Pantograph/Pantograph/Environment.lean

199 lines
7.5 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Pantograph.Delate
import Pantograph.Elab
import Pantograph.Protocol
import Pantograph.Serial
import Lean.Environment
import Lean.Replay
open Lean
open Pantograph
namespace Pantograph.Environment
@[export pantograph_is_name_internal]
def isNameInternal (n: Name): Bool :=
-- Returns true if the name is an implementation detail which should not be shown to the user.
n.isAuxLemma n.hasMacroScopes
/-- Catalog all the non-internal and safe names -/
@[export pantograph_environment_catalog]
def env_catalog (env: Environment): Array Name := env.constants.fold (init := #[]) (λ acc name _ =>
match isNameInternal name with
| false => acc.push name
| true => acc)
@[export pantograph_environment_module_of_name]
def module_of_name (env: Environment) (name: Name): Option Name := do
let moduleId ← env.getModuleIdxFor? name
if h : moduleId.toNat < env.allImportedModuleNames.size then
return env.allImportedModuleNames.get moduleId.toNat h
else
.none
def toCompactSymbolName (n: Name) (info: ConstantInfo): String :=
let pref := match info with
| .axiomInfo _ => "a"
| .defnInfo _ => "d"
| .thmInfo _ => "t"
| .opaqueInfo _ => "o"
| .quotInfo _ => "q"
| .inductInfo _ => "i"
| .ctorInfo _ => "c"
| .recInfo _ => "r"
s!"{pref}{toString n}"
def toFilteredSymbol (n: Lean.Name) (info: Lean.ConstantInfo): Option String :=
if isNameInternal n || info.isUnsafe
then Option.none
else Option.some <| toCompactSymbolName n info
def describe (_: Protocol.EnvDescribe): CoreM Protocol.EnvDescribeResult := do
let env ← Lean.MonadEnv.getEnv
return {
imports := env.header.imports.map toString,
modules := env.header.moduleNames.map (·.toString),
}
def moduleRead (args: Protocol.EnvModuleRead): CoreM Protocol.EnvModuleReadResult := do
let env ← Lean.MonadEnv.getEnv
let .some i := env.header.moduleNames.findIdx? (· == args.module.toName) |
throwError s!"Module not found {args.module}"
let data := env.header.moduleData[i]!
return {
imports := data.imports.map toString,
constNames := data.constNames.map (·.toString),
extraConstNames := data.extraConstNames.map (·.toString),
}
def catalog (_: Protocol.EnvCatalog): CoreM Protocol.EnvCatalogResult := do
let env ← Lean.MonadEnv.getEnv
let names := env.constants.fold (init := #[]) (λ acc name info =>
match toFilteredSymbol name info with
| .some x => acc.push x
| .none => acc)
return { symbols := names }
def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): Protocol.FallibleT CoreM Protocol.EnvInspectResult := do
let env ← Lean.MonadEnv.getEnv
let name := args.name.toName
let info? := env.find? name
let .some info := info? | Protocol.throw $ Protocol.errorIndex s!"Symbol not found {args.name}"
let module? := env.getModuleIdxFor? name >>=
(λ idx => env.allImportedModuleNames.get? idx.toNat)
let value? := match args.value?, info with
| .some true, _ => info.value?
| .some false, _ => .none
| .none, .defnInfo _ => info.value?
| .none, _ => .none
let type ← unfoldAuxLemmas info.type
let value? ← value?.mapM (λ v => unfoldAuxLemmas v)
-- Information common to all symbols
let core := {
type := ← (serializeExpression options type).run',
isUnsafe := info.isUnsafe,
value? := ← value?.mapM (λ v => serializeExpression options v |>.run'),
publicName? := Lean.privateToUserName? name |>.map (·.toString),
typeDependency? := if args.dependency?.getD false
then .some <| type.getUsedConstants.map (λ n => serializeName n)
else .none,
valueDependency? := if args.dependency?.getD false
then value?.map (λ e =>
e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
else .none,
module? := module?.map (·.toString)
}
let result ← match info with
| .inductInfo induct => pure { core with inductInfo? := .some {
numParams := induct.numParams,
numIndices := induct.numIndices,
all := induct.all.toArray.map (·.toString),
ctors := induct.ctors.toArray.map (·.toString),
isRec := induct.isRec,
isReflexive := induct.isReflexive,
isNested := induct.isNested,
} }
| .ctorInfo ctor => pure { core with constructorInfo? := .some {
induct := ctor.induct.toString,
cidx := ctor.cidx,
numParams := ctor.numParams,
numFields := ctor.numFields,
} }
| .recInfo r => pure { core with recursorInfo? := .some {
all := r.all.toArray.map (·.toString),
numParams := r.numParams,
numIndices := r.numIndices,
numMotives := r.numMotives,
numMinors := r.numMinors,
rules := ← r.rules.toArray.mapM (λ rule => do
pure {
ctor := rule.ctor.toString,
nFields := rule.nfields,
rhs := ← (serializeExpression options rule.rhs).run',
})
k := r.k,
} }
| _ => pure core
let result ← if args.source?.getD false then
let srcSearchPath ← initSrcSearchPath
let sourceUri? ← module?.bindM (Server.documentUriFromModule srcSearchPath ·)
let declRange? ← findDeclarationRanges? name
let sourceStart? := declRange?.map (·.range.pos)
let sourceEnd? := declRange?.map (·.range.endPos)
.pure {
result with
sourceUri?,
sourceStart?,
sourceEnd?,
}
else
.pure result
return result
/-- Elaborates and adds a declaration to the `CoreM` environment. -/
@[export pantograph_env_add_m]
def addDecl (name: String) (levels: Array String := #[]) (type?: Option String) (value: String) (isTheorem: Bool)
: Protocol.FallibleT CoreM Protocol.EnvAddResult := do
let env ← Lean.MonadEnv.getEnv
let levelParams := levels.toList.map (·.toName)
let tvM: Elab.TermElabM (Except String (Expr × Expr)) :=
Elab.Term.withLevelNames levelParams do do
let expectedType?? : Except String (Option Expr) ← ExceptT.run $ type?.mapM λ type => do
match parseTerm env type with
| .ok syn => elabTerm syn
| .error e => MonadExceptOf.throw e
let expectedType? ← match expectedType?? with
| .ok t? => pure t?
| .error e => return .error e
let value ← match parseTerm env value with
| .ok syn => do
try
let expr ← Elab.Term.elabTerm (stx := syn) (expectedType? := expectedType?)
Lean.Elab.Term.synthesizeSyntheticMVarsNoPostponing
let expr ← instantiateMVars expr
pure $ expr
catch ex => return .error (← ex.toMessageData.toString)
| .error e => return .error e
Elab.Term.synthesizeSyntheticMVarsNoPostponing
let type ← match expectedType? with
| .some t => pure t
| .none => Meta.inferType value
pure $ .ok (← instantiateMVars type, ← instantiateMVars value)
let (type, value) ← match ← tvM.run' (ctx := {}) |>.run' with
| .ok t => pure t
| .error e => Protocol.throw $ Protocol.errorExpr e
let decl := if isTheorem then
Lean.Declaration.thmDecl <| Lean.mkTheoremValEx
(name := name.toName)
(levelParams := levelParams)
(type := type )
(value := value)
(all := [])
else
Lean.Declaration.defnDecl <| Lean.mkDefinitionValEx
(name := name.toName)
(levelParams := levelParams)
(type := type)
(value := value)
(hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe)
(all := [])
Lean.addDecl decl
return {}
end Pantograph.Environment