Pantograph/Pantograph/Tactic/Fragment.lean

189 lines
7.9 KiB
Plaintext

/- Fragmented tactics are the tactics which can give incremental feedback and
whose integrity as a block is crucial to its operation. e.g. `calc` or `conv`.
Here, a unified system handles all fragments.
Inside a tactic fragment, the parser category may be different. An incomplete
fragmented tactic may not be elaboratable..
In line with continuation/resumption paradigms, the exit function of a fragment
tactic is responsible for resuming incomplete goals with fragments. For example,
when a conversion tactic finishes, the sentinels should resume the root of the
conversion tactic goal. The user cannot be expected to execute this resumption,
since the root is automatically dormanted at the entry of the conversion tactic
mode.
-/
import Lean.Meta
import Lean.Elab
open Lean
namespace Pantograph
inductive Fragment where
| calc (prevRhs? : Option Expr)
| conv (rhs : MVarId)
-- This goal is spawned from a `conv`
| convSentinel (parent : MVarId)
deriving BEq, Inhabited
abbrev FragmentMap := Std.HashMap MVarId Fragment
def FragmentMap.empty : FragmentMap := Std.HashMap.emptyWithCapacity 2
protected def FragmentMap.filter (map : FragmentMap) (pred : MVarId → Fragment → Bool) : FragmentMap :=
map.fold (init := FragmentMap.empty) λ acc mvarId fragment =>
if pred mvarId fragment then
acc.insert mvarId fragment
else
acc
protected def Fragment.map (fragment : Fragment) (mapExpr : Expr → CoreM Expr) : CoreM Fragment :=
let mapMVar (mvarId : MVarId) : CoreM MVarId :=
return (← mapExpr (.mvar mvarId)) |>.mvarId!
match fragment with
| .calc prevRhs? => return .calc (← prevRhs?.mapM mapExpr)
| .conv rhs => do
let rhs' ← mapMVar rhs
return .conv rhs'
| .convSentinel parent => do
return .convSentinel (← mapMVar parent)
protected def Fragment.enterCalc : Fragment := .calc .none
protected def Fragment.enterConv : Elab.Tactic.TacticM FragmentMap := do
let goal ← Elab.Tactic.getMainGoal
goal.checkNotAssigned `GoalState.conv
let (rhs, newGoal) ← goal.withContext do
let target ← instantiateMVars (← goal.getType)
let (rhs, newGoal) ← Elab.Tactic.Conv.mkConvGoalFor target
pure (rhs.mvarId!, newGoal.mvarId!)
Elab.Tactic.replaceMainGoal [newGoal]
return FragmentMap.empty
|>.insert goal (.conv rhs)
|>.insert newGoal (.convSentinel goal)
protected partial def Fragment.exit (fragment : Fragment) (goal : MVarId) (fragments : FragmentMap)
: Elab.Tactic.TacticM FragmentMap :=
match fragment with
| .calc .. => do
Elab.Tactic.setGoals [goal]
return fragments.erase goal
| .conv rhs => do
let goals := (← Elab.Tactic.getGoals).filter λ descendant =>
match fragments[descendant]? with
| .some s => (.convSentinel goal) == s
| _ => false -- Not a conv goal from this
-- Close all existing goals with `refl`
for mvarId in goals do
liftM <| mvarId.refl <|> mvarId.inferInstance <|> pure ()
unless (← goals.filterM (·.isAssignedOrDelayedAssigned)).isEmpty do
throwError "convert tactic failed, there are unsolved goals\n{Elab.goalsToMessageData (goals)}"
-- Ensure the meta tactic runs on `goal` even if its dormant by forcing resumption
Elab.Tactic.setGoals $ goal :: (← Elab.Tactic.getGoals)
let targetNew ← instantiateMVars (.mvar rhs)
let proof ← instantiateMVars (.mvar goal)
Elab.Tactic.liftMetaTactic1 (·.replaceTargetEq targetNew proof)
-- Try to solve maiinline by rfl
let mvarId ← Elab.Tactic.getMainGoal
liftM <| mvarId.refl <|> mvarId.inferInstance <|> pure ()
Elab.Tactic.pruneSolvedGoals
return fragments.filter λ mvarId fragment =>
!(mvarId == goal || fragment == .convSentinel goal)
| .convSentinel parent =>
let parentFragment := fragments[parent]!
parentFragment.exit parent (fragments.erase goal)
protected def Fragment.step (fragment : Fragment) (goal : MVarId) (s : String) (map : FragmentMap)
: Elab.Tactic.TacticM FragmentMap := goal.withContext do
assert! ¬ (← goal.isAssigned)
match fragment with
| .calc prevRhs? => do
let .ok stx := Parser.runParserCategory
(env := ← getEnv)
(catName := `term)
(input := s)
(fileName := ← getFileName) | throwError s!"Failed to parse calc element {s}"
let `(term|$pred) := stx
let decl ← goal.getDecl
let target ← instantiateMVars decl.type
let tag := decl.userName
let mut step ← Elab.Term.elabType <| ← do
if let some prevRhs := prevRhs? then
Elab.Term.annotateFirstHoleWithType pred (← Meta.inferType prevRhs)
else
pure pred
let some (_, lhs, rhs) ← Elab.Term.getCalcRelation? step |
throwErrorAt pred "invalid 'calc' step, relation expected{indentExpr step}"
if let some prevRhs := prevRhs? then
unless ← Meta.isDefEqGuarded lhs prevRhs do
throwErrorAt pred "invalid 'calc' step, left-hand-side is{indentD m!"{lhs} : {← Meta.inferType lhs}"}\nprevious right-hand-side is{indentD m!"{prevRhs} : {← Meta.inferType prevRhs}"}"
-- Creates a mvar to represent the proof that the calc tactic solves the
-- current branch
-- In the Lean `calc` tactic this is gobbled up by
-- `withCollectingNewGoalsFrom`
let mut proof ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances) step
(userName := tag ++ `calc)
let mvarBranch := proof.mvarId!
let mut proofType ← Meta.inferType proof
let mut remainder? := Option.none
-- The calc tactic either solves the main goal or leaves another relation.
-- Replace the main goal, and save the new goal if necessary
unless ← Meta.isDefEq proofType target do
let rec throwFailed :=
throwError "'calc' tactic failed, has type{indentExpr proofType}\nbut it is expected to have type{indentExpr target}"
let some (_, _, rhs) ← Elab.Term.getCalcRelation? proofType | throwFailed
let some (r, _, rhs') ← Elab.Term.getCalcRelation? target | throwFailed
let lastStep := mkApp2 r rhs rhs'
let lastStepGoal ← Meta.mkFreshExprSyntheticOpaqueMVar lastStep tag
(proof, proofType) ← Elab.Term.mkCalcTrans proof proofType lastStepGoal lastStep
unless ← Meta.isDefEq proofType target do throwFailed
remainder? := .some lastStepGoal.mvarId!
goal.assign proof
let goals := [ mvarBranch ] ++ remainder?.toList
Elab.Tactic.setGoals goals
match remainder? with
| .some goal => return map.erase goal |>.insert goal $ .calc (.some rhs)
| .none => return map
| .conv .. => do
throwError "Direct operation on conversion tactic parent goal is not allowed"
| fragment@(.convSentinel parent) => do
assert! isLHSGoal? (← goal.getType) |>.isSome
let tactic ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `conv)
(input := s)
(fileName := ← getFileName) with
| .ok stx => pure $ stx
| .error error => throwError error
let oldGoals ← Elab.Tactic.getGoals
-- Label newly generated goals as conv sentinels
Elab.Tactic.evalTactic tactic
let newConvGoals ← (← Elab.Tactic.getUnsolvedGoals).filterM λ g => do
-- conv tactic might generate non-conv goals
if oldGoals.contains g then
return false
return isLHSGoal? (← g.getType) |>.isSome
-- Conclude the conv by exiting the parent fragment if new goals is empty
if newConvGoals.isEmpty then
let hasSiblingFragment := map.fold (init := false) λ flag _ fragment =>
if flag then
true
else match fragment with
| .convSentinel parent' => parent == parent'
| _ => false
if ¬ hasSiblingFragment then
-- This fragment must exist since we have conv goals
let parentFragment := map[parent]!
-- All descendants exhausted. Exit from the parent conv.
return ← parentFragment.exit parent map
return newConvGoals.foldl (init := map) λ acc g =>
acc.insert g fragment
end Pantograph