/- Tests pertaining to goals with no interdependencies -/ import LSpec import Pantograph.Goal import Pantograph.Delate import Test.Common namespace Pantograph.Test.Proofs open Pantograph open Lean inductive Start where | copy (name: String) -- Start from some name in the environment | expr (expr: String) -- Start from some expression abbrev TestM := StateRefT LSpec.TestSeq (ReaderT Protocol.Options Elab.TermElabM) def addTest (test: LSpec.TestSeq): TestM Unit := do set $ (← get) ++ test def startProof (start: Start): TestM (Option GoalState) := do let env ← Lean.MonadEnv.getEnv match start with | .copy name => let cInfo? := name.toName |> env.find? addTest $ LSpec.check s!"Symbol exists {name}" cInfo?.isSome match cInfo? with | .some cInfo => let goal ← GoalState.create (expr := cInfo.type) return Option.some goal | .none => return Option.none | .expr expr => let syn? := parseTerm env expr addTest $ LSpec.check s!"Parsing {expr}" (syn?.isOk) match syn? with | .error error => IO.println error return Option.none | .ok syn => let expr? ← elabType syn addTest $ LSpec.check s!"Elaborating" expr?.isOk match expr? with | .error error => IO.println error return Option.none | .ok expr => let goal ← GoalState.create (expr := expr) return Option.some goal def buildNamedGoal (name: String) (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal := { name, userName?, target := { pp? := .some target}, vars := (nameType.map fun x => ({ userName := x.fst, type? := .some { pp? := .some x.snd }, })).toArray } def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal := { userName?, target := { pp? := .some target}, vars := (nameType.map fun x => ({ userName := x.fst, type? := .some { pp? := .some x.snd }, })).toArray } def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options let coreContext: Lean.Core.Context ← createCoreContext #[] let metaM := termElabM.run' (ctx := Condensed.elabContext) let coreM := metaM.run' match ← (coreM.run' coreContext { env := env }).toBaseIO with | .error exception => return LSpec.test "Exception" (s!"internal exception #{← exception.toMessageData.toString}" = "") | .ok (_, a) => return a def test_identity: TestM Unit := do let state? ← startProof (.expr "∀ (p: Prop), p → p") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intro p h" let state1 ← match ← state0.tacticOn 0 tactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let inner := "_uniq.12" addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.name) = #[inner]) let state1parent ← state1.withParentContext do serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false) addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda h 0 (:subst (:mv {inner}) 1 0)))") -- Individual test cases example: ∀ (a b: Nat), a + b = b + a := by intro n m rw [Nat.add_comm] def test_nat_add_comm (manual: Bool): TestM Unit := do let state? ← startProof <| match manual with | false => .copy "Nat.add_comm" | true => .expr "∀ (a b: Nat), a + b = b + a" addTest $ LSpec.check "Start goal" state?.isSome let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let state1 ← match ← state0.tacticOn 0 "intro n m" with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "intro n m" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) = #[buildGoal [("n", "Nat"), ("m", "Nat")] "n + m = m + n"]) match ← state1.tacticOn 0 "assumption" with | .failure #[message] => addTest $ LSpec.check "assumption" (message = "tactic 'assumption' failed\nn m : Nat\n⊢ n + m = m + n") | other => do addTest $ assertUnreachable $ other.toString let state2 ← match ← state1.tacticOn 0 "rw [Nat.add_comm]" with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.test "rw [Nat.add_comm]" state2.goals.isEmpty return () def test_delta_variable: TestM Unit := do let options: Protocol.Options := { noRepeat := true } let state? ← startProof <| .expr "∀ (a b: Nat), a + b = b + a" addTest $ LSpec.check "Start goal" state?.isSome let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "intro n") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) = #[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"]) let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "intro m") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "intro m" ((← state2.serializeGoals (parent := state1) options).map (·.devolatilize) = #[buildGoalSelective [("n", .none), ("m", .some "Nat")] "n + m = m + n"]) return () where -- Like `buildGoal` but allow certain variables to be elided. buildGoalSelective (nameType: List (String × Option String)) (target: String): Protocol.Goal := { target := { pp? := .some target}, vars := (nameType.map fun x => ({ userName := x.fst, type? := x.snd.map (λ type => { pp? := type }), })).toArray } example (w x y z : Nat) (p : Nat → Prop) (h : p (x * y + z * w * x)) : p (x * w * z + y * x) := by simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at * assumption def test_arith: TestM Unit := do let state? ← startProof (.expr "∀ (w x y z : Nat) (p : Nat → Prop) (h : p (x * y + z * w * x)), p (x * w * z + y * x)") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intros" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic (state1.goals.length = 1) addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "simp ..." (state2.goals.length = 1) addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone let tactic := "assumption" let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.test tactic state3.goals.isEmpty addTest $ LSpec.check "(3 root)" state3.rootExpr?.isSome return () -- Two ways to write the same theorem example: ∀ (p q: Prop), p ∨ q → q ∨ p := by intro p q h cases h apply Or.inr assumption apply Or.inl assumption example: ∀ (p q: Prop), p ∨ q → q ∨ p := by intro p q h cases h . apply Or.inr assumption . apply Or.inl assumption def test_or_comm: TestM Unit := do let state? ← startProof (.expr "∀ (p q: Prop), p ∨ q → q ∨ p") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () addTest $ LSpec.check "(0 parent)" state0.parentExpr?.isNone addTest $ LSpec.check "(0 root)" state0.rootExpr?.isNone let tactic := "intro p q h" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let fvP := "_uniq.10" let fvQ := "_uniq.13" let fvH := "_uniq.16" let state1g0 := "_uniq.17" addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)) = #[{ name := state1g0, target := { pp? := .some "q ∨ p" }, vars := #[ { name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } }, { name := fvQ, userName := "q", type? := .some { pp? := .some "Prop" } }, { name := fvH, userName := "h", type? := .some { pp? := .some "p ∨ q" } } ] }]) addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome addTest $ LSpec.check "(1 root)" state1.rootExpr?.isNone let state1parent ← state1.withParentContext do serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false) addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda h ((:c Or) 1 0) (:subst (:mv {state1g0}) 2 1 0))))") let tactic := "cases h" let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) = #[branchGoal "inl" "p", branchGoal "inr" "q"]) let (caseL, caseR) := ("_uniq.64", "_uniq.77") addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.name) = #[caseL, caseR]) addTest $ LSpec.check "(2 parent exists)" state2.parentExpr?.isSome addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone let state2parent ← state2.withParentContext do serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!) (sanitize := false) let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))" let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))" let motive := s!"(:lambda t._@._hyg.26 {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))" let caseL := s!"(:lambda h._@._hyg.27 (:fv {fvP}) (:lambda h._@._hyg.28 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inl) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseL}) (:fv {fvP}) (:fv {fvQ}) 1)))" let caseR := s!"(:lambda h._@._hyg.29 (:fv {fvQ}) (:lambda h._@._hyg.30 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inr) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseR}) (:fv {fvP}) (:fv {fvQ}) 1)))" let conduit := s!"((:c Eq.refl) {orPQ} (:fv {fvH}))" addTest $ LSpec.test "(2 parent)" (state2parent == s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})") let state3_1 ← match ← state2.tacticOn (goalId := 0) (tactic := "apply Or.inr") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let state3_1parent ← state3_1.withParentContext do serializeExpressionSexp (← instantiateAll state3_1.parentExpr?.get!) (sanitize := false) addTest $ LSpec.test "(3_1 parent)" (state3_1parent == s!"((:c Or.inr) (:fv {fvQ}) (:fv {fvP}) (:mv _uniq.91))") addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1) let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check " assumption" state4_1.goals.isEmpty let state4_1parent ← instantiateAll state4_1.parentExpr?.get! addTest $ LSpec.test "(4_1 parent)" state4_1parent.isFVar addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isNone let state3_2 ← match ← state2.tacticOn (goalId := 1) (tactic := "apply Or.inl") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1) let state4_2 ← match ← state3_2.tacticOn (goalId := 0) (tactic := "assumption") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check " assumption" state4_2.goals.isEmpty addTest $ LSpec.check "(4_2 root)" state4_2.rootExpr?.isNone -- Ensure the proof can continue from `state4_2`. let state2b ← match state4_2.continue state2 with | .error msg => do addTest $ assertUnreachable $ msg return () | .ok state => pure state addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals.get! 0]) let state3_1 ← match ← state2b.tacticOn (goalId := 0) (tactic := "apply Or.inr") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1) let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check " assumption" state4_1.goals.isEmpty addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isSome return () where typeProp: Protocol.Expression := { pp? := .some "Prop" } branchGoal (caseName varName: String): Protocol.Goal := { userName? := .some caseName, target := { pp? := .some "q ∨ p" }, vars := #[ { userName := "p", type? := .some typeProp }, { userName := "q", type? := .some typeProp }, { userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible := true } ] } example : ∀ (a b c1 c2: Nat), (b + a) + c1 = (b + a) + c2 → (a + b) + c1 = (b + a) + c2 := by intro a b c1 c2 h conv => lhs congr . rw [Nat.add_comm] . rfl exact h def test_conv: TestM Unit := do let state? ← startProof (.expr "∀ (a b c1 c2: Nat), (b + a) + c1 = (b + a) + c2 → (a + b) + c1 = (b + a) + c2") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intro a b c1 c2 h" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) = #[interiorGoal [] "a + b + c1 = b + a + c2"]) let state2 ← match ← state1.conv (state1.get! 0) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check "conv => ..." ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) = #[{ interiorGoal [] "a + b + c1 = b + a + c2" with isConversion := true }]) let convTactic := "rhs" let state3R ← match ← state2.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" {convTactic} (discard)" ((← state3R.serializeGoals (options := ← read)).map (·.devolatilize) = #[{ interiorGoal [] "b + a + c2" with isConversion := true }]) let convTactic := "lhs" let state3L ← match ← state2.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" {convTactic}" ((← state3L.serializeGoals (options := ← read)).map (·.devolatilize) = #[{ interiorGoal [] "a + b + c1" with isConversion := true }]) let convTactic := "congr" let state4 ← match ← state3L.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" {convTactic}" ((← state4.serializeGoals (options := ← read)).map (·.devolatilize) = #[ { interiorGoal [] "a + b" with isConversion := true, userName? := .some "a" }, { interiorGoal [] "c1" with isConversion := true, userName? := .some "a" } ]) let convTactic := "rw [Nat.add_comm]" let state5_1 ← match ← state4.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" · {convTactic}" ((← state5_1.serializeGoals (options := ← read)).map (·.devolatilize) = #[{ interiorGoal [] "b + a" with isConversion := true, userName? := .some "a" }]) let convTactic := "rfl" let state6_1 ← match ← state5_1.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" {convTactic}" ((← state6_1.serializeGoals (options := ← read)).map (·.devolatilize) = #[]) let state4_1 ← match state6_1.continue state4 with | .ok state => pure state | .error e => do addTest $ expectationFailure "continue" e return () let convTactic := "rfl" let state6 ← match ← state4_1.tacticOn (goalId := 0) convTactic with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!" · {convTactic}" ((← state6.serializeGoals (options := ← read)).map (·.devolatilize) = #[]) let state1_1 ← match ← state6.convExit with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let tactic := "exact h" let stateF ← match ← state1_1.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← stateF.serializeGoals (options := ← read)).map (·.devolatilize) = #[]) where h := "b + a + c1 = b + a + c2" interiorGoal (free: List (String × String)) (target: String) := let free := [("a", "Nat"), ("b", "Nat"), ("c1", "Nat"), ("c2", "Nat"), ("h", h)] ++ free buildGoal free target example : ∀ (a b c d: Nat), a + b = b + c → b + c = c + d → a + b = c + d := by intro a b c d h1 h2 calc a + b = b + c := by apply h1 _ = c + d := by apply h2 def test_calc: TestM Unit := do let state? ← startProof (.expr "∀ (a b c d: Nat), a + b = b + c → b + c = c + d → a + b = c + d") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intro a b c d h1 h2" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) = #[interiorGoal [] "a + b = c + d"]) let pred := "a + b = b + c" let state2 ← match ← state1.tryCalc (state1.get! 0) (pred := pred) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!"calc {pred} := _" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) = #[ interiorGoal [] "a + b = b + c" (.some "calc"), interiorGoal [] "b + c = c + d" ]) addTest $ LSpec.test "(2.0 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 0) |>.isNone) addTest $ LSpec.test "(2.1 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 1) |>.isSome) let tactic := "apply h1" let state2m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let state3 ← match state2m.continue state2 with | .ok state => pure state | .error e => do addTest $ expectationFailure "continue" e return () let pred := "_ = c + d" let state4 ← match ← state3.tryCalc (state3.get! 0) (pred := pred) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!"calc {pred} := _" ((← state4.serializeGoals (options := ← read)).map (·.devolatilize) = #[ interiorGoal [] "b + c = c + d" (.some "calc") ]) addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? (state4.get! 0) |>.isNone) let tactic := "apply h2" let state4m ← match ← state4.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.test "(4m root)" state4m.rootExpr?.isSome where interiorGoal (free: List (String × String)) (target: String) (userName?: Option String := .none) := let free := [("a", "Nat"), ("b", "Nat"), ("c", "Nat"), ("d", "Nat"), ("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free buildGoal free target userName? def test_nat_zero_add: TestM Unit := do let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intro n" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) = #[buildGoal [("n", "Nat")] "n + 0 = n"]) let recursor := "@Nat.brecOn" let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) = #[ buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"), buildNamedGoal "_uniq.68" [("n", "Nat")] "Nat", buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t", buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit") ]) let tactic := "exact n" let state3b ← match ← state2.tacticOn (goalId := 1) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state3b.serializeGoals (options := ← read)).map (·.devolatilize) = #[]) let state2b ← match state3b.continue state2 with | .ok state => pure state | .error e => do addTest $ assertUnreachable e return () let tactic := "exact (λ x => x + 0 = x)" let state3c ← match ← state2b.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state3c.serializeGoals (options := ← read)).map (·.devolatilize) = #[]) let state2c ← match state3c.continue state2b with | .ok state => pure state | .error e => do addTest $ assertUnreachable e return () let tactic := "intro t h" let state3 ← match ← state2c.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) = #[buildGoal [("n", "Nat"), ("t", "Nat"), ("h", "Nat.below t")] "t + 0 = t"]) let tactic := "simp" let state3d ← match ← state3.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let state2d ← match state3d.continue state2c with | .ok state => pure state | .error e => do addTest $ assertUnreachable e return () let tactic := "rfl" let stateF ← match ← state2d.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← stateF.serializeGoals (options := ← read)) = #[]) let expr := stateF.mctx.eAssignment.find! stateF.root let (expr, _) := instantiateMVarsCore (mctx := stateF.mctx) (e := expr) addTest $ LSpec.check "(F root)" stateF.rootExpr?.isSome def test_nat_zero_add_alt: TestM Unit := do let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n") let state0 ← match state? with | .some state => pure state | .none => do addTest $ assertUnreachable "Goal could not parse" return () let tactic := "intro n" let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) = #[buildGoal [("n", "Nat")] "n + 0 = n"]) let recursor := "@Nat.brecOn" let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let major := "_uniq.68" addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) = #[ buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"), buildNamedGoal major [("n", "Nat")] "Nat", buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t", buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit") ]) let tactic := "intro x" let state3m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () addTest $ LSpec.check tactic ((← state3m.serializeGoals (options := ← read)).map (·.devolatilize) = #[buildGoal [("n", "Nat"), ("x", "Nat")] "Prop" (.some "motive")]) let tactic := "apply Eq" let state3m2 ← match ← state3m.tacticOn (goalId := 0) (tactic := tactic) with | .success state => pure state | other => do addTest $ assertUnreachable $ other.toString return () let (eqL, eqR, eqT) := ("_uniq.88", "_uniq.89", "_uniq.87") addTest $ LSpec.check tactic $ state3m2.goals.map (·.name.toString) = [eqL, eqR, eqT] let [_motive, _major, _step, conduit] := state2.goals | panic! "Goals conflict" let state2b ← match state3m2.resume [conduit] with | .ok state => pure state | .error e => do addTest $ assertUnreachable e return () let cNatAdd := "(:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat))" let cNat0 := "((:c OfNat.ofNat) (:c Nat) (:lit 0) ((:c instOfNatNat) (:lit 0)))" let fvN := "_uniq.63" let conduitRight := s!"((:c Eq) (:c Nat) ({cNatAdd} (:fv {fvN}) {cNat0}) (:fv {fvN}))" let substOf (mv: String) := s!"(:subst (:mv {mv}) (:fv {fvN}) (:mv {major}))" addTest $ LSpec.check "resume" ((← state2b.serializeGoals (options := { ← read with printExprAST := true })) = #[ { name := "_uniq.70", userName? := .some "conduit", target := { pp? := .some "(?m.92 ?m.68 = ?m.94 ?m.68) = (n + 0 = n)", sexp? := .some s!"((:c Eq) (:sort 0) ((:c Eq) {substOf eqT} {substOf eqL} {substOf eqR}) {conduitRight})", }, vars := #[{ name := fvN, userName := "n", type? := .some { pp? := .some "Nat", sexp? := .some "(:c Nat)" }, }], } ]) def suite (env: Environment): List (String × IO LSpec.TestSeq) := let tests := [ ("identity", test_identity), ("Nat.add_comm", test_nat_add_comm false), ("Nat.add_comm manual", test_nat_add_comm true), ("Nat.add_comm delta", test_delta_variable), ("arithmetic", test_arith), ("Or.comm", test_or_comm), ("conv", test_conv), ("calc", test_calc), ("Nat.zero_add", test_nat_zero_add), ("Nat.zero_add alt", test_nat_zero_add_alt), ] tests.map (fun (name, test) => (name, proofRunner env test)) end Pantograph.Test.Proofs