Pantograph/Test/Common.lean

164 lines
5.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Pantograph.Goal
import Pantograph.Library
import Pantograph.Protocol
import Lean
import LSpec
open Lean
namespace Pantograph
deriving instance Repr for Expr
-- Use strict equality check for expressions
instance : BEq Expr := ⟨Expr.equal⟩
def uniq (n: Nat): Name := .num (.str .anonymous "_uniq") n
-- Auxiliary functions
namespace Protocol
def Goal.devolatilizeVars (goal: Goal): Goal :=
{
goal with
vars := goal.vars.map removeInternalAux,
}
where removeInternalAux (v: Variable): Variable :=
{
v with
name := ""
}
/-- Set internal names to "" -/
def Goal.devolatilize (goal: Goal): Goal :=
{
goal.devolatilizeVars with
name := "",
}
deriving instance DecidableEq, Repr for Name
deriving instance DecidableEq, Repr for Expression
deriving instance DecidableEq, Repr for Variable
deriving instance DecidableEq, Repr for Goal
deriving instance DecidableEq, Repr for ExprEchoResult
deriving instance DecidableEq, Repr for InteractionError
deriving instance DecidableEq, Repr for Option
end Protocol
namespace Condensed
deriving instance BEq, Repr for LocalDecl
deriving instance BEq, Repr for Goal
protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl :=
{
decl with fvarId := { name := .anonymous }
}
protected def Goal.devolatilize (goal: Goal): Goal :=
{
goal with
mvarId := { name := .anonymous },
context := goal.context.map LocalDecl.devolatilize
}
end Condensed
def GoalState.get! (state: GoalState) (i: Nat): MVarId := state.goals.get! i
def GoalState.tacticOn (state: GoalState) (goalId: Nat) (tactic: String) := state.tryTactic (state.goals.get! goalId) tactic
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .invalidAction error => s!".invalidAction {error}"
namespace Test
def expectationFailure (desc: String) (error: String): LSpec.TestSeq := LSpec.test desc (LSpec.ExpectationFailure "ok _" error)
def assertUnreachable (message: String): LSpec.TestSeq := LSpec.check message false
def parseFailure (error: String) := expectationFailure "parse" error
def elabFailure (error: String) := expectationFailure "elab" error
def runCoreMSeq (env: Environment) (coreM: CoreM LSpec.TestSeq) (options: Array String := #[]): IO LSpec.TestSeq := do
let coreContext: Core.Context ← createCoreContext options
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
return LSpec.test "Exception" (s!"internal exception #{← exception.toMessageData.toString}" = "")
| .ok a => return a
def runMetaMSeq (env: Environment) (metaM: MetaM LSpec.TestSeq): IO LSpec.TestSeq :=
runCoreMSeq env metaM.run'
def runTermElabMInMeta { α } (termElabM: Lean.Elab.TermElabM α): Lean.MetaM α :=
termElabM.run' (ctx := defaultElabContext)
def runTermElabMSeq (env: Environment) (termElabM: Elab.TermElabM LSpec.TestSeq): IO LSpec.TestSeq :=
runMetaMSeq env $ termElabM.run' (ctx := defaultElabContext)
def exprToStr (e: Expr): Lean.MetaM String := toString <$> Meta.ppExpr e
def strToTermSyntax [Monad m] [MonadEnv m] (s: String): m Syntax := do
let .ok stx := Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) | panic! s!"Failed to parse {s}"
return stx
def parseSentence (s: String): Elab.TermElabM Expr := do
let stx ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
Elab.Term.elabTerm (stx := stx) .none
def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
return newGoals.goals
def mvarUserNameAndType (mvarId: MVarId): MetaM (Name × String) := do
let name := (← mvarId.getDecl).userName
let t ← exprToStr (← mvarId.getType)
return (name, t)
-- Monadic testing
abbrev TestT := StateT LSpec.TestSeq
def addTest [Monad m] (test: LSpec.TestSeq) : TestT m Unit := do
set $ (← get) ++ test
def checkEq [Monad m] [DecidableEq α] (desc : String) (lhs rhs : α) : TestT m Unit := do
addTest $ LSpec.check desc (lhs == rhs)
def checkTrue [Monad m] (desc : String) (flag : Bool) : TestT m Unit := do
addTest $ LSpec.check desc flag
def fail [Monad m] (desc : String) : TestT m Unit := do
addTest $ LSpec.check desc false
def runTest [Monad m] (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done
def runTestWithResult { α } [Monad m] (t: TestT m α): m (α × LSpec.TestSeq) :=
t.run LSpec.TestSeq.done
def runTestTermElabM (env: Environment) (t: TestT Elab.TermElabM Unit):
IO LSpec.TestSeq :=
runTermElabMSeq env $ runTest t
def cdeclOf (userName: Name) (type: Expr): Condensed.LocalDecl :=
{ userName, type }
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
end Test
end Pantograph