252 lines
7.3 KiB
Python
252 lines
7.3 KiB
Python
from abc import abstractmethod
|
|
import time
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
import collections, unittest
|
|
|
|
from pantograph.server import Server, TacticFailure, ServerError
|
|
from pantograph.expr import Expr, Tactic, GoalState
|
|
|
|
|
|
@dataclass
|
|
class SearchState:
|
|
|
|
state: GoalState
|
|
parent: Optional[int]
|
|
parent_goal_id: Optional[int]
|
|
priorities: list[float]
|
|
tactic_feedback: Optional[str] = None
|
|
|
|
def __post_init__(self):
|
|
assert len(self.priorities) == len(self.state.goals)
|
|
self.solved = [False for _ in self.state.goals]
|
|
self.trials = [0 for _ in self.state.goals]
|
|
|
|
@property
|
|
def next_goal_id(self) -> int:
|
|
goal_id, _ = max(
|
|
((i, prio) for i, prio in enumerate(self.priorities) if not self.solved[i]),
|
|
key=lambda x: x[1])
|
|
return goal_id
|
|
|
|
@property
|
|
def is_root(self) -> bool:
|
|
return self.parent is None
|
|
|
|
@property
|
|
def is_solved(self) -> bool:
|
|
return all(self.solved)
|
|
|
|
@dataclass(frozen=True)
|
|
class SearchResult:
|
|
|
|
n_goals_root: int
|
|
duration: float
|
|
success: bool
|
|
steps: int
|
|
|
|
class Agent:
|
|
"""
|
|
An agent interface for proof search
|
|
"""
|
|
|
|
@abstractmethod
|
|
def next_tactic(
|
|
self,
|
|
state: GoalState,
|
|
goal_id: int,
|
|
) -> Optional[Tactic]:
|
|
"""
|
|
Implement this function to generate the next tactic for a goal
|
|
"""
|
|
|
|
@abstractmethod
|
|
def guidance(self, state: GoalState) -> list[float]:
|
|
"""
|
|
Return a list of priorities determining which goal should be searched
|
|
first. This will not be called on states with one or zero goals.
|
|
"""
|
|
return [0.0 for _ in state.goals]
|
|
@abstractmethod
|
|
def reset(self):
|
|
"""
|
|
Called after search
|
|
"""
|
|
|
|
def search(self,
|
|
server: Server,
|
|
goal_state: GoalState,
|
|
max_steps: int = 100,
|
|
max_trials_per_goal: int = 5,
|
|
verbose: bool = False) -> SearchResult:
|
|
"""
|
|
Executes proof search on this state
|
|
"""
|
|
|
|
assert server.is_automatic(), "Search must be run in automatic mode"
|
|
|
|
n_goals_root = len(goal_state.goals)
|
|
time_start = time.time()
|
|
|
|
initial_state = SearchState(
|
|
state=goal_state,
|
|
parent=None,
|
|
parent_goal_id=None,
|
|
priorities=[0.0 for _ in goal_state.goals]
|
|
)
|
|
search_stack = [initial_state]
|
|
for i_step in range(max_steps):
|
|
assert search_stack, "No states in search stack"
|
|
|
|
if verbose:
|
|
print(f"I={i_step}: len(S) = {len(search_stack)}")
|
|
search_state = search_stack[-1]
|
|
|
|
assert isinstance(search_state, SearchState)
|
|
|
|
if search_state.is_solved:
|
|
return SearchResult(
|
|
n_goals_root=n_goals_root,
|
|
duration=time.time() - time_start,
|
|
success=True,
|
|
steps=i_step,
|
|
)
|
|
|
|
# Find the unsolved goal with the highest priority
|
|
goal_id = search_state.next_goal_id
|
|
|
|
if search_state.trials[goal_id] > max_trials_per_goal:
|
|
# force halt the search
|
|
tactic = None
|
|
else:
|
|
# Generate tactic for this goal
|
|
tactic = self.next_tactic(search_state.state, goal_id)
|
|
|
|
if verbose:
|
|
print(f"Next tactic: {tactic}")
|
|
if not tactic:
|
|
# resets the feedback
|
|
search_state.tactic_feedback = None
|
|
# pop the current state and continue to the next
|
|
search_stack.pop(-1)
|
|
if not search_stack:
|
|
if verbose:
|
|
print("Search stack has been exhausted")
|
|
self.reset()
|
|
return SearchResult(
|
|
n_goals_root=n_goals_root,
|
|
duration=time.time() - time_start,
|
|
success=False,
|
|
steps=i_step,
|
|
)
|
|
continue
|
|
|
|
try:
|
|
search_state.trials[goal_id] += 1
|
|
state = search_state.state
|
|
if verbose:
|
|
print(f"{state.state_id}.{goal_id}: {tactic} on {search_state.state.goals[goal_id]}")
|
|
next_goal_state = server.goal_tactic(search_state.state, goal_id, tactic)
|
|
# Generate priorities for the next goal state
|
|
priorities = [0.0 for _ in next_goal_state.goals] \
|
|
if len(next_goal_state.goals) <= 1 else \
|
|
self.guidance(next_goal_state)
|
|
parent = len(search_stack) - 1
|
|
next_state = SearchState(
|
|
state=next_goal_state,
|
|
parent=parent,
|
|
parent_goal_id=goal_id,
|
|
priorities=priorities
|
|
)
|
|
search_stack.append(next_state)
|
|
|
|
except TacticFailure as t:
|
|
if verbose:
|
|
print(f"Tactic failed: {t}")
|
|
search_state.tactic_feedback = str(t)
|
|
# try the next tactic. this one failed
|
|
except ServerError as e:
|
|
raise RuntimeError(f"While executing tactic: {tactic}") from e
|
|
|
|
if verbose:
|
|
print("Search iteration limit exhausted")
|
|
|
|
self.reset()
|
|
return SearchResult(
|
|
n_goals_root=n_goals_root,
|
|
duration=time.time() - time_start,
|
|
success=False,
|
|
steps=max_steps,
|
|
)
|
|
|
|
|
|
class DumbAgent(Agent):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.goal_tactic_id_map = collections.defaultdict(lambda : 0)
|
|
self.intros = [
|
|
"intro",
|
|
]
|
|
self.tactics = [
|
|
"intro h",
|
|
"cases h",
|
|
"apply Or.inl",
|
|
"apply Or.inr",
|
|
]
|
|
self.no_space_tactics = [
|
|
"assumption",
|
|
]
|
|
|
|
def next_tactic(
|
|
self,
|
|
state: GoalState,
|
|
goal_id: int,
|
|
) -> Optional[Tactic]:
|
|
key = (state.state_id, goal_id)
|
|
i = self.goal_tactic_id_map[key]
|
|
|
|
target = state.goals[goal_id].target
|
|
if target.startswith('∀'):
|
|
tactics = self.intros
|
|
elif ' ' in target:
|
|
tactics = self.tactics
|
|
else:
|
|
tactics = self.no_space_tactics
|
|
|
|
if i >= len(tactics):
|
|
return None
|
|
|
|
self.goal_tactic_id_map[key] = i + 1
|
|
return tactics[i]
|
|
|
|
|
|
class TestSearch(unittest.TestCase):
|
|
|
|
def test_solve(self):
|
|
|
|
server = Server()
|
|
agent = DumbAgent()
|
|
goal_state = server.goal_start("∀ (p q: Prop), p -> p")
|
|
flag = agent.search(
|
|
server=server,
|
|
goal_state=goal_state,
|
|
verbose=False)
|
|
#flag = agent.search(server=server, target="∀ (p q: Prop), Or p q -> Or q p", verbose=True)
|
|
self.assertTrue(flag)
|
|
def test_solve_big(self):
|
|
|
|
server = Server()
|
|
agent = DumbAgent()
|
|
goal_state = server.goal_start("∀ (p q: Prop), Or p q -> Or q p")
|
|
flag = agent.search(
|
|
server=server,
|
|
goal_state=goal_state,
|
|
verbose=False)
|
|
self.assertTrue(flag)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|