Compare commits

...

25 Commits

Author SHA1 Message Date
Leni Aniva 948b535b5d Merge pull request 'feat: Prograde tactics' (#83) from tactic/eval into dev
Reviewed-on: #83
2024-08-31 20:04:38 -07:00
Leni Aniva edec0f5733
feat: Use CoreM for diag monad 2024-08-26 13:42:14 -04:00
Leni Aniva 0c529c5cd9
Merge branch 'misc/test-driver' into tactic/eval 2024-08-18 12:24:26 -07:00
Leni Aniva 3733c10a4e
refactor: Unify call convention
Induction like tactics should return `Array InductionSubgoal`. Branching
tactics should return their branch first.
2024-08-17 16:47:21 -07:00
Leni Aniva 5d43068ec3
fix: Flake check failure 2024-08-17 02:07:17 -07:00
Leni Aniva f87eed817f
build: Move non-package output to legacyPackages 2024-08-17 01:59:48 -07:00
Leni Aniva 43e11f1ba3
refactor: Always display isInaccessible 2024-08-17 00:53:38 -07:00
Leni Aniva 0c469027c6
fix: Refactor mvar collection in assign tactic 2024-08-17 00:50:02 -07:00
Leni Aniva e1b7eaab12
fix: Let tactic not bringing binder into scope 2024-08-17 00:47:12 -07:00
Leni Aniva d17b21e282
fix: Use `getMVarsNoDelayed` 2024-08-16 00:32:34 -07:00
Leni Aniva 5b4f8a37eb
refactor: All Tactic/ tactics into MetaM form 2024-08-15 23:41:17 -07:00
Leni Aniva 1e7a186bb1
refactor: MetaM form of define (evaluate) 2024-08-15 23:23:17 -07:00
Leni Aniva 9b0456a5e0
refactor: MetaM form of have and let 2024-08-15 23:17:15 -07:00
Leni Aniva 7968072097
refactor: Remove the newMVarSet mechanism
This field has ambiguous purpose and does not account for different
types of mvars
2024-08-15 22:53:42 -07:00
Leni Aniva e07f9d9b3f
Merge branch 'dev' into tactic/eval 2024-08-15 22:45:43 -07:00
Leni Aniva df8b6602ee
Merge branch 'misc/version' into tactic/eval 2024-07-06 20:00:12 -07:00
Leni Aniva 4549ae1f65
Merge branch 'misc/version' into tactic/eval 2024-07-06 19:56:31 -07:00
Leni Aniva 6ddde2963d
test: Eval instantiate 2024-06-27 14:51:16 -04:00
Leni Aniva fc0d872343
refactor: Simplify proof test infrastructure 2024-06-27 14:34:21 -04:00
Leni Aniva 2d2ff24017
feat: FFI interface for `evaluate` tactic 2024-06-25 17:10:31 -04:00
Leni Aniva 7acf1ffdf1
refactor: Move `have` to prograde tactic 2024-06-25 16:58:35 -04:00
Leni Aniva 58f9d72288
test: Evaluate tactic context 2024-06-25 16:18:31 -04:00
Leni Aniva c0124b347f
Merge branch 'serial/expr' into tactic/eval 2024-06-25 16:05:20 -04:00
Leni Aniva e282d9f781
test: Evaluation tactic 2024-06-25 11:03:08 -04:00
Leni Aniva 25a7025c25
feat: Evaluation tactic 2024-06-23 15:01:51 -07:00
25 changed files with 872 additions and 739 deletions

View File

@ -125,7 +125,7 @@ def execute (command: Protocol.Command): MainM Lean.Json := do
pure ( Except.ok (← goalAssign goalState args.goalId expr))
| .none, .none, .some type, .none, .none => do
let binderName := args.binderName?.getD ""
pure ( Except.ok (← goalHave goalState args.goalId binderName type))
pure ( Except.ok (← goalState.tryHave args.goalId binderName type))
| .none, .none, .none, .some pred, .none => do
pure ( Except.ok (← goalCalc goalState args.goalId pred))
| .none, .none, .none, .none, .some true => do

View File

@ -2,7 +2,7 @@
import Pantograph.Protocol
import Pantograph.Compile.Frontend
import Pantograph.Compile.Elab
import Pantograph.Compile.Parse
open Lean

View File

@ -0,0 +1,14 @@
import Lean
open Lean
namespace Pantograph.Compile
def parseTermM [Monad m] [MonadEnv m] (s: String): m (Except String Syntax) := do
return Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := "<stdin>")
end Pantograph.Compile

View File

@ -5,6 +5,7 @@ All the functions starting with `try` resume their inner monadic state.
-/
import Pantograph.Protocol
import Pantograph.Tactic
import Pantograph.Compile.Parse
import Lean
@ -21,8 +22,6 @@ structure GoalState where
-- The root hole which is the search target
root: MVarId
-- New metavariables acquired in this state
newMVars: SSet MVarId
-- Parent state metavariable source
parentMVar?: Option MVarId
@ -47,7 +46,6 @@ protected def GoalState.create (expr: Expr): Elab.TermElabM GoalState := do
return {
root,
savedState,
newMVars := SSet.insert .empty root,
parentMVar? := .none,
}
protected def GoalState.isConv (state: GoalState): Bool :=
@ -88,15 +86,6 @@ private def GoalState.restoreTacticM (state: GoalState) (goal: MVarId): Elab.Tac
Elab.Tactic.setGoals [goal]
private def newMVarSet (mctxOld: @&MetavarContext) (mctxNew: @&MetavarContext): SSet MVarId :=
mctxNew.decls.foldl (fun acc mvarId mvarDecl =>
if let .some prevMVarDecl := mctxOld.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
acc
else
acc.insert mvarId
) SSet.empty
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId
return {
@ -165,6 +154,20 @@ protected def GoalState.getMVarEAssignment (goalState: GoalState) (mvar: MVarId)
--- Tactic execution functions ---
protected def GoalState.step (state: GoalState) (mvarId: MVarId) (tacticM: Elab.Tactic.TacticM Unit)
: Elab.TermElabM GoalState := do
unless (← getMCtx).decls.contains mvarId do
throwError s!"MVarId is not in context: {mvarId.name}"
mvarId.checkNotAssigned `GoalState.step
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [mvarId] }
let nextElabState ← MonadBacktrack.saveState
return {
state with
savedState := { term := nextElabState, tactic := newGoals },
parentMVar? := .some mvarId,
calcPrevRhs? := .none,
}
/-- Response for executing a tactic -/
inductive TacticResult where
-- Goes to next state
@ -179,35 +182,21 @@ inductive TacticResult where
| invalidAction (message: String)
/-- Executes a `TacticM` monads on this `GoalState`, collecting the errors as necessary -/
protected def GoalState.executeTactic (state: GoalState) (goalId: Nat) (tacticM: Elab.Tactic.TacticM Unit):
protected def GoalState.tryTacticM (state: GoalState) (goalId: Nat) (tacticM: Elab.Tactic.TacticM Unit):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
let mvarId ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure $ goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.executeTactic
try
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.toArray
let errors ← (messages.map (·.data)).mapM fun md => md.toString
return .failure errors
let nextElabState ← MonadBacktrack.saveState
let nextMCtx := nextElabState.meta.meta.mctx
let prevMCtx := state.mctx
return .success {
state with
savedState := { term := nextElabState, tactic := newGoals },
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
calcPrevRhs? := .none,
}
let nextState ← state.step mvarId tacticM
return .success nextState
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Execute a string tactic on given state -/
protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let tactic ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := if state.isConv then `conv else `tactic)
@ -215,7 +204,7 @@ protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: Stri
(fileName := filename) with
| .ok stx => pure $ stx
| .error error => return .parseError error
state.executeTactic goalId $ Elab.Tactic.evalTactic tactic
state.tryTacticM goalId $ Elab.Tactic.evalTactic tactic
protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String):
Elab.TermElabM TacticResult := do
@ -227,103 +216,21 @@ protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
state.executeTactic goalId $ Tactic.evalAssign expr
state.tryTacticM goalId $ Tactic.evalAssign expr
-- Specialized Tactics
protected def GoalState.tryHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.tryHave
let type ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let fvar := mkFVar fvarId
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[fvar] 0 do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(← goal.getType) (kind := MetavarKind.synthetic) (userName := .anonymous)
let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
goal.assign expr
pure mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.tryLet
let type ← match Parser.runParserCategory
(env := state.env)
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
let upstreamType := .letE binderName type mvarBranch (← goal.getType) false
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
upstreamType (kind := MetavarKind.synthetic) (userName := (← goal.getTag))
goal.assign mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
state.tryTacticM goalId $ Tactic.evalLet binderName.toName type
/-- Enter conv tactic mode -/
protected def GoalState.conv (state: GoalState) (goalId: Nat):
@ -345,12 +252,9 @@ protected def GoalState.conv (state: GoalState) (goalId: Nat):
return (← MonadBacktrack.saveState, convMVar)
try
let (nextSavedState, convRhs) ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let prevMCtx := state.mctx
let nextMCtx := nextSavedState.term.meta.meta.mctx
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
convMVar? := .some (convRhs, goal),
calcPrevRhs? := .none
@ -384,12 +288,9 @@ protected def GoalState.convExit (state: GoalState):
MonadBacktrack.saveState
try
let nextSavedState ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let nextMCtx := nextSavedState.term.meta.meta.mctx
let prevMCtx := state.savedState.term.meta.meta.mctx
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some convGoal,
convMVar? := .none
calcPrevRhs? := .none
@ -469,7 +370,6 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
term := ← MonadBacktrack.saveState,
tactic := { goals },
},
newMVars := goals.toSSet,
parentMVar? := .some goal,
calcPrevRhs?
}
@ -480,24 +380,16 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
protected def GoalState.tryMotivatedApply (state: GoalState) (goalId: Nat) (recursor: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let recursor ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := recursor)
(fileName := filename) with
let recursor ← match (← Compile.parseTermM recursor) with
| .ok syn => pure syn
| .error error => return .parseError error
state.executeTactic goalId (tacticM := Tactic.motivatedApply recursor)
state.tryTacticM goalId (tacticM := Tactic.evalMotivatedApply recursor)
protected def GoalState.tryNoConfuse (state: GoalState) (goalId: Nat) (eq: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let recursor ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := eq)
(fileName := filename) with
let eq ← match (← Compile.parseTermM eq) with
| .ok syn => pure syn
| .error error => return .parseError error
state.executeTactic goalId (tacticM := Tactic.noConfuse recursor)
state.tryTacticM goalId (tacticM := Tactic.evalNoConfuse eq)
end Pantograph

View File

@ -162,8 +162,21 @@ def goalTactic (state: GoalState) (goalId: Nat) (tactic: String): CoreM TacticRe
def goalAssign (state: GoalState) (goalId: Nat) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goalId expr
@[export pantograph_goal_have_m]
def goalHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryHave goalId binderName type
protected def GoalState.tryHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult := do
let type ← match (← Compile.parseTermM type) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goalId $ Tactic.evalHave binderName.toName type
@[export pantograph_goal_try_define_m]
protected def GoalState.tryDefine (state: GoalState) (goalId: Nat) (binderName: String) (expr: String): CoreM TacticResult := do
let expr ← match (← Compile.parseTermM expr) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goalId (Tactic.evalDefine binderName.toName expr)
@[export pantograph_goal_let_m]
def goalLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryLet goalId binderName type
@ -179,11 +192,5 @@ def goalCalc (state: GoalState) (goalId: Nat) (pred: String): CoreM TacticResult
@[export pantograph_goal_focus]
def goalFocus (state: GoalState) (goalId: Nat): Option GoalState :=
state.focus goalId
@[export pantograph_goal_motivated_apply_m]
def goalMotivatedApply (state: GoalState) (goalId: Nat) (recursor: String): CoreM TacticResult :=
runTermElabM <| state.tryMotivatedApply goalId recursor
@[export pantograph_goal_no_confuse_m]
def goalNoConfuse (state: GoalState) (goalId: Nat) (eq: String): CoreM TacticResult :=
runTermElabM <| state.tryNoConfuse goalId eq
end Pantograph

View File

@ -51,7 +51,7 @@ structure Variable where
/-- The name displayed to the user -/
userName: String
/-- Does the name contain a dagger -/
isInaccessible?: Option Bool := .none
isInaccessible: Bool := false
type?: Option Expression := .none
value?: Option Expression := .none
deriving Lean.ToJson

View File

@ -200,7 +200,7 @@ def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.
/-- Adapted from ppGoal -/
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl)
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl := .none)
: MetaM Protocol.Goal := do
-- Options for printing; See Meta.ppGoal for details
let showLetValues := true
@ -215,11 +215,13 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
return {
name := ofName fvarId.name,
userName:= ofName userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
| .ldecl _ fvarId userName _ _ _ _ => do
return {
name := ofName fvarId.name,
userName := toString userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
let ppVar (localDecl : LocalDecl) : MetaM Protocol.Variable := do
match localDecl with
@ -229,7 +231,7 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
}
| .ldecl _ fvarId userName type val _ _ => do
@ -243,7 +245,7 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
value? := value?
}
@ -287,29 +289,31 @@ protected def GoalState.serializeGoals
/-- Print the metavariables in a readable format -/
@[export pantograph_goal_state_diag_m]
protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState := .none) (options: Protocol.GoalDiag := {}): MetaM String := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
let result: String ← match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => pure s!">{root.name}: ??"
let resultGoals ← goals.filter (· != root) |>.mapM (fun mvarId =>
match mctx.decls.find? mvarId with
| .some decl => printMVar "⊢" mvarId decl
| .none => pure s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
let resultOthers ← mctx.decls.toList.filter (λ (mvarId, _) =>
!(goals.contains mvarId || mvarId == root) && options.printAll)
|>.mapM (fun (mvarId, decl) => do
let pref := if parentHasMVar mvarId then " " else "~"
printMVar pref mvarId decl
)
pure $ result ++ "\n" ++ (resultGoals.map (· ++ "\n") |> String.join) ++ (resultOthers.map (· ++ "\n") |> String.join)
protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState := .none) (options: Protocol.GoalDiag := {}): CoreM String := do
let metaM: MetaM String := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
let result: String ← match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => pure s!">{root.name}: ??"
let resultGoals ← goals.filter (· != root) |>.mapM (fun mvarId =>
match mctx.decls.find? mvarId with
| .some decl => printMVar "⊢" mvarId decl
| .none => pure s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
let resultOthers ← mctx.decls.toList.filter (λ (mvarId, _) =>
!(goals.contains mvarId || mvarId == root) && options.printAll)
|>.mapM (fun (mvarId, decl) => do
let pref := if parentHasMVar mvarId then " " else "~"
printMVar pref mvarId decl
)
pure $ result ++ "\n" ++ (resultGoals.map (· ++ "\n") |> String.join) ++ (resultOthers.map (· ++ "\n") |> String.join)
metaM.run' {}
where
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): MetaM String := mvarId.withContext do
let resultFVars: List String ←

View File

@ -1,5 +1,5 @@
import Pantograph.Tactic.Assign
import Pantograph.Tactic.Congruence
import Pantograph.Tactic.MotivatedApply
import Pantograph.Tactic.NoConfuse
import Pantograph.Tactic.Prograde

View File

@ -4,15 +4,8 @@ open Lean
namespace Pantograph.Tactic
private def newMVarSet (mctxOld: @&MetavarContext) (mctxNew: @&MetavarContext): SSet MVarId :=
mctxNew.decls.foldl (fun acc mvarId mvarDecl =>
if let .some prevMVarDecl := mctxOld.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
acc
else
acc.insert mvarId
) SSet.empty
def assign (goal: MVarId) (expr: Expr): MetaM (List MVarId) := do
/-- WARNING: This should be used with a function like `elabTermWithHoles` that properly collects the mvar information from `expr`. -/
def assign (goal: MVarId) (expr: Expr) (nextGoals: List MVarId): MetaM (List MVarId) := do
goal.checkNotAssigned `Pantograph.Tactic.assign
-- This run of the unifier is critical in resolving mvars in passing
@ -20,15 +13,18 @@ def assign (goal: MVarId) (expr: Expr): MetaM (List MVarId) := do
let goalType ← goal.getType
unless ← Meta.isDefEq goalType exprType do
throwError s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} ≠ {← Meta.ppExpr goalType}"
let nextGoals ← Meta.getMVars expr
goal.assign expr
nextGoals.toList.filterM (not <$> ·.isAssigned)
nextGoals.filterM (not <$> ·.isAssigned)
def evalAssign : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let goalType ← Elab.Tactic.getMainTarget
let expr ← Elab.Term.elabTermAndSynthesize (stx := stx) (expectedType? := .some goalType)
let nextGoals ← assign (← Elab.Tactic.getMainGoal) expr
let target ← Elab.Tactic.getMainTarget
let goal ← Elab.Tactic.getMainGoal
goal.checkNotAssigned `Pantograph.Tactic.evalAssign
let (expr, nextGoals) ← Elab.Tactic.elabTermWithHoles stx
(expectedType? := .some target)
(tagSuffix := .anonymous )
(allowNaturalHoles := true)
goal.assign expr
Elab.Tactic.setGoals nextGoals

View File

@ -4,82 +4,95 @@ open Lean
namespace Pantograph.Tactic
def congruenceArg: Elab.Tactic.TacticM Unit := do
def congruenceArg (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceArg
let target ← mvarId.getType
let .some (β, _, _) := target.eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let f ← Meta.mkFreshExprMVar (.some <| .forallE .anonymous α β .default)
.synthetic (userName := userName ++ `f)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f a₁) (.app f a₂)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrArg f h)
let result := [α, a₁, a₂, f, h, conduit]
return result.map (·.mvarId!)
def evalCongruenceArg: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let .some (β, _, _) := (← goal.getType).eq? | throwError "Goal is not an Eq"
let userName := (← goal.getDecl).userName
let nextGoals ← congruenceArg goal
Elab.Tactic.setGoals nextGoals
let nextGoals ← goal.withContext do
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let f ← Meta.mkFreshExprMVar (.some <| .forallE .anonymous α β .default)
.synthetic (userName := userName ++ `f)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f a₁) (.app f a₂)) (← goal.getType)
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
goal.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrArg f h)
return [α, a₁, a₂, f, h, conduit]
Elab.Tactic.setGoals <| nextGoals.map (·.mvarId!)
def congruenceFun (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceFun
let target ← mvarId.getType
let .some (β, _, _) := target.eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a) (.app f₂ a)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrFun h a)
let result := [α, f₁, f₂, h, a, conduit]
return result.map (·.mvarId!)
def congruenceFun: Elab.Tactic.TacticM Unit := do
def evalCongruenceFun: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let .some (β, _, _) := (← goal.getType).eq? | throwError "Goal is not an Eq"
let userName := (← goal.getDecl).userName
let nextGoals ← congruenceFun goal
Elab.Tactic.setGoals nextGoals
let nextGoals ← goal.withContext do
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a) (.app f₂ a)) (← goal.getType)
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
goal.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrFun h a)
return [α, f₁, f₂, h, a, conduit]
Elab.Tactic.setGoals <| nextGoals.map (·.mvarId!)
def congruence (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruence
let target ← mvarId.getType
let .some (β, _, _) := target.eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h₁ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h₁)
let h₂ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h₂)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a₁) (.app f₂ a₂)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongr h₁ h₂)
let result := [α, f₁, f₂, a₁, a₂, h₁, h₂, conduit]
return result.map (·.mvarId!)
def congruence: Elab.Tactic.TacticM Unit := do
def evalCongruence: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let .some (β, _, _) := (← goal.getType).eq? | throwError "Goal is not an Eq"
let userName := (← goal.getDecl).userName
let nextGoals ← goal.withContext do
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h₁ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h₁)
let h₂ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h₂)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a₁) (.app f₂ a₂)) (← goal.getType)
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
goal.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongr h₁ h₂)
return [α, f₁, f₂, a₁, a₂, h₁, h₂, conduit]
Elab.Tactic.setGoals <| nextGoals.map (·.mvarId!)
let nextGoals ← congruence goal
Elab.Tactic.setGoals nextGoals
end Pantograph.Tactic

View File

@ -62,44 +62,44 @@ def collectMotiveArguments (forallBody: Expr): SSet Nat :=
| _ => SSet.empty
/-- Applies a symbol of the type `∀ (motive: α → Sort u) (a: α)..., (motive α)` -/
def motivatedApply: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
let nextGoals: List MVarId ← goal.withContext do
let recursor ← Elab.Term.elabTerm (stx := stx) .none
let recursorType ← Meta.inferType recursor
def motivatedApply (mvarId: MVarId) (recursor: Expr) : MetaM (Array Meta.InductionSubgoal) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.motivatedApply
let recursorType ← Meta.inferType recursor
let resultant ← mvarId.getType
let resultant ← goal.getType
let info ← match getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Recursor return type does not correspond with the invocation of a motive: {← Meta.ppExpr recursorType}"
let info ← match getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Recursor return type does not correspond with the invocation of a motive: {← Meta.ppExpr recursorType}"
let rec go (i: Nat) (prev: Array Expr): MetaM (Array Expr) := do
if i ≥ info.nArgs then
return prev
else
let argType := info.args.get! i
-- If `argType` has motive references, its goal needs to be placed in it
let argType := argType.instantiateRev prev
let bvarIndex := info.nArgs - i - 1
let argGoal ← if bvarIndex = info.iMotive then
let surrogateMotiveType ← info.surrogateMotiveType prev resultant
Meta.mkFreshExprMVar surrogateMotiveType .syntheticOpaque (userName := `motive)
else
Meta.mkFreshExprMVar argType .syntheticOpaque (userName := .anonymous)
let prev := prev ++ [argGoal]
go (i + 1) prev
termination_by info.nArgs - i
let mut newMVars ← go 0 #[]
let rec go (i: Nat) (prev: Array Expr): MetaM (Array Expr) := do
if i ≥ info.nArgs then
return prev
else
let argType := info.args.get! i
-- If `argType` has motive references, its goal needs to be placed in it
let argType := argType.instantiateRev prev
let bvarIndex := info.nArgs - i - 1
let argGoal ← if bvarIndex = info.iMotive then
let surrogateMotiveType ← info.surrogateMotiveType prev resultant
Meta.mkFreshExprMVar surrogateMotiveType .syntheticOpaque (userName := `motive)
else
Meta.mkFreshExprMVar argType .syntheticOpaque (userName := .anonymous)
let prev := prev ++ [argGoal]
go (i + 1) prev
termination_by info.nArgs - i
let mut newMVars ← go 0 #[]
-- Create the conduit type which proves the result of the motive is equal to the goal
let conduitType ← info.conduitType newMVars resultant
let goalConduit ← Meta.mkFreshExprMVar conduitType .natural (userName := `conduit)
mvarId.assign $ ← Meta.mkEqMP goalConduit (mkAppN recursor newMVars)
newMVars := newMVars ++ [goalConduit]
-- Create the conduit type which proves the result of the motive is equal to the goal
let conduitType ← info.conduitType newMVars resultant
let goalConduit ← Meta.mkFreshExprMVar conduitType .natural (userName := `conduit)
goal.assign $ ← Meta.mkEqMP goalConduit (mkAppN recursor newMVars)
newMVars := newMVars ++ [goalConduit]
return newMVars.map (λ mvar => { mvarId := mvar.mvarId!})
let nextGoals := newMVars.toList.map (·.mvarId!)
pure nextGoals
Elab.Tactic.setGoals nextGoals
def evalMotivatedApply : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let recursor ← Elab.Term.elabTerm (stx := stx) .none
let nextGoals ← motivatedApply (← Elab.Tactic.getMainGoal) recursor
Elab.Tactic.setGoals $ nextGoals.toList.map (·.mvarId)
end Pantograph.Tactic

View File

@ -4,15 +4,19 @@ open Lean
namespace Pantograph.Tactic
def noConfuse: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
goal.withContext do
let absurd ← Elab.Term.elabTerm (stx := stx) .none
let noConfusion ← Meta.mkNoConfusion (target := ← goal.getType) (h := absurd)
def noConfuse (mvarId: MVarId) (h: Expr): MetaM Unit := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.noConfuse
let target ← mvarId.getType
let noConfusion ← Meta.mkNoConfusion (target := target) (h := h)
unless ← Meta.isDefEq (← Meta.inferType noConfusion) (← goal.getType) do
throwError "invalid noConfuse call: The resultant type {← Meta.ppExpr $ ← Meta.inferType noConfusion} cannot be unified with {← Meta.ppExpr $ ← goal.getType}"
goal.assign noConfusion
unless ← Meta.isDefEq (← Meta.inferType noConfusion) target do
throwError "invalid noConfuse call: The resultant type {← Meta.ppExpr $ ← Meta.inferType noConfusion} cannot be unified with {← Meta.ppExpr target}"
mvarId.assign noConfusion
def evalNoConfuse: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
let h ← goal.withContext $ Elab.Term.elabTerm (stx := stx) .none
noConfuse goal h
Elab.Tactic.setGoals []
end Pantograph.Tactic

View File

@ -0,0 +1,87 @@
/- Prograde (forward) reasoning tactics -/
import Lean
open Lean
namespace Pantograph.Tactic
/-- Introduces a fvar to the current mvar -/
def define (mvarId: MVarId) (binderName: Name) (expr: Expr): MetaM (FVarId × MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.define
let type ← Meta.inferType expr
Meta.withLetDecl binderName type expr λ fvar => do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(← mvarId.getType) (kind := MetavarKind.synthetic) (userName := .anonymous)
mvarId.assign mvarUpstream
pure (fvar.fvarId!, mvarUpstream.mvarId!)
def evalDefine (binderName: Name) (expr: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let expr ← goal.withContext $ Elab.Term.elabTerm (stx := expr) (expectedType? := .none)
let (_, mvarId) ← define goal binderName expr
Elab.Tactic.setGoals [mvarId]
structure BranchResult where
fvarId?: Option FVarId := .none
branch: MVarId
main: MVarId
def «have» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.have
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[.fvar fvarId] 0 do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(← mvarId.getType) (kind := MetavarKind.synthetic) (userName := ← mvarId.getTag)
--let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
mvarId.assign mvarUpstream
pure mvarUpstream
return {
fvarId? := .some fvarId,
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalHave (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let result ← «have» goal binderName type
pure [result.branch, result.main]
Elab.Tactic.setGoals nextGoals
def «let» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.let
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type (userName := binderName)
assert! ¬ type.hasLooseBVars
let mvarUpstream ← Meta.withLetDecl binderName type mvarBranch $ λ fvar => do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(type := ← mvarId.getType) (kind := MetavarKind.synthetic) (userName := ← mvarId.getTag)
mvarId.assign $ .letE binderName type fvar mvarUpstream (nonDep := false)
pure mvarUpstream
return {
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalLet (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let type ← goal.withContext $ Elab.Term.elabType (stx := type)
let result ← «let» goal binderName type
Elab.Tactic.setGoals [result.branch, result.main]
end Pantograph.Tactic

View File

@ -1,6 +1,7 @@
import Pantograph.Goal
import Pantograph.Library
import Pantograph.Protocol
import Pantograph.Condensed
import Lean
import LSpec
@ -10,12 +11,7 @@ namespace Pantograph
deriving instance Repr for Expr
-- Use strict equality check for expressions
--instance : BEq Expr := ⟨Expr.equal⟩
instance (priority := 80) (x y : Expr) : LSpec.Testable (x.equal y) :=
if h : Expr.equal x y then
.isTrue h
else
.isFalse h $ s!"Expected to be equalaaa: '{x.dbgToString}' and '{y.dbgToString}'"
instance : BEq Expr := ⟨Expr.equal⟩
def uniq (n: Nat): Name := .num (.str .anonymous "_uniq") n
@ -25,6 +21,7 @@ def Goal.devolatilizeVars (goal: Goal): Goal :=
{
goal with
vars := goal.vars.map removeInternalAux,
}
where removeInternalAux (v: Variable): Variable :=
{
@ -47,6 +44,24 @@ deriving instance DecidableEq, Repr for InteractionError
deriving instance DecidableEq, Repr for Option
end Protocol
namespace Condensed
deriving instance BEq, Repr for LocalDecl
deriving instance BEq, Repr for Goal
protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl :=
{
decl with fvarId := { name := .anonymous }
}
protected def Goal.devolatilize (goal: Goal): Goal :=
{
goal with
mvarId := { name := .anonymous },
context := goal.context.map LocalDecl.devolatilize
}
end Condensed
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
@ -73,11 +88,13 @@ def runCoreMSeq (env: Environment) (coreM: CoreM LSpec.TestSeq) (options: Array
def runMetaMSeq (env: Environment) (metaM: MetaM LSpec.TestSeq): IO LSpec.TestSeq :=
runCoreMSeq env metaM.run'
def runTermElabMInMeta { α } (termElabM: Lean.Elab.TermElabM α): Lean.MetaM α :=
termElabM.run' (ctx := Pantograph.Condensed.elabContext)
termElabM.run' (ctx := Condensed.elabContext)
def runTermElabMSeq (env: Environment) (termElabM: Elab.TermElabM LSpec.TestSeq): IO LSpec.TestSeq :=
runMetaMSeq env $ termElabM.run' (ctx := Condensed.elabContext)
def exprToStr (e: Expr): Lean.MetaM String := toString <$> Meta.ppExpr e
def parseSentence (s: String): MetaM Expr := do
def parseSentence (s: String): Elab.TermElabM Expr := do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
@ -85,7 +102,7 @@ def parseSentence (s: String): MetaM Expr := do
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
runTermElabMInMeta $ Elab.Term.elabTerm (stx := recursor) .none
Elab.Term.elabTerm (stx := recursor) .none
def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
@ -95,6 +112,35 @@ def mvarUserNameAndType (mvarId: MVarId): MetaM (Name × String) := do
let t ← exprToStr (← mvarId.getType)
return (name, t)
-- Monadic testing
abbrev TestT := StateT LSpec.TestSeq
def addTest [Monad m] (test: LSpec.TestSeq): TestT m Unit := do
set $ (← get) ++ test
def runTest [Monad m] (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done
def runTestTermElabM (env: Environment) (t: TestT Elab.TermElabM Unit):
IO LSpec.TestSeq :=
runTermElabMSeq env $ runTest t
def cdeclOf (userName: Name) (type: Expr): Condensed.LocalDecl :=
{ userName, type }
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
end Test
end Pantograph

View File

@ -85,14 +85,14 @@ def test_tactic : IO LSpec.TestSeq :=
let goal1: Protocol.Goal := {
name := "_uniq.11",
target := { pp? := .some "∀ (q : Prop), x q → q x" },
vars := #[{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}],
vars := #[{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}],
}
let goal2: Protocol.Goal := {
name := "_uniq.17",
target := { pp? := .some "x y → y x" },
vars := #[
{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.16", userName := "y", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}
{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.16", userName := "y", type? := .some { pp? := .some "Prop" }}
],
}
subroutine_runner [

View File

@ -52,6 +52,7 @@ def main (args: List String) := do
("Tactic/Congruence", Tactic.Congruence.suite env_default),
("Tactic/Motivated Apply", Tactic.MotivatedApply.suite env_default),
("Tactic/No Confuse", Tactic.NoConfuse.suite env_default),
("Tactic/Prograde", Tactic.Prograde.suite env_default),
]
let tests: List (String × IO LSpec.TestSeq) := suites.foldl (λ acc (name, suite) => acc ++ (addPrefix name suite)) []
LSpec.lspecIO (← runTestGroup name_filter tests)

View File

@ -60,7 +60,6 @@ def buildGoal (nameType: List (String × String)) (target: String) (userName?: O
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
@ -198,15 +197,16 @@ def test_proposition_generation: TestM Unit := do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "∀ (x : Nat), ?m.29 x"])
#[.some "?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := "fun x => Eq.refl x") with
let assign := "Eq.refl x"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := assign) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
addTest $ LSpec.check s!":= {assign}" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome

View File

@ -58,7 +58,6 @@ def buildNamedGoal (name: String) (nameType: List (String × String)) (target: S
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
@ -69,7 +68,6 @@ def buildGoal (nameType: List (String × String)) (target: String) (userName?: O
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
@ -175,7 +173,6 @@ def test_delta_variable: TestM Unit := do
vars := (nameType.map fun x => ({
userName := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
@ -256,9 +253,9 @@ def test_or_comm: TestM Unit := do
name := state1g0,
target := { pp? := .some "q p" },
vars := #[
{ name := fvP, userName := "p", type? := .some { pp? := .some "Prop" }, isInaccessible? := .some false },
{ name := fvQ, userName := "q", type? := .some { pp? := .some "Prop" }, isInaccessible? := .some false },
{ name := fvH, userName := "h", type? := .some { pp? := .some "p q" }, isInaccessible? := .some false }
{ name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } },
{ name := fvQ, userName := "q", type? := .some { pp? := .some "Prop" } },
{ name := fvH, userName := "h", type? := .some { pp? := .some "p q" } }
]
}])
addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome
@ -351,75 +348,12 @@ def test_or_comm: TestM Unit := do
userName? := .some caseName,
target := { pp? := .some "q p" },
vars := #[
{ userName := "p", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "q", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible? := .some true }
{ userName := "p", type? := .some typeProp },
{ userName := "q", type? := .some typeProp },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible := true }
]
}
def test_have: TestM Unit := do
let state? ← startProof (.expr "∀ (p q: Prop), p → ((p q) (p q))")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (goalId := 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(4 root)" state4.rootExpr?.isSome
example : ∀ (a b c1 c2: Nat), (b + a) + c1 = (b + a) + c2 → (a + b) + c1 = (b + a) + c2 := by
intro a b c1 c2 h
conv =>
@ -607,83 +541,6 @@ def test_calc: TestM Unit := do
("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free
buildGoal free target userName?
def test_let (specialized: Bool): TestM Unit := do
let state? ← startProof (.expr "∀ (a: Nat) (p: Prop), p → p ¬p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro a p h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "p ¬p"])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (goalId := 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (goalId := 0) (expr := expr)
let state2 ← match result2 with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let serializedState2 ← state2.serializeGoals (options := ← read)
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
#[
interiorGoal [] letType,
interiorGoal [] "let b := ?m.20;\np ¬p"
])
-- Check that the goal mvar ids match up
addTest $ LSpec.check "(mvarId)" ((serializedState2.map (·.name) |>.get! 0) = "_uniq.20")
let tactic := "exact a"
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "let b := a;\np ¬p"])
let tactic := "exact h"
match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = "type mismatch\n h\nhas type\n p : Prop\nbut is expected to have type\n let b := a;\n p ¬p : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "intro b"
let state4 ← match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let tactic := "exact Or.inl h"
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(5 root)" state5.rootExpr?.isSome
where
interiorGoal (free: List (String × String)) (target: String) (userName?: Option String := .none) :=
let free := [("a", "Nat"), ("p", "Prop"), ("h", "p")] ++ free
buildGoal free target userName?
def test_nat_zero_add: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
@ -843,7 +700,6 @@ def test_nat_zero_add_alt: TestM Unit := do
name := fvN,
userName := "n",
type? := .some { pp? := .some "Nat", sexp? := .some "(:c Nat)" },
isInaccessible? := .some false
}],
}
])
@ -856,11 +712,8 @@ def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
("Nat.add_comm delta", test_delta_variable),
("arithmetic", test_arith),
("Or.comm", test_or_comm),
("have", test_have),
("conv", test_conv),
("calc", test_calc),
("let via assign", test_let false),
("let via tryLet", test_let true),
("Nat.zero_add", test_nat_zero_add),
("Nat.zero_add alt", test_nat_zero_add_alt),
]

View File

@ -1,3 +1,4 @@
import Test.Tactic.Congruence
import Test.Tactic.MotivatedApply
import Test.Tactic.NoConfuse
import Test.Tactic.Prograde

View File

@ -7,103 +7,82 @@ open Pantograph
namespace Pantograph.Test.Tactic.Congruence
def test_congr_arg_list (env: Environment): IO LSpec.TestSeq :=
def test_congr_arg_list : TestT Elab.TermElabM Unit := do
let expr := "λ {α} (l1 l2 : List α) (h: l1 = l2) => l1.reverse = l2.reverse"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let mut tests := LSpec.TestSeq.done
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let (newGoals, test) ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar Tactic.congruenceArg target.mvarId!
let test := LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.30"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → List α"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (l1.reverse = l2.reverse)"),
])
return (newGoals, test)
tests := tests ++ test
let f := newGoals.get! 3
let h := newGoals.get! 4
let c := newGoals.get! 5
let results ← f.apply (← parseSentence "List.reverse")
tests := tests ++ (LSpec.check "apply" (results.length = 0))
tests := tests ++ (LSpec.check "h" ((← exprToStr $ ← h.getType) = "?a₁ = ?a₂"))
tests := tests ++ (LSpec.check "conduit" ((← exprToStr $ ← c.getType) = "(?a₁.reverse = ?a₂.reverse) = (l1.reverse = l2.reverse)"))
return tests
def test_congr_arg (env: Environment): IO LSpec.TestSeq :=
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.30"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → List α"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (l1.reverse = l2.reverse)"),
])
let f := newGoals.get! 3
let h := newGoals.get! 4
let c := newGoals.get! 5
let results ← f.apply (← parseSentence "List.reverse")
addTest $ LSpec.check "apply" (results.length = 0)
addTest $ LSpec.check "h" ((← exprToStr $ ← h.getType) = "?a₁ = ?a₂")
addTest $ LSpec.check "conduit" ((← exprToStr $ ← c.getType) = "(?a₁.reverse = ?a₂.reverse) = (l1.reverse = l2.reverse)")
def test_congr_arg : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) (h: n = m) => n * n = m * m"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let mut tests := LSpec.TestSeq.done
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar Tactic.congruenceArg target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.70"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → Nat"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (n * n = m * m)"),
])
tests := tests ++ test
return tests
def test_congr_fun (env: Environment): IO LSpec.TestSeq :=
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.70"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → Nat"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (n * n = m * m)"),
])
def test_congr_fun : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) => (n + m) + (n + m) = (n + m) * 2"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let mut tests := LSpec.TestSeq.done
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar Tactic.congruenceFun target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.159"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`h, "?f₁ = ?f₂"),
(`a, "?α"),
(`conduit, "(?f₁ ?a = ?f₂ ?a) = (n + m + (n + m) = (n + m) * 2)"),
])
tests := tests ++ test
return tests
def test_congr (env: Environment): IO LSpec.TestSeq :=
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceFun target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.159"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`h, "?f₁ = ?f₂"),
(`a, "?α"),
(`conduit, "(?f₁ ?a = ?f₂ ?a) = (n + m + (n + m) = (n + m) * 2)"),
])
def test_congr : TestT Elab.TermElabM Unit := do
let expr := "λ (a b: Nat) => a = b"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let mut tests := LSpec.TestSeq.done
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar Tactic.congruence target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.10"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`a₁, "?α"),
(`a₂, "?α"),
(`h₁, "?f₁ = ?f₂"),
(`h₂, "?a₁ = ?a₂"),
(`conduit, "(?f₁ ?a₁ = ?f₂ ?a₂) = (a = b)"),
])
tests := tests ++ test
return tests
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruence target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.10"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`a₁, "?α"),
(`a₂, "?α"),
(`h₁, "?f₁ = ?f₂"),
(`h₂, "?a₁ = ?a₂"),
(`conduit, "(?f₁ ?a₁ = ?f₂ ?a₂) = (a = b)"),
])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("congrArg List.reverse", test_congr_arg_list env),
("congrArg", test_congr_arg env),
("congrFun", test_congr_fun env),
("congr", test_congr env),
]
("congrArg List.reverse", test_congr_arg_list),
("congrArg", test_congr_arg),
("congrFun", test_congr_fun),
("congr", test_congr),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Congruence

View File

@ -7,82 +7,23 @@ open Pantograph
namespace Pantograph.Test.Tactic.MotivatedApply
def test_type_extract (env: Environment): IO LSpec.TestSeq :=
runMetaMSeq env do
let mut tests := LSpec.TestSeq.done
let recursor ← parseSentence "@Nat.brecOn"
let recursorType ← Meta.inferType recursor
tests := tests ++ LSpec.check "recursorType" ("{motive : Nat → Sort ?u.1} → (t : Nat) → ((t : Nat) → Nat.below t → motive t) → motive t" =
(← exprToStr recursorType))
let info ← match Tactic.getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Failed to extract recursor info"
tests := tests ++ LSpec.check "iMotive" (info.iMotive = 2)
let motiveType := info.getMotiveType
tests := tests ++ LSpec.check "motiveType" ("Nat → Sort ?u.1" =
(← exprToStr motiveType))
return tests
def test_type_extract : TestT Elab.TermElabM Unit := do
let recursor ← parseSentence "@Nat.brecOn"
let recursorType ← Meta.inferType recursor
addTest $ LSpec.check "recursorType" ("{motive : Nat → Sort ?u.1} → (t : Nat) → ((t : Nat) → Nat.below t → motive t) → motive t" =
(← exprToStr recursorType))
let info ← match Tactic.getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Failed to extract recursor info"
addTest $ LSpec.check "iMotive" (info.iMotive = 2)
let motiveType := info.getMotiveType
addTest $ LSpec.check "motiveType" ("Nat → Sort ?u.1" =
(← exprToStr motiveType))
def test_nat_brec_on (env: Environment): IO LSpec.TestSeq :=
def test_nat_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.motivatedApply recursor
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar tactic target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
"?motive ?m.67 = (n + 0 = n)",
])
tests := tests ++ test
return tests
def test_list_brec_on (env: Environment): IO LSpec.TestSeq :=
let expr := "λ {α : Type} (l: List α) => l ++ [] = [] ++ l"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.motivatedApply recursor
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar tactic target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Type ?u.90",
"List ?m.92 → Prop",
"List ?m.92",
"∀ (t : List ?m.92), List.below t → ?motive t",
"?motive ?m.94 = (l ++ [] = [] ++ l)",
])
tests := tests ++ test
return tests
def test_partial_motive_instantiation (env: Environment): IO LSpec.TestSeq := do
let expr := "λ (n t: Nat) => n + 0 = n"
runMetaMSeq env $ runTermElabMInMeta do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
@ -90,41 +31,83 @@ def test_partial_motive_instantiation (env: Environment): IO LSpec.TestSeq := do
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.motivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let majorId := 67
tests := tests ++ (LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
s!"?motive ?m.{majorId} = (n + 0 = n)",
]))
let [motive, major, step, conduit] := newGoals | panic! "Incorrect goal number"
tests := tests ++ (LSpec.check "goal name" (major.name.toString = s!"_uniq.{majorId}"))
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let test := LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
"?motive ?m.67 = (n + 0 = n)",
])
addTest test
-- Assign motive to `λ x => x + _`
let motive_assign ← parseSentence "λ (x: Nat) => @Nat.add x + 0 = _"
motive.assign motive_assign
def test_list_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ {α : Type} (l: List α) => l ++ [] = [] ++ l"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Type ?u.90",
"List ?m.92 → Prop",
"List ?m.92",
"∀ (t : List ?m.92), List.below t → ?motive t",
"?motive ?m.94 = (l ++ [] = [] ++ l)",
])
let test ← conduit.withContext do
let t := toString (← Meta.ppExpr $ ← conduit.getType)
return LSpec.check "conduit" (t = s!"(?m.{majorId}.add + 0 = ?m.138 ?m.{majorId}) = (n + 0 = n)")
tests := tests ++ test
def test_partial_motive_instantiation : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let majorId := 67
addTest $ (LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
s!"?motive ?m.{majorId} = (n + 0 = n)",
]))
let [motive, major, step, conduit] := newGoals | panic! "Incorrect goal number"
addTest $ (LSpec.check "goal name" (major.name.toString = s!"_uniq.{majorId}"))
return tests
-- Assign motive to `λ x => x + _`
let motive_assign ← parseSentence "λ (x: Nat) => @Nat.add x + 0 = _"
motive.assign motive_assign
addTest $ ← conduit.withContext do
let t := toString (← Meta.ppExpr $ ← conduit.getType)
return LSpec.check "conduit" (t = s!"(?m.{majorId}.add + 0 = ?m.138 ?m.{majorId}) = (n + 0 = n)")
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("type_extract", test_type_extract env),
("Nat.brecOn", test_nat_brec_on env),
("List.brecOn", test_list_brec_on env),
("Nat.brecOn partial motive instantiation", test_partial_motive_instantiation env),
]
("type_extract", test_type_extract),
("Nat.brecOn", test_nat_brec_on),
("List.brecOn", test_list_brec_on),
("Nat.brecOn partial motive instantiation", test_partial_motive_instantiation),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.MotivatedApply

View File

@ -7,81 +7,66 @@ open Pantograph
namespace Pantograph.Test.Tactic.NoConfuse
def test_nat (env: Environment): IO LSpec.TestSeq :=
def test_nat : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: 0 = n + 1) => False"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.noConfuse recursor
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar tactic target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[])
tests := tests ++ test
return tests
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def test_nat_fail (env: Environment): IO LSpec.TestSeq :=
def test_nat_fail : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: n = n) => False"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
try
let tactic := Tactic.noConfuse recursor
let _ ← runTermElabMInMeta $ runTacticOnMVar tactic target.mvarId!
tests := tests ++ assertUnreachable "Tactic should fail"
catch _ =>
tests := tests ++ LSpec.check "Tactic should fail" true
return tests
return tests
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
try
let tactic := Tactic.evalNoConfuse recursor
let _ ← runTacticOnMVar tactic target.mvarId!
addTest $ assertUnreachable "Tactic should fail"
catch _ =>
addTest $ LSpec.check "Tactic should fail" true
def test_list (env: Environment): IO LSpec.TestSeq :=
def test_list : TestT Elab.TermElabM Unit := do
let expr := "λ (l: List Nat) (h: [] = 1 :: l) => False"
runMetaMSeq env do
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let mut tests := LSpec.TestSeq.done
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.noConfuse recursor
let test ← runTermElabMInMeta do
let newGoals ← runTacticOnMVar tactic target.mvarId!
pure $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[])
tests := tests ++ test
return tests
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals"
((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("Nat", test_nat env),
("Nat fail", test_nat_fail env),
("List", test_list env),
]
("Nat", test_nat),
("Nat fail", test_nat_fail),
("List", test_list),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.NoConfuse

266
Test/Tactic/Prograde.lean Normal file
View File

@ -0,0 +1,266 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Prograde
def test_eval : TestT Elab.TermElabM Unit := do
let expr := "forall (p q : Prop) (h: p), And (Or p q) (Or p q)"
let expr ← parseSentence expr
Meta.forallTelescope expr $ λ _ body => do
let e ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "Or.inl h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let goal ← Meta.mkFreshExprSyntheticOpaqueMVar body
let target: Expr := mkAnd
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
let h := .fvar ⟨uniq 8⟩
addTest $ LSpec.test "goals before" ((← toCondensedGoal goal.mvarId!).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h
],
target,
})
let tactic := Tactic.evalDefine `h2 e
let m := .mvar ⟨uniq 13⟩
let [newGoal] ← runTacticOnMVar tactic goal.mvarId! | panic! "Incorrect goal number"
addTest $ LSpec.test "goals after" ((← toCondensedGoal newGoal).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h,
{
userName := `h2,
type := mkOr h m,
value? := .some $ mkApp3 (mkConst `Or.inl) h m (.fvar ⟨uniq 10⟩)
}
],
target,
})
addTest $ LSpec.test "assign" ((← getExprMVarAssignment? goal.mvarId!) == .some (.mvar newGoal))
def test_proof_eval : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let evalBind := "y"
let evalExpr := "Or.inl h"
let state2 ← match ← state1.tryDefine (goalId := 0) (binderName := evalBind) (expr := evalExpr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"eval {evalBind} := {evalExpr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some "(p q) p q"},
vars := #[
{ userName := "p", type? := .some { pp? := .some "Prop" } },
{ userName := "q", type? := .some { pp? := .some "Prop" } },
{ userName := "h", type? := .some { pp? := .some "p" } },
{ userName := "y",
type? := .some { pp? := .some "p ?m.25" },
value? := .some { pp? := .some "Or.inl h" },
}
]
}])
let expr := "Or.inl y"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(3 root)" state3.rootExpr?.isSome
def test_proof_have : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (goalId := 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(4 root)" state4.rootExpr?.isSome
def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro a p h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some mainTarget },
vars := interiorVars,
}])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (goalId := 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (goalId := 0) (expr := expr)
let state2 ← match result2 with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let serializedState2 ← state2.serializeGoals
let letBindName := if specialized then "b" else "_1"
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
#[{
target := { pp? := .some letType },
vars := interiorVars,
userName? := .some letBindName
},
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some letType },
value? := .some { pp? := .some s!"?{letBindName}" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact 1"
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals).map (·.devolatilize) =
#[
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some "Nat" },
value? := .some { pp? := .some "1" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact h"
match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = s!"type mismatch\n h\nhas type\n a : Prop\nbut is expected to have type\n {mainTarget} : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "exact Or.inl (Or.inl h)"
let state4 ← match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(4 root)" state4.rootExpr?.isSome
where
mainTarget := "(a p) a p"
interiorVars: Array Protocol.Variable := #[
{ userName := "a", type? := .some { pp? := .some "Prop" }, },
{ userName := "p", type? := .some { pp? := .some "Prop" }, },
{ userName := "h", type? := .some { pp? := .some "a" }, }
]
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("eval", test_eval),
("Proof eval", test_proof_eval),
("Proof have", test_proof_have),
("let via assign", test_let false),
("let via tryLet", test_let true),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Prograde

View File

@ -91,16 +91,16 @@
"lspec": {
"flake": false,
"locked": {
"lastModified": 1701971219,
"narHash": "sha256-HYDRzkT2UaLDrqKNWesh9C4LJNt0JpW0u68wYVj4Byw=",
"lastModified": 1722857503,
"narHash": "sha256-F9uaymiw1wTCLrJm4n1Bpk3J8jW6poedQzvnnQlZ6Kw=",
"owner": "lurk-lab",
"repo": "LSpec",
"rev": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"rev": "8a51034d049c6a229d88dd62f490778a377eec06",
"type": "github"
},
"original": {
"owner": "lurk-lab",
"ref": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"ref": "8a51034d049c6a229d88dd62f490778a377eec06",
"repo": "LSpec",
"type": "github"
}

View File

@ -9,7 +9,7 @@
url = "github:leanprover/lean4?ref=v4.10.0-rc1";
};
lspec = {
url = "github:lurk-lab/LSpec?ref=3388be5a1d1390594a74ec469fd54a5d84ff6114";
url = "github:lurk-lab/LSpec?ref=8a51034d049c6a229d88dd62f490778a377eec06";
flake = false;
};
};
@ -63,9 +63,11 @@
packages = {
inherit (leanPkgs) lean lean-all;
inherit (project) sharedLib executable;
inherit project leanPkgs;
default = project.executable;
};
legacyPackages = {
inherit project leanPkgs;
};
checks = {
test = pkgs.runCommand "test" {
buildInputs = [ test.executable leanPkgs.lean-all ];