520 lines
18 KiB
Python
520 lines
18 KiB
Python
import sys, os, json, subprocess, time, datetime
|
|
from pathlib import Path
|
|
from dataclasses import asdict
|
|
from typing import Union, Any, Tuple, Optional
|
|
from tqdm import tqdm
|
|
from openai import OpenAI
|
|
import wandb
|
|
from tenacity import retry, stop_after_attempt, wait_exponential
|
|
from pantograph import Server, ServerError, DEFAULT_CORE_OPTIONS
|
|
from pantograph.search import SearchResult
|
|
from termcolor import colored
|
|
|
|
from solve.prompts import (
|
|
extract_lean_code,
|
|
SYSTEM_PROMPT_DRAFT_V0,
|
|
SYSTEM_PROMPT_SKETCH_V0,
|
|
prompt_draft_template_lean4_v0,
|
|
prompt_sketch_template_lean4_v0,
|
|
STOP_TOKENS_DRAFT_V0,
|
|
STOP_TOKENS_SKETCH_V0,
|
|
get_prompt_sketch_template_4_lean_v0,
|
|
)
|
|
from solve.prove import HammerAgent
|
|
from solve.data import (
|
|
Datum,
|
|
SamplingParams,
|
|
SketchParseFailure,
|
|
SearchFailure,
|
|
DatumResult,
|
|
)
|
|
|
|
# prompt_draft_template_lean4_v0 = "Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + 0 = n.\n\n### Solution\n\nConsider any natural number n. From properties of addition, adding zero does not change its values. Thus, n + 0 = n.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + (m + 1) = (n + m) + 1.\n\n### Solution\n\nConsider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n and m, n + m = m + n.\n\n### Solution\n\nConsider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m + (n + 1). Thus, by induction, n + m = m + n, qed.*)\n\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n"
|
|
|
|
|
|
class Engine:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, *args, **kwards):
|
|
pass
|
|
|
|
class OpenAI_DSP_Engine(Engine):
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
api_key: str = None,
|
|
base_url: str = None, # e.g., Mistral-7B-Instrcut-v0.2 on http://120.77.8.29:12345
|
|
# Draft Params
|
|
draft_system_prompt: str = SYSTEM_PROMPT_DRAFT_V0, # 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.' (goal do draft)
|
|
draft_prompt_template: str = prompt_draft_template_lean4_v0,
|
|
draft_sampling_params = None,
|
|
draft_stop_tokens: list[str] = STOP_TOKENS_DRAFT_V0,
|
|
# Sketch Params
|
|
sketch_system_prompt: str = SYSTEM_PROMPT_SKETCH_V0,
|
|
sketch_prompt_template: str = prompt_sketch_template_lean4_v0,
|
|
sketch_sampling_params = None,
|
|
sketch_stop_tokens: list[str] = STOP_TOKENS_SKETCH_V0,
|
|
# Prove Params
|
|
# ...TODO not sure if needed right now...
|
|
# Misc
|
|
verbose_init: bool = True,
|
|
):
|
|
super().__init__()
|
|
print(f'{base_url=}') if verbose_init else None
|
|
|
|
|
|
if not ('gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model or model == "o1-preview"):
|
|
raise ValueError(f"Model {model=} not supported.")
|
|
self.model = model
|
|
self.api_key = api_key
|
|
self.llm = OpenAI(api_key=self.api_key, base_url=base_url)
|
|
# Draft params
|
|
self.draft_system_prompt = draft_system_prompt
|
|
self.draft_prompt_template = draft_prompt_template
|
|
self.draft_sampling_params = draft_sampling_params
|
|
# self.draft_sampling_params.stop = draft_stop_tokens
|
|
# Sketch params
|
|
self.sketch_system_prompt = sketch_system_prompt
|
|
self.sketch_prompt_template = sketch_prompt_template
|
|
self.sketch_sampling_params = sketch_sampling_params
|
|
# self.sketch_sampling_params.stop = sketch_stop_tokens
|
|
# Prove params
|
|
# ...TODO not sure if needed right now...
|
|
|
|
@property
|
|
def role_prompt(self) -> str:
|
|
return "assistant" if self.model.startswith("o1") else "system"
|
|
|
|
def sample_draft(self, prompt: str):
|
|
extra = {} if self.model.startswith("o1") else dict(
|
|
temperature=self.draft_sampling_params.temperature,
|
|
top_p=self.draft_sampling_params.top_p,
|
|
stop=self.draft_sampling_params.stop[:3],
|
|
)
|
|
return self.llm.chat.completions.create(
|
|
model=self.model,
|
|
messages=[
|
|
{"role": self.role_prompt, "content": self.draft_system_prompt},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
n=self.draft_sampling_params.n,
|
|
**extra,
|
|
)
|
|
def sample_sketch(self, prompt: str):
|
|
extra = {} if self.model.startswith("o1") else dict(
|
|
temperature=self.sketch_sampling_params.temperature,
|
|
top_p=self.sketch_sampling_params.top_p,
|
|
)
|
|
return self.llm.chat.completions.create(
|
|
model=self.model,
|
|
messages=[
|
|
{"role": self.role_prompt, "content": self.sketch_system_prompt},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
n=self.sketch_sampling_params.n,
|
|
**extra,
|
|
# stop=eng.sketch_sampling_params.stop[:3],
|
|
)
|
|
|
|
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def autoformalize_prob(
|
|
eng: Engine,
|
|
datum: Datum,
|
|
verbose: bool = False,
|
|
):
|
|
""" Autoformalize natural language problem to formal language problem. """
|
|
pass
|
|
|
|
#@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def step_draft(
|
|
eng: Engine,
|
|
datum: Datum,
|
|
verbose: bool = False,
|
|
) -> list:
|
|
"""
|
|
Creates (informal nl) draft (nl soln, nl proof sketch) for latter use in a formal proof sketch.
|
|
y_pred_nl ~ draft(eng, x_nl_prob, P_draft)
|
|
"""
|
|
# Make prompt from template
|
|
nl_problem: str = datum.nl_problem_str
|
|
prompt = eng.draft_prompt_template.replace('{nl_problem}', nl_problem)
|
|
# Get all **completions** to single prompt, one (in) -> many (out)
|
|
# ref: https://platform.openai.com/docs/api-reference/chat/object
|
|
response: Any = eng.sample_draft(prompt)
|
|
# Get all completions for single prompt
|
|
completions: list[str] = [
|
|
completion.message.content
|
|
for completion in response.choices
|
|
] # response.choices[i].message
|
|
drafts: list[str] = completions
|
|
return drafts
|
|
|
|
#@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def step_sketch(
|
|
eng: Engine,
|
|
datum: Datum,
|
|
drafts: list[str],
|
|
autoformalize_prob_in_prompt: bool = False,
|
|
verbose: bool = False,
|
|
) -> Tuple[list[str], str]:
|
|
"""
|
|
Creates (formal fl) sketch (fl proof sketch) for latter use in a formal proof sketch.
|
|
z_pred_fl ~ sketch(eng, x_nl_prob, y_pred_nl, x_fl_prob, P_sketch)
|
|
"""
|
|
assert len(drafts) == 1, f"For now only 1 draft."
|
|
# Make prompt from template
|
|
x_nl_problem: str = datum.nl_problem_str
|
|
y_nl_solution: str = drafts[0]
|
|
x_fl_problem = None
|
|
if autoformalize_prob_in_prompt:
|
|
# prompt = eng.sketch_prompt_template.replace('{nl_problem}', x_nl_problem).replace('{nl_solution}', y_nl_solution)
|
|
not NotImplemented
|
|
else:
|
|
x_fl_problem = datum.fl_problem if datum.fl_problem else autoformalize_prob(eng, datum)
|
|
prompt = eng.sketch_prompt_template.replace('{fl_problem}', x_nl_problem).replace('{fl_problem}', y_nl_solution)
|
|
# Get all **completions** to single prompt, one (in) -> many (out), ref: https://platform.openai.com/docs/api-reference/chat/object
|
|
response: Any = eng.sample_sketch(prompt)
|
|
# Get all completions for single prompt
|
|
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
|
|
sketches: list[str] = completions
|
|
# Return
|
|
return sketches, x_fl_problem
|
|
|
|
def step_prove(
|
|
eng: Engine,
|
|
server: Server,
|
|
fl_prob: str,
|
|
fl_sketch: str,
|
|
) -> Union[SketchParseFailure, SearchFailure, SearchResult]:
|
|
"""
|
|
|
|
Complete formal sketch and check if it proves the theorem.
|
|
|
|
fl_prob --> Lean4 theorem (problem)
|
|
fl_sketch --> Lean4 Form Sketch --> have x have ha
|
|
|
|
"""
|
|
# If this throws index out of bound errors it means the source doesn't contain walled off Lean sections.
|
|
print(colored("Sketch:", "yellow"), fl_sketch)
|
|
lean_code = "\n".join(extract_lean_code(fl_sketch))
|
|
print(colored("Lean code:", "light_grey", attrs=["bold"]), lean_code)
|
|
|
|
try:
|
|
units = server.load_sorry(lean_code)
|
|
except ServerError as e:
|
|
msg = f"Encountered exception: {e}"
|
|
print(colored(msg, "red"))
|
|
return SketchParseFailure(
|
|
sketch=fl_sketch,
|
|
error=msg,
|
|
)
|
|
|
|
if len(units) != 1:
|
|
print(colored("Model must output one compilation unit", "red"))
|
|
return SketchParseFailure(
|
|
sketch=fl_sketch,
|
|
error="Model must output one compilation unit",
|
|
)
|
|
|
|
state = units[0].goal_state
|
|
|
|
if state is None:
|
|
# This means `state` contains error messages
|
|
msg = "\n".join(units[0].messages)
|
|
print(colored("Sketch failed:", "red"), msg)
|
|
return SketchParseFailure(
|
|
sketch=fl_sketch,
|
|
error=f"Sketch failed: {msg}",
|
|
)
|
|
|
|
agent = HammerAgent()
|
|
try:
|
|
result = agent.search(
|
|
server,
|
|
state,
|
|
max_steps=1000,
|
|
max_trials_per_goal=len(agent.tactics) + 1,
|
|
)
|
|
print(colored(f"Result: {result}", "blue"))
|
|
|
|
return result
|
|
except Exception as e:
|
|
return SearchFailure(
|
|
error=f"Server threw exception",
|
|
sketch=fl_sketch,
|
|
message=str(e),
|
|
)
|
|
|
|
# -- DSP for Lean
|
|
|
|
def single_proof_search_dsp_lean(
|
|
eng: Engine,
|
|
server_func,
|
|
datum: Datum,
|
|
) -> DatumResult:
|
|
|
|
start_time = time.time()
|
|
# -- Draft: [y_nl_pred_draft]_n ~ draft(eng, x_nl_prob, P_draft)
|
|
y_nl_pred_drafts = step_draft(eng, datum)
|
|
|
|
# -- Sketch: z_fl_pred_sketch ~ sketch(eng, x_nl_prob, [y_nl_pred_draft]_n, x_fl_prob, P_sketch)
|
|
z_fl_pred_sketches, x_fl_prob = step_sketch(eng, datum, y_nl_pred_drafts)
|
|
|
|
assert len(z_fl_pred_sketches) == eng.sketch_sampling_params.n
|
|
|
|
|
|
results = []
|
|
success = False
|
|
for i_sketch, sketch in enumerate(z_fl_pred_sketches):
|
|
if len(z_fl_pred_sketches):
|
|
print(colored(f"Sketch {1+i_sketch}/{len(z_fl_pred_sketches)}", attrs=["bold", "underline"]))
|
|
|
|
try:
|
|
server = server_func()
|
|
except Exception as e:
|
|
print(colored(f"Failed to create server: {e}", "red"))
|
|
return DatumResult(
|
|
name=str(datum),
|
|
error=str(e),
|
|
)
|
|
# -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches)
|
|
prove_result = step_prove(eng, server, x_fl_prob, sketch)
|
|
results.append(prove_result)
|
|
if isinstance(prove_result, SearchResult) and prove_result.success:
|
|
success = True
|
|
break
|
|
duration = time.time() - start_time
|
|
|
|
return DatumResult(
|
|
name=str(datum),
|
|
success=success,
|
|
proves=results,
|
|
duration=duration,
|
|
)
|
|
|
|
def full_proof_search_dsp_lean(
|
|
eng: Engine,
|
|
server_func,
|
|
data: list[Datum],
|
|
path_output: Path,
|
|
):
|
|
n_success = 0
|
|
n_tried = 0
|
|
# -- Proof search by DSP over all eval data
|
|
for i, datum in tqdm(enumerate(data), total=len(data), desc='DSP proof loop per data point in benchmark.'):
|
|
output_path = path_output / f"{i:03}.json"
|
|
key = str(datum)
|
|
# Detect if file exists
|
|
if output_path.is_file():
|
|
obj = json.load(open(output_path, "r"))
|
|
if obj['name'] != key:
|
|
print(colored(f"Existing datum name {obj['name']} does not match dataset {key}. The output directory may be wrong"))
|
|
return
|
|
|
|
print(f"Skipped {output_path.name}:", colored(key, "green"))
|
|
continue
|
|
|
|
n_tried += 1
|
|
print(f"Problem {output_path.name}:", colored(key, "cyan"))
|
|
|
|
result = single_proof_search_dsp_lean(eng, server_func, datum)
|
|
with open(output_path, 'w') as f:
|
|
json.dump(asdict(result), f)
|
|
if result.success:
|
|
n_success += 1
|
|
#server.gc()
|
|
print(f"Proved {n_success}/{n_tried} problems")
|
|
|
|
|
|
experiment_dir = Path(__file__).resolve().parent
|
|
|
|
def get_project_and_lean_path():
|
|
cwd = experiment_dir / 'lean_src_proj'
|
|
p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd)
|
|
return cwd, p
|
|
|
|
def load_data(args) -> list[Datum]:
|
|
p = Path(args.dataset).expanduser()
|
|
data = None
|
|
if p.suffix == ".json":
|
|
data = [
|
|
Datum.load(obj, data_format=args.format)
|
|
for obj in json.load(open(p, 'r'))
|
|
]
|
|
elif p.suffix == ".jsonl":
|
|
with open(p, 'r') as f:
|
|
data = [
|
|
Datum.load(json.loads(line), data_format=args.format)
|
|
for line in list(f)
|
|
]
|
|
else:
|
|
raise ValueError(f"Unknown data suffix: {p.suffix}")
|
|
data = [datum for datum in data if datum]
|
|
return data
|
|
|
|
# -- Main
|
|
|
|
def main(args):
|
|
start_time = time.time()
|
|
|
|
# Setup paths and data
|
|
data_eval = load_data(args)
|
|
path_output = Path(args.output)
|
|
path_output.mkdir(exist_ok=True, parents=True)
|
|
|
|
# Start server
|
|
project_path, lean_path = get_project_and_lean_path()
|
|
def server_func():
|
|
return Server(
|
|
imports=["Mathlib", "Aesop"],
|
|
project_path=project_path,
|
|
lean_path=lean_path,
|
|
core_options=DEFAULT_CORE_OPTIONS,
|
|
)
|
|
|
|
# - Start wandb run
|
|
# print(f'\n\n-- Setup params')
|
|
# CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES")
|
|
# current_tmux_session = os.environ.get("TMUX", "").split(",")[-1]
|
|
# today = datetime.datetime.now().strftime("%Y-m%m-d%d-t%Hh_%Mm_%Ss")
|
|
# config = {'today': today, "CUDA_VISIBLE_DEVICES": CUDA_VISIBLE_DEVICES, "current_tmux_session": current_tmux_session, "model": model, "path_2_eval_dataset": path_2_eval_dataset}
|
|
# project: str = 'pypantograph'
|
|
# run_name = f"{project}: ({config})"
|
|
# run = wandb.init(mode=mode, project=project, name=run_name, save_code=True, config=config)
|
|
# print(f"{run.url=}")
|
|
# print(f'\n Config: \n{config=}')
|
|
|
|
# - Run DSP for Lean
|
|
api_key = os.environ['OPENAI_API_KEY']
|
|
draft_sampling_params = SamplingParams(
|
|
n=1, #args.n_samples,
|
|
max_tokens=args.max_tokens,
|
|
top_p=args.top_p,
|
|
temperature=args.temperature,
|
|
stop=STOP_TOKENS_DRAFT_V0,
|
|
)
|
|
sketch_sampling_params = SamplingParams(
|
|
n=args.n_samples,
|
|
max_tokens=args.max_tokens,
|
|
top_p=args.top_p,
|
|
temperature=args.temperature,
|
|
stop=STOP_TOKENS_SKETCH_V0,
|
|
)
|
|
eng: OpenAI_DSP_Engine = OpenAI_DSP_Engine(
|
|
model=args.model,
|
|
api_key=api_key,
|
|
verbose_init=True,
|
|
draft_sampling_params=draft_sampling_params,
|
|
sketch_sampling_params=sketch_sampling_params,
|
|
)
|
|
|
|
print(colored(f"DSP on {len(data_eval)} points", "blue", attrs=["bold", "underline"]))
|
|
print(f"Draft={draft_sampling_params}")
|
|
print(f"Sketch={sketch_sampling_params}")
|
|
# - Full proof search with DSP
|
|
full_proof_search_dsp_lean(eng, server_func, data_eval, path_output)
|
|
|
|
dt = datetime.timedelta(seconds=time.time() - start_time)
|
|
print(colored(f"Time elapsed: {dt}", "magenta"))
|
|
|
|
# - End run
|
|
# wandb.config.update(config)
|
|
# print(f"{wandb.config=}")
|
|
# run.finish()
|
|
|
|
def check(args):
|
|
path_output = Path(args.output)
|
|
data = load_data(args)
|
|
n_success = 0
|
|
n_tried = 0
|
|
for i, datum in tqdm(enumerate(data), total=len(data), desc='DSP proof loop per data point in benchmark.'):
|
|
file_name = path_output / f"{i:03}.json"
|
|
key = str(datum)
|
|
# Detect if file exists
|
|
obj = json.load(open(file_name, "r"))
|
|
if obj['name'] != key:
|
|
print(colored(f"Existing datum name {obj['name']} does not match dataset {key}. The output directory may be wrong", "red"))
|
|
return
|
|
|
|
n_tried += 1
|
|
if obj['success']:
|
|
n_success += 1
|
|
print(f"Proved {n_success}/{n_tried} problems")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
prog='DSP',
|
|
description="Draft-Sketch-Prove on Lean code",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
parser.add_argument(
|
|
'mode',
|
|
help="Function",
|
|
choices=['prompts', 'eval', 'check'],
|
|
)
|
|
parser.add_argument(
|
|
"--dataset",
|
|
help="Evaluation dataset path",
|
|
default=experiment_dir / 'debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json',
|
|
)
|
|
parser.add_argument(
|
|
"--output",
|
|
help="Result directory",
|
|
default=experiment_dir / 'result',
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
help="Model",
|
|
default="gpt-4o",
|
|
choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct", "o1-preview"],
|
|
)
|
|
parser.add_argument(
|
|
"--format",
|
|
help="Data format",
|
|
default="default",
|
|
choices=["default", "minif2f"],
|
|
)
|
|
parser.add_argument("--start", default=0)
|
|
parser.add_argument("--end", default=sys.maxsize)
|
|
parser.add_argument(
|
|
"--batchsize",
|
|
default=10, type=int,
|
|
help="putnam has 348",
|
|
)
|
|
parser.add_argument(
|
|
"--n-samples",
|
|
default=1, type=int,
|
|
help="Number of sketch samples for a draft",
|
|
)
|
|
parser.add_argument(
|
|
"--max-tokens",
|
|
default=2048, type=int,
|
|
help="Maximum number of tokens in one sample",
|
|
)
|
|
parser.add_argument(
|
|
"--top-p",
|
|
default=0.95, type=float,
|
|
help="Sampling top p via nucleus sampling",
|
|
)
|
|
parser.add_argument(
|
|
"--temperature",
|
|
default=0.8, type=float,
|
|
help="Sampling temperature",
|
|
)
|
|
parser.add_argument("--verbose", action='store_true')
|
|
args = parser.parse_args()
|
|
|
|
if args.mode == "prompts":
|
|
prompt = get_prompt_sketch_template_4_lean_v0(verbose=args.verbose)
|
|
print(prompt)
|
|
elif args.mode == "eval":
|
|
main(args)
|
|
elif args.mode == 'check':
|
|
check(args)
|
|
else:
|
|
raise ValueError(f"Unknown mode: {args.mode}")
|