107 lines
3.7 KiB
Python
Executable File
107 lines
3.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import subprocess, json, argparse
|
|
from typing import Optional
|
|
from pathlib import Path
|
|
from pantograph.server import Server, ServerError
|
|
from pantograph.search import SearchResult
|
|
from model.llm_agent import LLMAgent
|
|
|
|
PATH_EXPERIMENT = Path(__file__).parent.resolve()
|
|
|
|
def get_project_and_lean_path():
|
|
cwd = PATH_EXPERIMENT / 'MiniF2F'
|
|
p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd)
|
|
return cwd, p
|
|
|
|
def read_test_data(use_valid: bool):
|
|
jsonl_path = PATH_EXPERIMENT / ('valid.jsonl' if use_valid else 'test.jsonl')
|
|
with open(jsonl_path, 'r') as f:
|
|
return [json.loads(l) for l in list(f)]
|
|
|
|
def try_test_data(server, agent, entry: dict, max_steps: int, max_trials_per_goal: int) -> Optional[SearchResult]:
|
|
command = entry["formal_statement"]
|
|
print(command)
|
|
informal_stmt = entry["informal_stmt"]
|
|
informal_proof = entry["informal_proof"]
|
|
|
|
goal_states = server.load_sorry(command)
|
|
|
|
if len(goal_states) == 0:
|
|
return None
|
|
|
|
goal_state, = goal_states
|
|
try:
|
|
return agent.search(
|
|
server=server,
|
|
goal_state=goal_state,
|
|
informal_stmt=informal_stmt,
|
|
informal_proof=informal_proof,
|
|
verbose=True,
|
|
max_steps=max_steps,
|
|
max_trials_per_goal=max_trials_per_goal
|
|
)
|
|
except ServerError as e:
|
|
return None
|
|
|
|
def output_file_name(datum, use_hammer: bool, use_llm: bool):
|
|
name = datum["id"]
|
|
folder = 'output'
|
|
if use_hammer:
|
|
folder += '-hammer'
|
|
if use_llm:
|
|
folder += '-llm'
|
|
folder = PATH_EXPERIMENT / folder
|
|
folder.mkdir(exist_ok=True, parents=True)
|
|
return folder / f"{name}.json"
|
|
|
|
def dry_run(args):
|
|
test_data = read_test_data(args.validation)
|
|
for datum in test_data:
|
|
print(datum["formal_statement"])
|
|
|
|
def run_eval(args):
|
|
project_path, lean_path = get_project_and_lean_path()
|
|
print(f"$PWD: {project_path}")
|
|
print(f"$LEAN_PATH: {lean_path}")
|
|
|
|
test_data = read_test_data(args.validation)
|
|
for datum in test_data:
|
|
file_name = output_file_name(datum, args.use_hammer, args.use_llm)
|
|
placeholder_file_name = file_name.with_suffix('.placeholder')
|
|
if file_name.is_file():
|
|
print(f"Skipping {datum['id']}")
|
|
continue
|
|
server = Server(imports=["MiniF2F"], project_path=project_path, lean_path=lean_path)
|
|
agent = LLMAgent(server, use_hammer=args.use_hammer, use_llm=args.use_llm)
|
|
result = try_test_data(server, agent, datum, max_steps=args.max_steps, max_trials_per_goal=args.max_trials_per_goal)
|
|
#server.gc()
|
|
if result is None:
|
|
with open(placeholder_file_name, 'w') as f:
|
|
json.dump({ 'id': datum['id'] }, f)
|
|
else:
|
|
if placeholder_file_name.is_file():
|
|
placeholder_file_name.unlink()
|
|
with open(file_name, 'w') as f:
|
|
json.dump({ 'id': datum['id'], 'success': result.success, 'steps': result.steps }, f)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(
|
|
prog='MiniF2F Search',
|
|
description='Executes LLM on MiniF2F Search')
|
|
parser.add_argument('--use-hammer', action='store_true')
|
|
parser.add_argument(
|
|
'--dry-run',
|
|
action='store_true',
|
|
help="List the data used, but don't run")
|
|
parser.add_argument('--validation', action='store_true')
|
|
parser.add_argument('--use-llm', action='store_true')
|
|
parser.add_argument('-s', '--max-steps', default=50)
|
|
parser.add_argument('-t', '--max-trials-per-goal', default=2)
|
|
args = parser.parse_args()
|
|
|
|
if args.dry_run:
|
|
dry_run(args)
|
|
else:
|
|
run_eval(args)
|