addTest $ LSpec.check "(0 parent)" state0.parentExpr?.isNone
addTest $ LSpec.check "(0 root)" state0.rootExpr?.isNone
let state1 ← match ← state0.execute (goalId := 0) (tactic := "intro p q h") with
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro p q h") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro n m" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
addTest $ LSpec.check "intro p q h" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p q")] "q p"])
addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome
addTest $ LSpec.check "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.execute (goalId := 0) (tactic := "cases h") with
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "cases h") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -229,7 +229,7 @@ def proof_or_comm: TestM Unit := do
addTest $ LSpec.test "(2 parent)" (state2parent ==
"((:mv _uniq.43) (:fv _uniq.16) ((:c Eq.refl) ((:c Or) (:fv _uniq.10) (:fv _uniq.13)) (:fv _uniq.16)))")
let state3_1 ← match ← state2.execute (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -237,7 +237,7 @@ def proof_or_comm: TestM Unit := do
let state3_1parent ← serialize_expression_ast state3_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == "((:c Or.inr) (:fv _uniq.13) (:fv _uniq.10) (:mv _uniq.78))")
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.execute (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -246,13 +246,13 @@ def proof_or_comm: TestM Unit := do
let state4_1parent ← serialize_expression_ast state4_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(4_1 parent)" (state4_1parent == "(:fv _uniq.47)")
addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isNone
let state3_2 ← match ← state2.execute (goalId := 1) (tactic := "apply Or.inl") with
let state3_2 ← match ← state2.tryTactic (goalId := 1) (tactic := "apply Or.inl") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1)
let state4_2 ← match ← state3_2.execute (goalId := 0) (tactic := "assumption") with
let state4_2 ← match ← state3_2.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -266,13 +266,13 @@ def proof_or_comm: TestM Unit := do
return ()
| .ok state => pure state
addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals.get! 0])
let state3_1 ← match ← state2b.execute (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2b.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.execute (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -292,14 +292,48 @@ def proof_or_comm: TestM Unit := do
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible? := .some true }
]
}
def test_have_tactic: TestM Unit := do
let state? ← startProof (.expr "∀ (p q: Prop), p → ((p q) (p q))")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
addTest $ LSpec.check "(0 parent)" state0.parentExpr?.isNone
addTest $ LSpec.check "(0 root)" state0.rootExpr?.isNone
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro p q h") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro p q h" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "Or.inl (Or.inl h)") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "have" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [] ""])
let state2 ← match ← state1.tryHave (goalId := 0) (binderName := "y") (type := "p q") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "have" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [] ""])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("Nat.add_comm", proof_nat_add_comm false),
("Nat.add_comm manual", proof_nat_add_comm true),
("Nat.add_comm delta", proof_delta_variable),
("arithmetic", proof_arith),
("Or.comm", proof_or_comm)
("Nat.add_comm", test_nat_add_comm false),
("Nat.add_comm manual", test_nat_add_comm true),
("Nat.add_comm delta", test_delta_variable),
("arithmetic", test_arith),
("Or.comm", test_or_comm),
("Have", test_have_tactic),
]
tests.map (fun (name, test) => (name, proofRunner env test))