252 lines
11 KiB
Python
252 lines
11 KiB
Python
import sys
|
|
from collections import namedtuple
|
|
import fire
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
from typing import Union, Any
|
|
import json
|
|
import os
|
|
from openai import OpenAI
|
|
import wandb
|
|
from tenacity import retry, stop_after_attempt, wait_exponential
|
|
|
|
from solve.dsp_lean_prompts import SYSTEM_PROMPT_DRAFT_V0, prompt_draft_template_lean4_v0, STOP_TOKENS_DRAFT_V0
|
|
from solve.dsp_lean_prompts import SYSTEM_PROMPT_SKETCH_V0, prompt_sketch_template_lean4_v0, STOP_TOKENS_SKETCH_V0
|
|
|
|
# prompt_draft_template_lean4_v0 = "Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + 0 = n.\n\n### Solution\n\nConsider any natural number n. From properties of addition, adding zero does not change its values. Thus, n + 0 = n.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + (m + 1) = (n + m) + 1.\n\n### Solution\n\nConsider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n and m, n + m = m + n.\n\n### Solution\n\nConsider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m + (n + 1). Thus, by induction, n + m = m + n, qed.*)\n\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n"
|
|
|
|
class Engine:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, *args, **kwards):
|
|
pass
|
|
|
|
class OpenAI_DSP_Engine(Engine):
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
api_key: str = None,
|
|
base_url: str = None, # e.g., Mistral-7B-Instrcut-v0.2 on http://120.77.8.29:12345
|
|
# Draft Params
|
|
draft_system_prompt: str = SYSTEM_PROMPT_DRAFT_V0, # 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.' (goal do draft)
|
|
draft_prompt_template: str = prompt_draft_template_lean4_v0,
|
|
draft_sampling_params = None,
|
|
draft_stop_tokens: list[str] = STOP_TOKENS_DRAFT_V0,
|
|
# Sketch Params
|
|
sketch_system_prompt: str = SYSTEM_PROMPT_SKETCH_V0,
|
|
sketch_prompt_template: str = prompt_sketch_template_lean4_v0,
|
|
sketch_sampling_params = None,
|
|
sketch_stop_tokens: list[str] = STOP_TOKENS_SKETCH_V0,
|
|
# Prove Params
|
|
# ...TODO not sure if needed right now...
|
|
# Misc
|
|
verbose_init: bool = True,
|
|
):
|
|
super().__init__()
|
|
print(f'{api_key=}, {base_url=}') if verbose_init else None
|
|
self.model = model
|
|
self.api_key = api_key
|
|
self.llm = OpenAI(api_key=self.api_key, base_url=base_url)
|
|
# Draft params
|
|
self.draft_system_prompt = draft_system_prompt
|
|
self.draft_prompt_template = draft_prompt_template
|
|
self.draft_sampling_params = draft_sampling_params
|
|
# self.draft_sampling_params.stop = draft_stop_tokens
|
|
# Sketch params
|
|
self.sketch_system_prompt = sketch_system_prompt
|
|
self.sketch_prompt_template = sketch_prompt_template
|
|
self.sketch_sampling_params = sketch_sampling_params
|
|
# self.sketch_sampling_params.stop = sketch_stop_tokens
|
|
# Prove params
|
|
# ...TODO not sure if needed right now...
|
|
|
|
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def autoformalize_prob(
|
|
eng,
|
|
data_pt: dict,
|
|
verbose: bool = False,
|
|
):
|
|
""" Autoformalize natural language problem to formal language problem. """
|
|
...
|
|
|
|
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def draft(
|
|
eng,
|
|
data_pt: dict,
|
|
verbose: bool = False,
|
|
) -> list:
|
|
"""
|
|
Creates (informal nl) draft (nl soln, nl proof sketch) for latter use in a formal proof sketch.
|
|
y_pred_nl ~ draft(eng, x_nl_prob, P_draft)
|
|
"""
|
|
# Make prompt from template
|
|
nl_problem: str = data_pt['nl_problem'][0]
|
|
prompt = eng.draft_prompt_template.replace('{nl_problem}', nl_problem)
|
|
# Get all **completions** to single prompt, one (in) -> many (out)
|
|
# ref: https://platform.openai.com/docs/api-reference/chat/object
|
|
response: Any = eng.llm.chat.completions.create(
|
|
model=eng.model,
|
|
messages=[
|
|
{"role": "system", "content": eng.draft_system_prompt},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
temperature=eng.draft_sampling_params.temperature,
|
|
top_p=eng.draft_sampling_params.top_p,
|
|
n=eng.draft_sampling_params.n,
|
|
stop=eng.draft_sampling_params.stop[:3],
|
|
)
|
|
# Get all completions for single prompt
|
|
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
|
|
drafts: list[str] = completions
|
|
return drafts
|
|
|
|
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
|
|
def sketch(
|
|
eng,
|
|
data_pt: dict,
|
|
drafts: list,
|
|
autoformalize_prob_in_prompt: bool = False,
|
|
verbose: bool = False,
|
|
) -> list:
|
|
"""
|
|
Creates (formal fl) sketch (fl proof sketch) for latter use in a formal proof sketch.
|
|
z_pred_fl ~ sketch(eng, x_nl_prob, y_pred_nl, x_fl_prob, P_sketch)
|
|
"""
|
|
assert len(drafts) == 1, f"For now only 1 draft."
|
|
# Make prompt from template
|
|
x_nl_problem: str = data_pt['nl_problem'][0]
|
|
y_nl_solution: str = drafts[0]
|
|
if autoformalize_prob_in_prompt:
|
|
# prompt = eng.sketch_prompt_template.replace('{nl_problem}', x_nl_problem).replace('{nl_solution}', y_nl_solution)
|
|
not NotImplemented
|
|
else:
|
|
x_fl_problem = data_pt['fl_problem'][0] if 'fl_problem' in data_pt else autoformalize_prob(eng, data_pt)
|
|
prompt = eng.sketch_prompt_template.replace('{fl_problem}', x_nl_problem).replace('{fl_problem}', y_nl_solution)
|
|
# Get all **completions** to single prompt, one (in) -> many (out), ref: https://platform.openai.com/docs/api-reference/chat/object
|
|
response: Any = eng.llm.chat.completions.create(
|
|
model=eng.model,
|
|
messages=[
|
|
{"role": "system", "content": eng.sketch_system_prompt},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
temperature=eng.sketch_sampling_params.temperature,
|
|
top_p=eng.sketch_sampling_params.top_p,
|
|
n=eng.sketch_sampling_params.n,
|
|
# stop=eng.sketch_sampling_params.stop[:3],
|
|
)
|
|
# Get all completions for single prompt
|
|
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
|
|
sketches: list[str] = completions
|
|
# Return
|
|
return sketches, x_fl_problem
|
|
|
|
def prove(
|
|
eng,
|
|
fl_prob: str,
|
|
fl_sketch: list[str],
|
|
):
|
|
"""
|
|
|
|
Complete formal sketch and check if it proves the theorem.
|
|
|
|
fl_prob --> Lean4 theorem (problem)
|
|
fl_sketch --> Lean4 Form Sketch --> have x have ha
|
|
|
|
"""
|
|
# -- Prove
|
|
correct: bool = False
|
|
# -- Return
|
|
return correct
|
|
|
|
# -- DSP for Lean
|
|
|
|
def single_proof_search_dsp_lean(
|
|
eng: Engine,
|
|
data_pt: dict,
|
|
) -> bool:
|
|
# -- Draft: [y_nl_pred_draft]_n ~ draft(eng, x_nl_prob, P_draft)
|
|
y_nl_pred_drafts = draft(eng, data_pt)
|
|
|
|
# -- Sketch: z_fl_pred_sketch ~ sketch(eng, x_nl_prob, [y_nl_pred_draft]_n, x_fl_prob, P_sketch)
|
|
z_fl_pred_sketches, x_fl_prob = sketch(eng, data_pt, y_nl_pred_drafts)
|
|
|
|
# -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches)
|
|
correct: bool = prove(eng, x_fl_prob, z_fl_pred_sketches)
|
|
|
|
# -- Return
|
|
return
|
|
|
|
|
|
def full_proof_search_dsp_lean(
|
|
eng: Engine,
|
|
path_2_eval_dataset: Union[str, Path],
|
|
):
|
|
# -- Get eval data
|
|
path_2_eval_dataset = Path(path_2_eval_dataset).expanduser()
|
|
eval_dataset: list[dict] = json.load(open(path_2_eval_dataset, 'r'))
|
|
print(f'{len(eval_dataset)=}')
|
|
# -- Proof search by DSP over all eval data
|
|
data_pt: dict
|
|
for data_pt in tqdm(eval_dataset, total=len(eval_dataset), desc='DSP proof loop per data point in benchmark.'):
|
|
print(f'{data_pt=}')
|
|
single_proof_search_dsp_lean(eng, data_pt)
|
|
return
|
|
|
|
# -- Main
|
|
|
|
def main(
|
|
path_2_eval_dataset: str = '~/PyPantograph/examples/lean4_dsp/debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json',
|
|
# model: str = 'deepseek-ai/deepseek-math-7b-instruct',
|
|
# model: str = 'gpt2',
|
|
# model: str = 'gpt-3.5-turbo',
|
|
model: str = 'gpt-4o',
|
|
start: int = 0,
|
|
end: int = sys.maxsize,
|
|
# end: int = 10, # do 10 so enough boxed qs are there
|
|
batch_size: int = 10, # putnam has 348
|
|
n: int = 1, # num seqs to return for given prompt
|
|
max_tokens: int = 2048,
|
|
top_p: float = 0.95,
|
|
temperature: float = 0.8,
|
|
mode: str = "dryrun",
|
|
):
|
|
path_2_eval_dataset = Path(path_2_eval_dataset).expanduser()
|
|
print(f'{path_2_eval_dataset=}')
|
|
|
|
# - Start wandb run
|
|
# print(f'\n\n-- Setup params')
|
|
# CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES")
|
|
# current_tmux_session = os.environ.get("TMUX", "").split(",")[-1]
|
|
# today = datetime.datetime.now().strftime("%Y-m%m-d%d-t%Hh_%Mm_%Ss")
|
|
# config = {'today': today, "CUDA_VISIBLE_DEVICES": CUDA_VISIBLE_DEVICES, "current_tmux_session": current_tmux_session, "model": model, "path_2_eval_dataset": path_2_eval_dataset}
|
|
# project: str = 'pypantograph'
|
|
# run_name = f"{project}: ({config})"
|
|
# run = wandb.init(mode=mode, project=project, name=run_name, save_code=True, config=config)
|
|
# print(f"{run.url=}")
|
|
# print(f'\n Config: \n{config=}')
|
|
|
|
# - Run DSP for Lean
|
|
if 'gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model:
|
|
api_key = open(Path('~/keys/openai_api_key_brandos_koyejolab.txt').expanduser(), 'r').read().strip()
|
|
SamplingParams = namedtuple('SamplingParams', ['n', 'max_tokens', 'top_p', 'temperature', 'stop'])
|
|
draft_sampling_params = SamplingParams(n=n, max_tokens=max_tokens, top_p=top_p, temperature=temperature, stop=STOP_TOKENS_DRAFT_V0)
|
|
sketch_sampling_params = SamplingParams(n=n, max_tokens=max_tokens, top_p=top_p, temperature=temperature, stop=STOP_TOKENS_SKETCH_V0)
|
|
eng: OpenAI_DSP_Engine = OpenAI_DSP_Engine(model=model, api_key=api_key, verbose_init=True, draft_sampling_params=draft_sampling_params, sketch_sampling_params=sketch_sampling_params)
|
|
else:
|
|
raise ValueError(f"Model {model=} not supported.")
|
|
|
|
# - Full proof search with DSP
|
|
print(f'\n\n-- Full proof search with DSP')
|
|
full_proof_search_dsp_lean(eng, path_2_eval_dataset)
|
|
|
|
# - End run
|
|
# wandb.config.update(config)
|
|
# print(f"{wandb.config=}")
|
|
# run.finish()
|
|
|
|
if __name__ == "__main__":
|
|
import time
|
|
start_time = time.time()
|
|
fire.Fire(main)
|
|
print(f"Time taken: {time.time() - start_time:.2f} seconds, or {(time.time() - start_time) / 60:.2f} minutes, or {(time.time() - start_time) / 3600:.2f} hours.\a") |