115 lines
5.0 KiB
Python
115 lines
5.0 KiB
Python
from typing import Optional
|
||
import collections, unittest
|
||
from pantograph.search import Agent
|
||
from pantograph.server import Server, TacticFailure, ServerError
|
||
from pantograph.expr import Expr, Tactic, GoalState
|
||
from .gen_tactic import LEAN4_REWRITE, select_tactic
|
||
from .options import CORE_OPTIONS
|
||
import sglang as sgl
|
||
|
||
class LLMAgent(Agent):
|
||
"""
|
||
A LLM-based proof agent from SGL
|
||
"""
|
||
|
||
def __init__(self, server,
|
||
use_hammer=True,
|
||
use_llm=True,
|
||
feedback_turns=3):
|
||
super().__init__()
|
||
self.n_trials = 5
|
||
self.server = server
|
||
|
||
if use_llm:
|
||
sgl.set_default_backend(sgl.OpenAI("gpt-4"))
|
||
|
||
self.goal_tactic_id_map = collections.defaultdict(lambda : 0)
|
||
|
||
self.use_hammer = use_hammer
|
||
self.use_llm = use_llm
|
||
self.feedback_turns = feedback_turns
|
||
if use_hammer:
|
||
self.tactics = [
|
||
"aesop",
|
||
#"simp",
|
||
#"rfl",
|
||
#"decide",
|
||
]
|
||
else:
|
||
self.tactics = []
|
||
|
||
self.informal_stmt = ""
|
||
self.informal_proof = ""
|
||
|
||
def next_tactic(
|
||
self,
|
||
state: GoalState,
|
||
goal_id: int,
|
||
) -> Optional[Tactic]:
|
||
key = (state.state_id, goal_id)
|
||
i = self.goal_tactic_id_map[key]
|
||
|
||
target = state.goals[goal_id].target
|
||
if i >= len(self.tactics) and not self.use_llm:
|
||
return None
|
||
elif i >= len(self.tactics):
|
||
assert self.use_llm
|
||
new_state = None
|
||
for ii in range(self.n_trials):
|
||
print(f"===============trail {str(ii)}============")
|
||
s = select_tactic.run(
|
||
server=self.server,
|
||
state=state,
|
||
goal_id=goal_id,
|
||
informal_stmt=self.informal_stmt,
|
||
informal_proof=self.informal_proof,
|
||
feedback_turns=self.feedback_turns)
|
||
tactic, new_state = s.ret_value
|
||
for m in s.messages():
|
||
print(m["role"], ":", m["content"])
|
||
|
||
print("\n-- new state --\n", new_state)
|
||
if tactic:
|
||
return tactic
|
||
return None
|
||
else:
|
||
self.goal_tactic_id_map[key] = i + 1
|
||
return self.tactics[i]
|
||
|
||
class TestSearch(unittest.TestCase):
|
||
|
||
# def test_miniF2F(self):
|
||
# problem = {"id": "mathd_algebra_478",
|
||
# "split": "test",
|
||
# "formal_statement": "theorem mathd_algebra_478\n (b h v : \u211d)\n (h\u2080 : 0 < b \u2227 0 < h \u2227 0 < v)\n (h\u2081 : v = 1 / 3 * (b * h))\n (h\u2082 : b = 30)\n (h\u2083 : h = 13 / 2) :\n v = 65 := sorry",
|
||
# "header": "import Mathlib.Algebra.BigOperators.Basic\nimport Mathlib.Data.Real.Basic\nimport Mathlib.Data.Complex.Basic\nimport Mathlib.Data.Nat.Log\nimport Mathlib.Data.Complex.Exponential\nimport Mathlib.NumberTheory.Divisors\nimport Mathlib.Data.ZMod.Defs\nimport Mathlib.Data.ZMod.Basic\nimport Mathlib.Topology.Basic\nimport Mathlib.Data.Nat.Digits\n\nopen BigOperators\nopen Real\nopen Nat\nopen Topology",
|
||
# "informal_stmt": "The volume of a cone is given by the formula $V = \\frac{1}{3}Bh$, where $B$ is the area of the base and $h$ is the height. The area of the base of a cone is 30 square units, and its height is 6.5 units. What is the number of cubic units in its volume? Show that it is 65.",
|
||
# "informal_proof": "We are given that $B = 30$ and $h = 6.5$ and asked to find $\\frac{1}{3}Bh$. We find that \\[\\frac{1}{3}Bh = \\frac{1}{3}(30)(6.5) = (10)(6.5) = 65.\\]"}
|
||
# server = Server(imports=["Mathlib.Algebra.BigOperators.Basic", "Mathlib.Data.Real.Basic"])
|
||
# target = "∀ (b h v : ℝ) (h₀ : 0 < b ∧ 0 < h ∧ 0 < v) (h₁ : v = 1 / 3 * (b * h)) (h₂ : b = 30) (h₃ : h = 13 / 2) , v = 65"
|
||
# # target = "theorem mathd_algebra_478\n (b h v : ℝ)\n (h₀ : 0 < b ∧ 0 < h ∧ 0 < v)\n (h₁ : v = 1 / 3 * (b * h))\n (h₂ : b = 30)\n (h₃ : h = 13 / 2) :\n v = 65 := sorry"
|
||
# agent = LLMAgent(server)
|
||
# flag = agent.search(server=server, target=target, verbose=True)
|
||
# self.assertTrue(flag)
|
||
|
||
|
||
def test_solve(self):
|
||
|
||
server = Server(core_options=CORE_OPTIONS)
|
||
agent = LLMAgent(server, use_hammer=False)
|
||
goal_state = server.goal_start("∀ (p q: Prop), p -> p")
|
||
flag = agent.search(server=server, goal_state=goal_state, verbose=True)
|
||
#flag = agent.search(server=server, target="∀ (p q: Prop), Or p q -> Or q p", verbose=True)
|
||
self.assertTrue(flag)
|
||
def test_solve_big(self):
|
||
|
||
server = Server(core_options=CORE_OPTIONS)
|
||
agent = LLMAgent(server, use_hammer=False)
|
||
goal_state = server.goal_start("∀ (p q: Prop), Or p q -> Or q p")
|
||
flag = agent.search(server=server, goal_state=goal_state, verbose=True)
|
||
self.assertTrue(flag)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
unittest.main()
|