revert poetry.lock; add rw tutorial
This commit is contained in:
parent
90a3a7bd3d
commit
155c26e983
|
@ -3,8 +3,69 @@ from pantograph.expr import Variable, Goal, TacticCalc
|
|||
import unittest
|
||||
import sglang as sgl
|
||||
|
||||
LEAN4_INTRO = '''/-- A sequence `u` of real numbers converges to `l` if `∀ ε > 0, ∃ N, ∀ n ≥ N, |u_n - l| ≤ ε`.
|
||||
This condition will be spelled `seq_limit u l`. -/
|
||||
def seq_limit (u : ℕ → ℝ) (l : ℝ) : Prop :=
|
||||
∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| ≤ ε
|
||||
|
||||
/- In the above definition, note that the `n`-th term of the sequence `u` is denoted
|
||||
simply by `u n`.
|
||||
|
||||
Similarly, in the next definition, `f x` is what we would write `f(x)` on paper.
|
||||
Also note that implication is denoted by a single arrow (we'll explain why later). -/
|
||||
|
||||
/-- A function`f : ℝ → ℝ` is continuous at `x₀` if
|
||||
`∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| ≤ δ ⇒ |f(x) - f(x₀)| ≤ ε`.
|
||||
This condition will be spelled `continuous_at f x₀`.-/
|
||||
def continuous_at (f : ℝ → ℝ) (x₀ : ℝ) : Prop :=
|
||||
∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| ≤ δ → |f x - f x₀| ≤ ε
|
||||
|
||||
/-- Now we claim that if `f` is continuous at `x₀` then it is sequentially continuous
|
||||
at `x₀`: for any sequence `u` converging to `x₀`, the sequence `f ∘ u` converges
|
||||
to `f x₀`. -/
|
||||
example (f : ℝ → ℝ) (u : ℕ → ℝ) (x₀ : ℝ) (hu : seq_limit u x₀) (hf : continuous_at f x₀) :
|
||||
seq_limit (f ∘ u) (f x₀) := by { -- This `by` keyword marks the beginning of the proof
|
||||
-- Put your text cursor here and watch the Lean InfoView panel to the right.
|
||||
-- Then move your cursor from line to line in the proof while monitoring the Infoview.
|
||||
|
||||
-- Our goal is to prove that, for any positive `ε`, there exists a natural
|
||||
-- number `N` such that, for any natural number `n` at least `N`,
|
||||
-- `|f(u_n) - f(x₀)|` is at most `ε`.
|
||||
unfold seq_limit
|
||||
-- Fix a positive number `ε`.
|
||||
intros ε hε
|
||||
-- By assumption on `f` applied to this positive `ε`, we get a positive `δ`
|
||||
-- such that, for all real number `x`, if `|x - x₀| ≤ δ` then `|f(x) - f(x₀)| ≤ ε` (1).
|
||||
obtain ⟨δ, δ_pos, Hf⟩ : ∃ δ > 0, ∀ x, |x - x₀| ≤ δ → |f x - f x₀| ≤ ε := hf ε hε
|
||||
-- The assumption on `u` applied to this `δ` gives a natural number `N` such that
|
||||
-- for every natural number `n`, if `n ≥ N` then `|u_n - x₀| ≤ δ` (2).
|
||||
obtain ⟨N, Hu⟩ : ∃ N, ∀ n ≥ N, |u n - x₀| ≤ δ := hu δ δ_pos
|
||||
-- Let's prove `N` is suitable.
|
||||
use N
|
||||
-- Fix `n` which is at least `N`. Let's prove `|f(u_n) - f(x₀)| ≤ ε`.
|
||||
intros n hn
|
||||
-- Thanks to (1) applied to `u_n`, it suffices to prove that `|u_n - x₀| ≤ δ`.
|
||||
apply Hf
|
||||
-- This follows from property (2) and our assumption on `n`.
|
||||
exact Hu n hn
|
||||
-- This finishes the proof!
|
||||
}
|
||||
|
||||
/-
|
||||
Now that this proof is over, you can use the file explorer to the
|
||||
left of this panel to open the file `Exercises > 01Rewriting.lean`.
|
||||
-/'''
|
||||
|
||||
LEAN4_REWRITE = '''
|
||||
example (a b c : Nat) : a + b + c = a + c + b := by
|
||||
rw [Nat.add_assoc, Nat.add_comm b, ← Nat.add_assoc]
|
||||
|
||||
example (a b c : Nat) : a + b + c = a + c + b := by
|
||||
rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm b]
|
||||
|
||||
example (a b c : Nat) : a + b + c = a + c + b := by
|
||||
rw [Nat.add_assoc, Nat.add_assoc, Nat.add_comm _ b]
|
||||
'''
|
||||
|
||||
@sgl.function
|
||||
def multi_turn_question(s, question_1, question_2):
|
||||
|
@ -16,15 +77,16 @@ def multi_turn_question(s, question_1, question_2):
|
|||
|
||||
|
||||
@sgl.function
|
||||
def select_tactic(s, server, state, goal_id, n_tries = 5):
|
||||
def select_tactic(s, server, state, goal_id, feedback_turns = 5):
|
||||
|
||||
s += sgl.system("You are an expert in Lean. Choose the next one tactic to run given the current proof state and goals.")
|
||||
s += sgl.user(LEAN4_REWRITE)
|
||||
s += sgl.user("The current proof state: GoalState(state_id=0, goals=[Goal(variables=[], target='∀ (a b: Nat), (b = 2) -> 1 + a + 1 = a + b', name=None, is_conversion=False)])")
|
||||
s += sgl.assistant("```intros a b h```")
|
||||
s += sgl.user("The current proof state: GoalState(state_id=1, goals=[Goal(variables=[Variable(t='Nat', v=None, name='a'), Variable(t='Nat', v=None, name='b'), Variable(t='b = 2', v=None, name='h')], target='1 + a + 1 = a + b', name=None, is_conversion=False)])")
|
||||
s += sgl.assistant('TacticCalc("1 + a + 1 = a + 1 + 1")')
|
||||
s += sgl.user("The current proof state: " + str(state))
|
||||
for i in range(n_tries):
|
||||
for i in range(feedback_turns):
|
||||
with s.copy() as tmp:
|
||||
tmp += sgl.assistant(sgl.gen("tactic", max_tokens=64))
|
||||
print("==tmp===")
|
||||
|
@ -99,7 +161,7 @@ class TestServerSGL(unittest.TestCase):
|
|||
for i in range(n_trails):
|
||||
print(f"===============trail {str(i)}============")
|
||||
try:
|
||||
state = select_tactic.run(server, state2, goal_id = 1)
|
||||
state = select_tactic.run(server, state2, goal_id = 0)
|
||||
state3 = state.ret_value
|
||||
for m in state.messages():
|
||||
print(m["role"], ":", m["content"])
|
||||
|
@ -109,6 +171,8 @@ class TestServerSGL(unittest.TestCase):
|
|||
except ServerError as e:
|
||||
print(f"server error: {e}")
|
||||
continue
|
||||
state3 = server.goal_tactic(state2, goal_id=0, tactic="rw [Nat.add_assoc]")
|
||||
|
||||
|
||||
print("==========state3============")
|
||||
print(state3)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "pexpect"
|
||||
|
|
Loading…
Reference in New Issue