#!/usr/bin/env python3 import subprocess, json, argparse from pathlib import Path from pantograph.server import Server from pantograph.search import SearchResult from pantograph.search_llm import LLMAgent def get_project_and_lean_path(): cwd = Path(__file__).parent.resolve() / 'Example' p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd) return cwd, p def read_test_data(use_valid: bool): jsonl_path = Path(__file__).parent / ('valid.jsonl' if use_valid else 'test.jsonl') with open(jsonl_path, 'r') as f: return [json.loads(l) for l in list(f)] def try_test_data(server, agent, entry: dict, max_steps: int) -> SearchResult: e = entry["formal_statement"] informal_stmt = entry["informal_stmt"] informal_proof = entry["informal_proof"] key_theorem, name, e = e.split(' ', 2) e, tail = e.split(':=', 1) target = "forall " + ','.join(e.rsplit(':', 1)) print(f"Target: {target}") agent = LLMAgent(server) return agent.search(server=server, target=target, informal_stmt = informal_stmt, informal_proof = informal_proof,verbose=True, max_steps=max_steps) def output_file_name(datum, use_hammer: bool, use_llm: bool): name = datum["id"] folder = 'output' if use_hammer: folder += '-hammer' if use_llm: folder += '-llm' folder = Path(__file__).parent / folder folder.mkdir(exist_ok=True, parents=True) return folder / f"{name}.json" if __name__ == '__main__': parser = argparse.ArgumentParser( prog='MiniF2F Search', description='Executes LLM on MiniF2F Search') parser.add_argument('--use-hammer', action='store_true') parser.add_argument('--validation', action='store_true') parser.add_argument('--use-llm', action='store_true') parser.add_argument('-s', '--max-steps', default=1000) args = parser.parse_args() project_path, lean_path = get_project_and_lean_path() print(f"$PWD: {project_path}") print(f"$LEAN_PATH: {lean_path}") test_data = read_test_data(args.validation) server = Server(imports=["Mathlib"], project_path=project_path, lean_path=lean_path) agent = LLMAgent(server, use_hammer=args.use_hammer, use_llm=args.use_llm) for datum in test_data: result = try_test_data(server, agent, datum, max_steps=args.max_steps) file_name = output_file_name(datum, args.use_hammer, args.use_llm) with open(file_name, 'w') as f: json.dump({ 'id': datum['id'], 'success': result.success, 'steps': result.steps }, f)