import sys, os, json, subprocess from dataclasses import dataclass from pathlib import Path from typing import Union, Any, Tuple from tqdm import tqdm from openai import OpenAI import wandb from tenacity import retry, stop_after_attempt, wait_exponential from pantograph import Server from termcolor import colored from solve.prompts import ( extract_lean_code, SYSTEM_PROMPT_DRAFT_V0, SYSTEM_PROMPT_SKETCH_V0, prompt_draft_template_lean4_v0, prompt_sketch_template_lean4_v0, STOP_TOKENS_DRAFT_V0, STOP_TOKENS_SKETCH_V0, get_prompt_sketch_template_4_lean_v0, ) from solve.prove import HammerAgent # prompt_draft_template_lean4_v0 = "Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + 0 = n.\n\n### Solution\n\nConsider any natural number n. From properties of addition, adding zero does not change its values. Thus, n + 0 = n.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + (m + 1) = (n + m) + 1.\n\n### Solution\n\nConsider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n and m, n + m = m + n.\n\n### Solution\n\nConsider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m + (n + 1). Thus, by induction, n + m = m + n, qed.*)\n\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n" @dataclass class SamplingParams: n: int max_tokens: int top_p: int temperature: float stop: str class Engine: def __init__(self): pass def __call__(self, *args, **kwards): pass class OpenAI_DSP_Engine(Engine): def __init__( self, model: str, api_key: str = None, base_url: str = None, # e.g., Mistral-7B-Instrcut-v0.2 on http://120.77.8.29:12345 # Draft Params draft_system_prompt: str = SYSTEM_PROMPT_DRAFT_V0, # 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.' (goal do draft) draft_prompt_template: str = prompt_draft_template_lean4_v0, draft_sampling_params = None, draft_stop_tokens: list[str] = STOP_TOKENS_DRAFT_V0, # Sketch Params sketch_system_prompt: str = SYSTEM_PROMPT_SKETCH_V0, sketch_prompt_template: str = prompt_sketch_template_lean4_v0, sketch_sampling_params = None, sketch_stop_tokens: list[str] = STOP_TOKENS_SKETCH_V0, # Prove Params # ...TODO not sure if needed right now... # Misc verbose_init: bool = True, ): super().__init__() print(f'{base_url=}') if verbose_init else None if not ('gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model): raise ValueError(f"Model {model=} not supported.") self.model = model self.api_key = api_key self.llm = OpenAI(api_key=self.api_key, base_url=base_url) # Draft params self.draft_system_prompt = draft_system_prompt self.draft_prompt_template = draft_prompt_template self.draft_sampling_params = draft_sampling_params # self.draft_sampling_params.stop = draft_stop_tokens # Sketch params self.sketch_system_prompt = sketch_system_prompt self.sketch_prompt_template = sketch_prompt_template self.sketch_sampling_params = sketch_sampling_params # self.sketch_sampling_params.stop = sketch_stop_tokens # Prove params # ...TODO not sure if needed right now... @retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128)) def autoformalize_prob( eng, data_pt: dict, verbose: bool = False, ): """ Autoformalize natural language problem to formal language problem. """ ... @retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128)) def draft( eng, data_pt: dict, verbose: bool = False, ) -> list: """ Creates (informal nl) draft (nl soln, nl proof sketch) for latter use in a formal proof sketch. y_pred_nl ~ draft(eng, x_nl_prob, P_draft) """ # Make prompt from template nl_problem: str = data_pt['nl_problem'][0] prompt = eng.draft_prompt_template.replace('{nl_problem}', nl_problem) # Get all **completions** to single prompt, one (in) -> many (out) # ref: https://platform.openai.com/docs/api-reference/chat/object response: Any = eng.llm.chat.completions.create( model=eng.model, messages=[ {"role": "system", "content": eng.draft_system_prompt}, {"role": "user", "content": prompt}, ], temperature=eng.draft_sampling_params.temperature, top_p=eng.draft_sampling_params.top_p, n=eng.draft_sampling_params.n, stop=eng.draft_sampling_params.stop[:3], ) # Get all completions for single prompt completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message drafts: list[str] = completions return drafts @retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128)) def sketch( eng, data_pt: dict, drafts: list, autoformalize_prob_in_prompt: bool = False, verbose: bool = False, ) -> Tuple[list[str], str]: """ Creates (formal fl) sketch (fl proof sketch) for latter use in a formal proof sketch. z_pred_fl ~ sketch(eng, x_nl_prob, y_pred_nl, x_fl_prob, P_sketch) """ assert len(drafts) == 1, f"For now only 1 draft." # Make prompt from template x_nl_problem: str = data_pt['nl_problem'][0] y_nl_solution: str = drafts[0] x_fl_problem = None if autoformalize_prob_in_prompt: # prompt = eng.sketch_prompt_template.replace('{nl_problem}', x_nl_problem).replace('{nl_solution}', y_nl_solution) not NotImplemented else: x_fl_problem = data_pt['fl_problem'][0] if 'fl_problem' in data_pt else autoformalize_prob(eng, data_pt) prompt = eng.sketch_prompt_template.replace('{fl_problem}', x_nl_problem).replace('{fl_problem}', y_nl_solution) # Get all **completions** to single prompt, one (in) -> many (out), ref: https://platform.openai.com/docs/api-reference/chat/object response: Any = eng.llm.chat.completions.create( model=eng.model, messages=[ {"role": "system", "content": eng.sketch_system_prompt}, {"role": "user", "content": prompt}, ], temperature=eng.sketch_sampling_params.temperature, top_p=eng.sketch_sampling_params.top_p, n=eng.sketch_sampling_params.n, # stop=eng.sketch_sampling_params.stop[:3], ) # Get all completions for single prompt completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message sketches: list[str] = completions # Return return sketches, x_fl_problem def prove( eng: Engine, server: Server, fl_prob: str, fl_sketch: list[str], ): """ Complete formal sketch and check if it proves the theorem. fl_prob --> Lean4 theorem (problem) fl_sketch --> Lean4 Form Sketch --> have x have ha """ # If this throws index out of bound errors it means the source doesn't contain walled off Lean sections. lean_code, = [extract_lean_code(sketch)[0] for sketch in fl_sketch] state, = server.load_sorry(lean_code) agent = HammerAgent() result = agent.search(server, state, verbose=True) print(colored(f"Result: {result}", "blue")) raise RuntimeError("Not implemented") return # -- DSP for Lean def single_proof_search_dsp_lean( eng: Engine, server: Server, data_pt: dict, ) -> bool: # -- Draft: [y_nl_pred_draft]_n ~ draft(eng, x_nl_prob, P_draft) y_nl_pred_drafts = draft(eng, data_pt) # -- Sketch: z_fl_pred_sketch ~ sketch(eng, x_nl_prob, [y_nl_pred_draft]_n, x_fl_prob, P_sketch) z_fl_pred_sketches, x_fl_prob = sketch(eng, data_pt, y_nl_pred_drafts) # -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches) result: bool = prove(eng, server, x_fl_prob, z_fl_pred_sketches) # -- Return return result def full_proof_search_dsp_lean( eng: Engine, server: Server, path_2_eval_dataset: Path, ): # -- Get eval data eval_dataset: list[dict] = json.load(open(path_2_eval_dataset, 'r')) print(f'{len(eval_dataset)=}') # -- Proof search by DSP over all eval data for data_pt in tqdm(eval_dataset, total=len(eval_dataset), desc='DSP proof loop per data point in benchmark.'): print("Problem:", colored(data_pt["nl_problem"][0], "green", attrs=["underline"])) print(f'{data_pt=}') flag = single_proof_search_dsp_lean(eng, server, data_pt) server.gc() return experiment_dir = Path(__file__).resolve().parent def get_project_and_lean_path(): cwd = experiment_dir / 'lean_src_proj' p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd) return cwd, p # -- Main def main(args): import time start_time = time.time() path_2_eval_dataset = Path(args.eval_dataset).expanduser() print(f'{path_2_eval_dataset=}') project_path, lean_path = get_project_and_lean_path() server = Server( imports=["Mathlib", "Aesop"], project_path=project_path, lean_path=lean_path, ) # - Start wandb run # print(f'\n\n-- Setup params') # CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES") # current_tmux_session = os.environ.get("TMUX", "").split(",")[-1] # today = datetime.datetime.now().strftime("%Y-m%m-d%d-t%Hh_%Mm_%Ss") # config = {'today': today, "CUDA_VISIBLE_DEVICES": CUDA_VISIBLE_DEVICES, "current_tmux_session": current_tmux_session, "model": model, "path_2_eval_dataset": path_2_eval_dataset} # project: str = 'pypantograph' # run_name = f"{project}: ({config})" # run = wandb.init(mode=mode, project=project, name=run_name, save_code=True, config=config) # print(f"{run.url=}") # print(f'\n Config: \n{config=}') # - Run DSP for Lean api_key = os.environ['OPENAI_API_KEY'] draft_sampling_params = SamplingParams( n=args.n_samples, max_tokens=args.max_tokens, top_p=args.top_p, temperature=args.temperature, stop=STOP_TOKENS_DRAFT_V0, ) sketch_sampling_params = SamplingParams( n=args.n_samples, max_tokens=args.max_tokens, top_p=args.top_p, temperature=args.temperature, stop=STOP_TOKENS_SKETCH_V0, ) eng: OpenAI_DSP_Engine = OpenAI_DSP_Engine( model=args.model, api_key=api_key, verbose_init=True, draft_sampling_params=draft_sampling_params, sketch_sampling_params=sketch_sampling_params, ) # - Full proof search with DSP print(f'\n\n-- Full proof search with DSP') full_proof_search_dsp_lean(eng, server, path_2_eval_dataset) msg = f"Time taken: {time.time() - start_time:.2f} seconds, or {(time.time() - start_time) / 60:.2f} minutes, or {(time.time() - start_time) / 3600:.2f} hours.\a" print(colored(msg, "magenta")) # - End run # wandb.config.update(config) # print(f"{wandb.config=}") # run.finish() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( prog='DSP', description="Draft-Sketch-Prove on Lean code", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( 'mode', help="Function", choices=['eval', 'prompts'], ) parser.add_argument( "--eval-dataset", help="Evaluation dataset path", default=experiment_dir / 'debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json', ) parser.add_argument( "--model", help="Model", default="gpt-4o", choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct"], ) parser.add_argument("--start", default=0) parser.add_argument("--end", default=sys.maxsize) parser.add_argument("--batchsize", default=10, help="putnam has 348") parser.add_argument("--n-samples", default=1, help="num seqs to return for given prompt") parser.add_argument("--max-tokens", default=2048, help="Maximum number of tokens in one sample") parser.add_argument("--top-p", default=0.95, help="Sampling top p") parser.add_argument("--temperature", default=0.8, help="Sampling temperature") parser.add_argument("--verbose", action='store_true') args = parser.parse_args() if args.mode == "eval": main(args) elif args.mode == "prompts": prompt = get_prompt_sketch_template_4_lean_v0(verbose=args.verbose) print(prompt) else: raise ValueError(f"Unknown mode: {args.mode}")