{ "cells": [ { "cell_type": "markdown", "id": "a1078f98-fcaf-4cda-8ad4-3cbab44f114b", "metadata": {}, "source": [ "# Pantograph Example\n", "\n", "The only interface for interacting with Pantograph is the `Server` class. It can be used either standalone (with no Lean project specified) or in a Lean project in order to access the project's symbols (e.g. Mathlib).\n", "\n", "The server's `imports` argument must be specified as a list of Lean modules to import. With no import statements, there are no symbols available and no useful work can be done. By default, `imports` is `[\"Init\"]`." ] }, { "cell_type": "code", "execution_count": 1, "id": "101f4591-ec31-4000-96a6-ac3fc3dd0fa2", "metadata": {}, "outputs": [], "source": [ "from pantograph import Server\n", "\n", "server = Server()" ] }, { "cell_type": "markdown", "id": "1fbdb837-740e-44ef-a7e9-c40f79584639", "metadata": {}, "source": [ "We can initialize a proof by providing the target statement." ] }, { "cell_type": "code", "execution_count": 2, "id": "4affc375-360b-40cf-8d22-4fdcc12dba0d", "metadata": {}, "outputs": [], "source": [ "state0 = server.goal_start(\"forall (p : Prop), p -> p\")" ] }, { "cell_type": "markdown", "id": "deb7994a-273f-4b52-be2d-e1086d4c1d55", "metadata": {}, "source": [ "This invocation creates a *goal state*, which consists of a finite number of goals. " ] }, { "cell_type": "code", "execution_count": 3, "id": "29f7ae15-7f69-4740-a6fa-71fbb1ccabd8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GoalState(state_id=0, goals=[Goal(variables=[], target='forall (p : Prop), p -> p', name=None, is_conversion=False)], _sentinel=[])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "state0" ] }, { "cell_type": "markdown", "id": "274f50da-85c1-445e-bf9f-cb716f66e36f", "metadata": {}, "source": [ "Execute tactics on the goal state via `Server.goal_tactic`:" ] }, { "cell_type": "code", "execution_count": 4, "id": "bfbd5512-fcb0-428d-8131-4da4005e743c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GoalState(state_id=1, goals=[Goal(variables=[Variable(t='Prop', v=None, name='p✝')], target='p✝ → p✝', name=None, is_conversion=False)], _sentinel=[])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "state1 = server.goal_tactic(state0, goal_id=0, tactic=\"intro\")\n", "state1" ] }, { "cell_type": "markdown", "id": "1c1c5ab4-5518-40b0-8a2f-50e095a3702a", "metadata": {}, "source": [ "Recover the usual string form of a goal by the `str` function:" ] }, { "cell_type": "code", "execution_count": 5, "id": "2d18d6dc-7936-4bb6-b47d-f781dd8ddacd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'p✝ : Prop\\n⊢ p✝ → p✝'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "str(state1.goals[0])" ] }, { "cell_type": "markdown", "id": "fc560b88-0222-4e40-bff9-37ab70af075e", "metadata": {}, "source": [ "When a tactic fails, it throws an exception:" ] }, { "cell_type": "code", "execution_count": 6, "id": "a0fdd3b3-9b38-4602-84a3-89065822f6e8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[\"tactic 'assumption' failed\\np✝ : Prop\\n⊢ p✝ → p✝\"]\n" ] } ], "source": [ "try:\n", " state2 = server.goal_tactic(state1, goal_id=0, tactic=\"assumption\")\n", " print(\"Should not reach this\")\n", "except Exception as e:\n", " print(e)" ] }, { "cell_type": "markdown", "id": "c801bbb4-9248-4f75-945b-1dd665bb08d1", "metadata": {}, "source": [ "A state with no goals is considered solved" ] }, { "cell_type": "code", "execution_count": 7, "id": "9d18045a-9734-415c-8f40-7aadb6cb18f4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "GoalState(state_id=3, goals=[], _sentinel=[])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "state2 = server.goal_tactic(state1, goal_id=0, tactic=\"intro h\")\n", "state3 = server.goal_tactic(state2, goal_id=0, tactic=\"exact h\")\n", "state3" ] }, { "cell_type": "markdown", "id": "aa5a2800-cae3-48df-b746-d19a8d84eaf5", "metadata": {}, "source": [ "Execute `Server.gc()` to clean up unused goals once in a while" ] }, { "cell_type": "code", "execution_count": 8, "id": "ee98de99-3cfc-4449-8d62-00e8eaee03db", "metadata": {}, "outputs": [], "source": [ "server.gc()" ] }, { "cell_type": "markdown", "id": "78cfb9ac-c5ec-4901-97a5-4d19e6b8ecbb", "metadata": {}, "source": [ "## Loading Projects\n", "\n", "Pantograph would not be useful if it could not load symbols from other projects. In `examples/Example` is a standard Lean 4 project, with its toolchain version precisely equal to the toolchain version of Pantograph. Executing `lake new PROJECT_NAME` or `lake init` in an empty folder initializes a project according to this specification. To use a project in Pantograph, compile the project by running `lake build` in its root directory. This sets up output folders and builds the binary Lean files.\n", "\n", "Load the example project by providing `project_path` and `lean_path` to `Server`:" ] }, { "cell_type": "code", "execution_count": 9, "id": "ecf5d9d3-e53e-4f67-969e-d38e3d97c65e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "$PWD: /home/aniva/Projects/atp/PyPantograph/examples/Example\n", "$LEAN_PATH: b'././.lake/packages/batteries/.lake/build/lib:././.lake/packages/aesop/.lake/build/lib:././.lake/build/lib:/home/aniva/.elan/toolchains/leanprover--lean4---v4.10.0-rc1/lib/lean\\n'\n" ] } ], "source": [ "import subprocess, os\n", "from pathlib import Path\n", "def get_project_and_lean_path():\n", " cwd = Path(os.getcwd()).resolve() / 'Example'\n", " p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd)\n", " return cwd, p\n", "project_path, lean_path = get_project_and_lean_path()\n", "print(f\"$PWD: {project_path}\")\n", "print(f\"$LEAN_PATH: {lean_path}\")\n", "server = Server(imports=['Example'], project_path=project_path, lean_path=lean_path)" ] }, { "cell_type": "markdown", "id": "67123741-3d23-4077-98ab-91110b4e39f1", "metadata": {}, "source": [ "With the project loaded, all dependencies of the project, be it Mathlib or Aesop, are now available." ] }, { "cell_type": "code", "execution_count": 10, "id": "bf485778-baa9-4c1c-80fa-960f9cf9bc8a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "state0 = server.goal_start(\"forall (p q: Prop), Or p q -> Or q p\")\n", "state1 = server.goal_tactic(state0, goal_id=0, tactic=\"aesop\")\n", "state1.is_solved" ] }, { "cell_type": "markdown", "id": "8c3f9d90-bacc-4cba-95a4-23cc31a58a4f", "metadata": {}, "source": [ "## Reading Symbols\n", "\n", "Pantograph can also query proof states from a project by directly calling into Lean's compiler internals. Run the Lean compiler on a Lean file via `Server.tactic_invocations`. Feeding in the absolute path is preferred." ] }, { "cell_type": "code", "execution_count": 11, "id": "8ff6007b-50df-4449-9a86-6d3eb0bc0caa", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "==== #0 ====\n", "/-- Ensure that Aesop is running -/\n", "example : α → α :=\n", " by aesop\n", "\n", "\n", "==== #1 ====\n", "example : ∀ (p q: Prop), p ∨ q → q ∨ p := by\n", " intro p q h\n", " -- Here are some comments\n", " cases h\n", " . apply Or.inr\n", " assumption\n", " . apply Or.inl\n", " assumption\n", "\n", "==== Invocations ====\n", "α : Sort ?u.7\n", "⊢ α → α\n", "aesop\n", "\n", "\n", "⊢ ∀ (p q : Prop), p ∨ q → q ∨ p\n", "intro p q h\n", "p q : Prop\n", "h : p ∨ q\n", "⊢ q ∨ p\n", "\n", "p q : Prop\n", "h : p ∨ q\n", "⊢ q ∨ p\n", "cases h\n", "case inl\n", "p q : Prop\n", "h✝ : p\n", "⊢ q ∨ p\n", "case inr p q : Prop h✝ : q ⊢ q ∨ p\n", "\n", "case inl\n", "p q : Prop\n", "h✝ : p\n", "⊢ q ∨ p\n", "apply Or.inr\n", "case inl.h\n", "p q : Prop\n", "h✝ : p\n", "⊢ p\n", "\n", "case inl.h\n", "p q : Prop\n", "h✝ : p\n", "⊢ p\n", "assumption\n", "\n", "\n", "case inr\n", "p q : Prop\n", "h✝ : q\n", "⊢ q ∨ p\n", "apply Or.inl\n", "case inr.h\n", "p q : Prop\n", "h✝ : q\n", "⊢ q\n", "\n", "case inr.h\n", "p q : Prop\n", "h✝ : q\n", "⊢ q\n", "assumption\n", "\n", "\n" ] } ], "source": [ "units, invocations = server.tactic_invocations(project_path / \"Example.lean\")\n", "for i, u in enumerate(units):\n", " print(f\"==== #{i} ====\")\n", " print(u)\n", "print(\"==== Invocations ====\")\n", "for i in invocations:\n", " print(f\"{i.before}\\n{i.tactic}\\n{i.after}\\n\")" ] }, { "cell_type": "markdown", "id": "8762b719-d13b-4714-84ff-48c44b18f364", "metadata": {}, "source": [ "### Loading a theorem for the agent to prove\n", "\n", "For this to work, write `sorry` in the place where you would like your agent to do work, for example\n", "```lean\n", "example : (p q: Prop): Or p q -> Or q p := sorry\n", "```\n", "Then use the `Server.load_sorry`. As long as you only have one statement in `command`, it will give you exactly one goal state. A command with no `sorry`s results in no goal states.\n", "\n", "Note: Since a syntactically incorrect command will not generate `sorry`s, they will be sliently ignored by the frontend. Check if this is the case if the function returns no goals." ] }, { "cell_type": "code", "execution_count": 12, "id": "3c515d2b-6910-499e-953b-bc69dc0e0a57", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GoalState(state_id=2, goals=[Goal(variables=[Variable(t='Prop', v=None, name='p'), Variable(t='Prop', v=None, name='q')], target='p ∨ q → q ∨ p', name=None, is_conversion=False)], _sentinel=[0])\n" ] } ], "source": [ "state0, = server.load_sorry(\"example (p q: Prop): Or p q -> Or q p := sorry\")\n", "print(state0)" ] }, { "cell_type": "code", "execution_count": null, "id": "50b90547-fcbf-419f-866e-a6ebcc925c5f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 5 }