Compare commits

...

130 Commits

Author SHA1 Message Date
Leni Aniva 9075ded885
feat: Set `automaticMode` to true by default 2024-09-09 17:29:43 -07:00
Leni Aniva 27e4e45418 Merge pull request 'feat: Automatic Mode' (#92) from goal/automatic into dev
Reviewed-on: #92
2024-09-08 12:25:06 -07:00
Leni Aniva b645d79fda
Merge branch 'dev' into goal/automatic 2024-09-08 12:13:42 -07:00
Leni Aniva e36954a589 Merge pull request 'feat: Expose `GoalState` functions' (#94) from lib/export into dev
Reviewed-on: #94
2024-09-08 12:10:46 -07:00
Leni Aniva 414f1c70fd
Merge branch 'dev' into lib/export 2024-09-08 12:01:02 -07:00
Leni Aniva 25bb964604
test: Automatic mode testing
refactor: Simplified integration test structure
2024-09-08 11:57:39 -07:00
Leni Aniva 7c49fcff27
refactor: Un-export two field accessor functions
User should use `lean_ctor_get`
2024-09-08 11:53:54 -07:00
Leni Aniva f11c5ebaa3
doc: Add GPL License 2024-09-07 14:11:04 -07:00
Leni Aniva e4d53733d0
feat: Simplify repl 2024-09-07 14:03:29 -07:00
Leni Aniva 68dac4c951
chore: Version bump to 0.2.18 2024-09-07 13:55:41 -07:00
Leni Aniva 4042ec707e
refactor: Use `Meta.mapMetaM` 2024-09-07 13:54:52 -07:00
Leni Aniva 8394e1b468
feat: Expose `conv` and `calc` tactics 2024-09-07 13:47:55 -07:00
Leni Aniva 9b3eef35ec
fix: Forgot to include the current goals in resume 2024-09-06 22:22:19 -07:00
Leni Aniva a7b30af36b
refactor: Refactor REPL out of main library
fix: Calc previous rhs not found bug
2024-09-06 22:01:36 -07:00
Leni Aniva e2ad6ce6b3
doc: Documentation for automatic mode 2024-09-06 21:32:02 -07:00
Leni Aniva 37473b3efb
feat: Automatic mode (auto resume) 2024-09-06 21:30:11 -07:00
Leni Aniva 82d99ccf9b
refactor: Use `MVarId` across the board 2024-09-06 21:07:12 -07:00
Leni Aniva 02556f3c79
feat: Expose `GoalState` functions 2024-09-05 11:56:06 -07:00
Leni Aniva 9c40a83956
fix: Instantiate type when detecting `eq` 2024-09-03 19:05:16 -07:00
Leni Aniva f8df2599f9
fix: Use `replaceMainGoal` instead of `setGoals` 2024-09-03 14:18:47 -07:00
Leni Aniva 8d2cd6dfc7
fix: Bindings in prograde tactics 2024-09-03 14:15:52 -07:00
Leni Aniva 948b535b5d Merge pull request 'feat: Prograde tactics' (#83) from tactic/eval into dev
Reviewed-on: #83
2024-08-31 20:04:38 -07:00
Leni Aniva edec0f5733
feat: Use CoreM for diag monad 2024-08-26 13:42:14 -04:00
Leni Aniva 0c529c5cd9
Merge branch 'misc/test-driver' into tactic/eval 2024-08-18 12:24:26 -07:00
Leni Aniva 76765c913c
test: Use `lake test`. Retired `Makefile` 2024-08-18 12:22:59 -07:00
Leni Aniva 3733c10a4e
refactor: Unify call convention
Induction like tactics should return `Array InductionSubgoal`. Branching
tactics should return their branch first.
2024-08-17 16:47:21 -07:00
Leni Aniva 5d43068ec3
fix: Flake check failure 2024-08-17 02:07:17 -07:00
Leni Aniva f87eed817f
build: Move non-package output to legacyPackages 2024-08-17 01:59:48 -07:00
Leni Aniva 43e11f1ba3
refactor: Always display isInaccessible 2024-08-17 00:53:38 -07:00
Leni Aniva 0c469027c6
fix: Refactor mvar collection in assign tactic 2024-08-17 00:50:02 -07:00
Leni Aniva e1b7eaab12
fix: Let tactic not bringing binder into scope 2024-08-17 00:47:12 -07:00
Leni Aniva d17b21e282
fix: Use `getMVarsNoDelayed` 2024-08-16 00:32:34 -07:00
Leni Aniva 5b4f8a37eb
refactor: All Tactic/ tactics into MetaM form 2024-08-15 23:41:17 -07:00
Leni Aniva 1e7a186bb1
refactor: MetaM form of define (evaluate) 2024-08-15 23:23:17 -07:00
Leni Aniva 9b0456a5e0
refactor: MetaM form of have and let 2024-08-15 23:17:15 -07:00
Leni Aniva 7968072097
refactor: Remove the newMVarSet mechanism
This field has ambiguous purpose and does not account for different
types of mvars
2024-08-15 22:53:42 -07:00
Leni Aniva e07f9d9b3f
Merge branch 'dev' into tactic/eval 2024-08-15 22:45:43 -07:00
Leni Aniva 56100a30af Merge pull request 'feat: Condensed interface' (#85) from serial/expr into dev
Reviewed-on: #85
2024-08-15 22:41:58 -07:00
Leni Aniva e943a4b065
refactor: Assign into its own tactic 2024-08-15 22:39:40 -07:00
Leni Aniva 0bc7bc5856
refactor: Remove export of Lean functions
If the user wishes to use Lean functions, they should add the bindings manually.
2024-08-14 01:20:56 -07:00
Leni Aniva caac70f0cf
feat: Move non package outputs to dependencies 2024-08-04 17:52:36 -07:00
Leni Aniva 64269868d5
feat: Expose project and leanPkgs in flake 2024-08-04 17:32:20 -07:00
Leni Aniva c9ee31bbfd
feat: Export `mkFun` 2024-08-02 22:33:03 -07:00
Leni Aniva 394fb73137
feat: Add direct expression to string 2024-08-02 22:00:27 -07:00
Leni Aniva c0e2a592ea
feat: Expose `mkAppM'` 2024-08-02 21:44:46 -07:00
Leni Aniva 2c08ef1e23
refactor: Remove old `visibleFVars` interface 2024-08-02 19:53:19 -07:00
Leni Aniva 651afa75f4
feat: Filter in `visibleFVarsOfMVar` 2024-08-02 19:49:11 -07:00
Leni Aniva abef7a6f0d
feat: Export fvar names function 2024-07-31 00:00:33 -07:00
Leni Aniva caa463f410
feat: Export GoalState.goalsArray 2024-07-30 17:02:41 -07:00
Leni Aniva 3ca52517ab
feat: Refactor out projToApp 2024-07-30 13:30:41 -07:00
Leni Aniva 1c9a411d4d
feat: Export constant info type/value 2024-07-29 18:39:22 -07:00
Leni Aniva 7b5567d784
fix: Name internal order 2024-07-28 14:19:47 -07:00
Leni Aniva 29f437f859
feat: Export GoalState.create 2024-07-28 13:58:20 -07:00
Leni Aniva 4c81f226d1
feat: Expose environment functions 2024-07-28 13:46:14 -07:00
Leni Aniva 9db5463499
feat: Export `GoalState.resume` 2024-07-27 18:20:34 -07:00
Leni Aniva bf941cd686
feat: Expose parent and root expr functions 2024-07-27 17:39:51 -07:00
Leni Aniva 2682ce5b7b
refactor: Move condensed functions to condensed 2024-07-23 11:57:12 -07:00
Leni Aniva 3b415e8dc1
chore: Rename exports 2024-07-23 05:16:46 -07:00
Leni Aniva 431ca4e481
fix: Move elab context to condensed 2024-07-22 17:57:01 -07:00
Leni Aniva eb5ee8c57c
feat: Expose TermElab context and state 2024-07-22 17:34:14 -07:00
Leni Aniva 94c7b021f7
fix: Signature of ppExpr 2024-07-15 12:22:47 -07:00
Leni Aniva 193d94e798
feat: Expression creation and pretty printing 2024-07-15 11:42:02 -07:00
Leni Aniva a7fe7cbd7c
Merge branch 'misc/version' into serial/expr 2024-07-15 09:53:36 -07:00
Leni Aniva df8b6602ee
Merge branch 'misc/version' into tactic/eval 2024-07-06 20:00:12 -07:00
Leni Aniva 9b1dd0ffda
chore: Update flake 2024-07-06 19:58:55 -07:00
Leni Aniva 4549ae1f65
Merge branch 'misc/version' into tactic/eval 2024-07-06 19:56:31 -07:00
Leni Aniva c404564a2b
chore: Bump Lean version to 4.10.0-rc1 2024-07-06 19:53:50 -07:00
Leni Aniva 6ddde2963d
test: Eval instantiate 2024-06-27 14:51:16 -04:00
Leni Aniva fc0d872343
refactor: Simplify proof test infrastructure 2024-06-27 14:34:21 -04:00
Leni Aniva 2d2ff24017
feat: FFI interface for `evaluate` tactic 2024-06-25 17:10:31 -04:00
Leni Aniva 7acf1ffdf1
refactor: Move `have` to prograde tactic 2024-06-25 16:58:35 -04:00
Leni Aniva 58f9d72288
test: Evaluate tactic context 2024-06-25 16:18:31 -04:00
Leni Aniva c0124b347f
Merge branch 'serial/expr' into tactic/eval 2024-06-25 16:05:20 -04:00
Leni Aniva 8e78718447
feat: Extract MetaM context and state from goal 2024-06-25 15:54:55 -04:00
Leni Aniva ffbea41f62
feat: Condensed interface 2024-06-25 15:13:58 -04:00
Leni Aniva e282d9f781
test: Evaluation tactic 2024-06-25 11:03:08 -04:00
Leni Aniva 25a7025c25
feat: Evaluation tactic 2024-06-23 15:01:51 -07:00
Leni Aniva 472cd54868 Merge pull request 'refactor: Cleanup the congruence tactics' (#81) from tactic/congruence into dev
Reviewed-on: #81
2024-06-23 13:35:36 -07:00
Leni Aniva fbe6e8fcb3
Merge branch 'dev' into tactic/congruence 2024-06-23 13:35:07 -07:00
Leni Aniva 361e2e8926 Merge pull request 'fix: aux lemmas in env inspect' (#82) from env/inspect into dev
Reviewed-on: #82
2024-06-23 13:33:35 -07:00
Leni Aniva aceee85b05
Merge branch 'env/inspect' into tactic/congruence 2024-06-16 13:46:18 -07:00
Leni Aniva 8707dbc9bb
fix: aux lemmas in env inspect 2024-06-16 13:44:57 -07:00
Leni Aniva f80d90ce87
fix: Goal diag missing newline character 2024-06-14 11:59:02 -07:00
Leni Aniva b3a60fcea8
refactor: Rename TacticExecute to SyntheticTactic 2024-06-13 14:25:05 -07:00
Leni Aniva bd20bf76da Merge pull request 'feat: Elementarized tactics with motives, congruence, and absurdity' (#72) from goal/mapply into dev
Reviewed-on: #72
2024-06-12 13:52:45 -07:00
Leni Aniva 2d2cf75183
Merge branch 'dev' into goal/mapply 2024-06-12 13:44:49 -07:00
Leni Aniva c0e6e3ec39
Merge branch 'parse/level' into goal/mapply 2024-06-11 15:21:35 -07:00
Leni Aniva 3a53493089
feat: Show delayed assignment in goal diag 2024-06-05 16:14:52 -07:00
Leni Aniva 6dcff8b151
fix: Print diag in mvar context 2024-06-05 15:56:20 -07:00
Leni Aniva 3c90c94645
fix: Execute instantiateAll in goal state diag 2024-06-05 13:45:13 -07:00
Leni Aniva 67e7f22b0a Merge pull request 'feat: Extraction of tactics from compiler' (#76) from compile/tactic into dev
Reviewed-on: #76
2024-05-31 20:23:50 -07:00
Leni Aniva a2c5c7448c
chore: Code simplification, version bump 2024-05-31 20:23:10 -07:00
Leni Aniva 855e771609
feat: Add compilation unit boundary command 2024-05-31 16:35:46 -07:00
Leni Aniva b9b16ba0e9
refactor: Code cleanup 2024-05-28 20:24:23 -07:00
Leni Aniva 09628309a9
feat: Basic tactic extraction (before/after/tactic) 2024-05-28 17:25:22 -07:00
Leni Aniva bd42c396d7
chore: Code cleanup 2024-05-20 14:19:10 -07:00
Leni Aniva bbc00cbbb8
feat: Congruence tactic FFI interface and tests 2024-05-20 14:00:04 -07:00
Leni Aniva 75df7268c5
test: Simplify testing structure for tactics 2024-05-20 11:55:38 -07:00
Leni Aniva 92acf7782c
test: CongruenceArg tactic 2024-05-20 11:51:35 -07:00
Leni Aniva cf1c884c8c
Merge branch 'dev' into goal/mapply 2024-05-20 11:08:14 -07:00
Leni Aniva cc74d41b15
feat: Congruence tactics 2024-05-20 10:55:52 -07:00
Leni Aniva 2f951c8fef
fix: Decoupling of mvars during instantiation 2024-05-19 15:43:10 -07:00
Leni Aniva 6ad24b72d4
fix: Nested delayed assignment instantiation 2024-05-16 10:31:38 -07:00
Leni Aniva cf17428001
fix: Panic in partial instantiation 2024-05-15 21:34:36 -07:00
Leni Aniva 5c7bb288b2
feat: Display full free variable list in subst 2024-05-14 19:09:04 -07:00
Leni Aniva bc09f4a29d
refactor: Expr related functions to Expr.lean 2024-05-13 13:58:50 -07:00
Leni Aniva f813d4a8dd
refactor: Delayed mvar instantiation function 2024-05-13 13:49:05 -07:00
Leni Aniva c04b363de7
feat: Handle delay assigned mvars 2024-05-12 22:33:38 -07:00
Leni Aniva 03ecb6cf19
feat: Partial instantiate metavariables 2024-05-11 20:01:34 -07:00
Leni Aniva 0b88f6708e
test: Delayed mvar assignment for mapply 2024-05-09 14:02:43 -07:00
Leni Aniva e58dbc66a9
fix: Consistent naming in library functions 2024-05-08 20:51:36 -07:00
Leni Aniva 66a5dfcf3c
feat: Diagnostics command for FFI users 2024-05-08 12:41:21 -07:00
Leni Aniva 69ec70ffbe
feat: Do not explicitly show delay assigned mvar 2024-05-06 22:39:17 -07:00
Leni Aniva aa106f7591
feat: Do not filter mvars from mapply 2024-05-06 22:20:20 -07:00
Leni Aniva 679871cbc6
fix: NoConfuse arg name 2024-05-05 13:26:46 -07:00
Leni Aniva 2937675044
feat: Library interface for calling no_confuse 2024-05-05 13:25:48 -07:00
Leni Aniva cf1289f159
feat: NoConfuse tactic 2024-05-05 13:24:29 -07:00
Leni Aniva 1e1995255a
test: mapply captures dependent types 2024-05-05 10:36:43 -07:00
Leni Aniva 63417ef179
fix: Motive extra arguments not instiantiated 2024-05-05 00:43:32 -07:00
Leni Aniva 4cff6677d2
chore: Lean version bump to 4.8.0-rc1 2024-05-04 23:36:42 -07:00
Leni Aniva 6ffb227cd6
feat: Conduit modus ponens 2024-04-22 10:02:09 -07:00
Leni Aniva feff62a3c5
fix: Remove determination of major 2024-04-22 09:52:13 -07:00
Leni Aniva 3812aa56ec
feat: Phantom var in mapply 2024-04-22 00:11:41 -07:00
Leni Aniva 4a92e655f6
test: Tactic test stub 2024-04-20 13:09:41 -07:00
Leni Aniva 398b1c39ed
refactor: Common tactic execute function 2024-04-19 12:37:17 -07:00
Leni Aniva fec13ddb51
chore: Code cleanup 2024-04-18 14:19:25 -07:00
Leni Aniva 7aa7e6d7e9
feat: Library interface for mapply 2024-04-15 12:56:28 -07:00
Leni Aniva dbd54f7679
feat: Implement the mapply tactic 2024-04-15 12:47:02 -07:00
Leni Aniva 75b4648ba9
feat: mapply stub 2024-04-14 15:40:57 -07:00
Leni Aniva b954f12526
refactor: Move all tactic operations to the bottom 2024-04-13 19:41:49 -07:00
39 changed files with 3282 additions and 954 deletions

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -4,6 +4,7 @@ import Lean.Environment
import Pantograph.Version
import Pantograph.Library
import Pantograph
import Repl
-- Main IO functions
open Pantograph

View File

@ -1,20 +0,0 @@
LIB := ./.lake/build/lib/Pantograph.olean
EXE := ./.lake/build/bin/pantograph
SOURCE := $(wildcard Pantograph/*.lean) $(wildcard *.lean) lean-toolchain
TEST_EXE := ./.lake/build/bin/test
TEST_SOURCE := $(wildcard Test/*.lean)
$(LIB) $(EXE): $(SOURCE)
lake build pantograph
$(TEST_EXE): $(LIB) $(TEST_SOURCE)
lake build test
test: $(TEST_EXE)
$(TEST_EXE)
clean:
lake clean
.PHONY: test clean

View File

@ -1,194 +1,8 @@
import Pantograph.Compile
import Pantograph.Condensed
import Pantograph.Environment
import Pantograph.Goal
import Pantograph.Library
import Pantograph.Protocol
import Pantograph.Serial
import Pantograph.Environment
import Pantograph.Library
import Lean.Data.HashMap
namespace Pantograph
structure Context where
imports: List String
/-- Stores state of the REPL -/
structure State where
options: Protocol.Options := {}
nextId: Nat := 0
goalStates: Lean.HashMap Nat GoalState := Lean.HashMap.empty
/-- Main state monad for executing commands -/
abbrev MainM := ReaderT Context (StateT State Lean.CoreM)
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables
-- certain monadic features in `MainM`
abbrev CR α := Except Protocol.InteractionError α
def execute (command: Protocol.Command): MainM Lean.Json := do
let run { α β: Type } [Lean.FromJson α] [Lean.ToJson β] (comm: α → MainM (CR β)): MainM Lean.Json :=
match Lean.fromJson? command.payload with
| .ok args => do
match (← comm args) with
| .ok result => return Lean.toJson result
| .error ierror => return Lean.toJson ierror
| .error error => return Lean.toJson $ errorCommand s!"Unable to parse json: {error}"
match command.cmd with
| "reset" => run reset
| "stat" => run stat
| "expr.echo" => run expr_echo
| "env.catalog" => run env_catalog
| "env.inspect" => run env_inspect
| "env.add" => run env_add
| "options.set" => run options_set
| "options.print" => run options_print
| "goal.start" => run goal_start
| "goal.tactic" => run goal_tactic
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete
| "goal.print" => run goal_print
| cmd =>
let error: Protocol.InteractionError :=
errorCommand s!"Unknown command {cmd}"
return Lean.toJson error
where
errorCommand := errorI "command"
errorIndex := errorI "index"
-- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
set { state with nextId := 0, goalStates := Lean.HashMap.empty }
return .ok { nGoals }
stat (_: Protocol.Stat): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
return .ok { nGoals }
env_catalog (args: Protocol.EnvCatalog): MainM (CR Protocol.EnvCatalogResult) := do
let result ← Environment.catalog args
return .ok result
env_inspect (args: Protocol.EnvInspect): MainM (CR Protocol.EnvInspectResult) := do
let state ← get
Environment.inspect args state.options
env_add (args: Protocol.EnvAdd): MainM (CR Protocol.EnvAddResult) := do
Environment.addDecl args
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do
let state ← get
exprEcho args.expr (expectedType? := args.type?) (levels := args.levels.getD #[]) (options := state.options)
options_set (args: Protocol.OptionsSet): MainM (CR Protocol.OptionsSetResult) := do
let state ← get
let options := state.options
set { state with
options := {
-- FIXME: This should be replaced with something more elegant
printJsonPretty := args.printJsonPretty?.getD options.printJsonPretty,
printExprPretty := args.printExprPretty?.getD options.printExprPretty,
printExprAST := args.printExprAST?.getD options.printExprAST,
printDependentMVars := args.printDependentMVars?.getD options.printDependentMVars,
noRepeat := args.noRepeat?.getD options.noRepeat,
printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls,
printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps
}
}
return .ok { }
options_print (_: Protocol.OptionsPrint): MainM (CR Protocol.OptionsPrintResult) := do
return .ok (← get).options
goal_start (args: Protocol.GoalStart): MainM (CR Protocol.GoalStartResult) := do
let state ← get
let env ← Lean.MonadEnv.getEnv
let expr?: Except _ GoalState ← runTermElabM (match args.expr, args.copyFrom with
| .some expr, .none => goalStartExpr expr (args.levels.getD #[])
| .none, .some copyFrom =>
(match env.find? <| copyFrom.toName with
| .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}"
| .some cInfo => return .ok (← GoalState.create cInfo.type))
| _, _ =>
return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied")
match expr? with
| .error error => return .error error
| .ok goalState =>
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return .ok { stateId, root := goalState.root.name.toString }
goal_tactic (args: Protocol.GoalTactic): MainM (CR Protocol.GoalTacticResult) := do
let state ← get
match state.goalStates.find? args.stateId with
| .none => return .error $ errorIndex s!"Invalid state index {args.stateId}"
| .some goalState => do
let nextGoalState?: Except _ GoalState ←
match args.tactic?, args.expr?, args.have?, args.calc?, args.conv? with
| .some tactic, .none, .none, .none, .none => do
pure ( Except.ok (← goalTactic goalState args.goalId tactic))
| .none, .some expr, .none, .none, .none => do
pure ( Except.ok (← goalAssign goalState args.goalId expr))
| .none, .none, .some type, .none, .none => do
let binderName := args.binderName?.getD ""
pure ( Except.ok (← goalHave goalState args.goalId binderName type))
| .none, .none, .none, .some pred, .none => do
pure ( Except.ok (← goalCalc goalState args.goalId pred))
| .none, .none, .none, .none, .some true => do
pure ( Except.ok (← goalConv goalState args.goalId))
| .none, .none, .none, .none, .some false => do
pure ( Except.ok (← goalConvExit goalState))
| _, _, _, _, _ => pure (Except.error <|
errorI "arguments" "Exactly one of {tactic, expr, have, calc, conv} must be supplied")
match nextGoalState? with
| .error error => return .error error
| .ok (.success nextGoalState) =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert state.nextId nextGoalState,
nextId := state.nextId + 1,
}
let goals ← nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run'
return .ok {
nextStateId? := .some nextStateId,
goals? := .some goals,
}
| .ok (.parseError message) =>
return .ok { parseError? := .some message }
| .ok (.indexError goalId) =>
return .error $ errorIndex s!"Invalid goal id index {goalId}"
| .ok (.invalidAction message) =>
return .error $ errorI "invalid" message
| .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do
let state ← get
match state.goalStates.find? args.target with
| .none => return .error $ errorIndex s!"Invalid state index {args.target}"
| .some target => do
let nextState? ← match args.branch?, args.goals? with
| .some branchId, .none => do
match state.goalStates.find? branchId with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ goalContinue target branch
| .none, .some goals =>
pure $ goalResume target goals
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied"
match nextState? with
| .error error => return .error <| errorI "structure" error
| .ok nextGoalState =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert nextStateId nextGoalState,
nextId := state.nextId + 1
}
let goals ← goalSerialize nextGoalState (options := state.options)
return .ok {
nextStateId,
goals,
}
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do
let state ← get
let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates
set { state with goalStates }
return .ok {}
goal_print (args: Protocol.GoalPrint): MainM (CR Protocol.GoalPrintResult) := do
let state ← get
match state.goalStates.find? args.stateId with
| .none => return .error $ errorIndex s!"Invalid state index {args.stateId}"
| .some goalState => runMetaM <| do
return .ok (← goalPrint goalState state.options)
end Pantograph
import Pantograph.Version

25
Pantograph/Compile.lean Normal file
View File

@ -0,0 +1,25 @@
/- Adapted from lean-training-data by semorrison -/
import Pantograph.Protocol
import Pantograph.Compile.Frontend
import Pantograph.Compile.Elab
import Pantograph.Compile.Parse
open Lean
namespace Pantograph.Compile
def collectTacticsFromCompilation (steps : List CompilationStep) : IO (List Protocol.InvokedTactic) := do
let infoTrees := steps.bind (·.trees)
let tacticInfoTrees := infoTrees.bind λ tree => tree.filter λ
| info@(.ofTacticInfo _) => info.isOriginal
| _ => false
let tactics := tacticInfoTrees.bind collectTactics
tactics.mapM λ invocation => do
let goalBefore := (Format.joinSep (← invocation.goalState) "\n").pretty
let goalAfter := (Format.joinSep (← invocation.goalStateAfter) "\n").pretty
let tactic ← invocation.ctx.runMetaM {} do
let t ← Lean.PrettyPrinter.ppTactic ⟨invocation.info.stx⟩
return t.pretty
return { goalBefore, goalAfter, tactic }
end Pantograph.Compile

View File

@ -0,0 +1,146 @@
import Lean.Elab.Import
import Lean.Elab.Command
import Lean.Elab.InfoTree
import Pantograph.Compile.Frontend
open Lean
namespace Lean.Elab.Info
/-- The `Syntax` for a `Lean.Elab.Info`, if there is one. -/
protected def stx? : Info → Option Syntax
| .ofTacticInfo info => info.stx
| .ofTermInfo info => info.stx
| .ofCommandInfo info => info.stx
| .ofMacroExpansionInfo info => info.stx
| .ofOptionInfo info => info.stx
| .ofFieldInfo info => info.stx
| .ofCompletionInfo info => info.stx
| .ofUserWidgetInfo info => info.stx
| .ofCustomInfo info => info.stx
| .ofFVarAliasInfo _ => none
| .ofFieldRedeclInfo info => info.stx
| .ofOmissionInfo info => info.stx
/-- Is the `Syntax` for this `Lean.Elab.Info` original, or synthetic? -/
protected def isOriginal (i : Info) : Bool :=
match i.stx? with
| none => true -- Somewhat unclear what to do with `FVarAliasInfo`, so be conservative.
| some stx => match stx.getHeadInfo with
| .original .. => true
| _ => false
end Lean.Elab.Info
namespace Lean.Elab.TacticInfo
/-- Find the name for the outermost `Syntax` in this `TacticInfo`. -/
def name? (t : TacticInfo) : Option Name :=
match t.stx with
| Syntax.node _ n _ => some n
| _ => none
/-- Decide whether a tactic is "substantive",
or is merely a tactic combinator (e.g. `by`, `;`, multiline tactics, parenthesized tactics). -/
def isSubstantive (t : TacticInfo) : Bool :=
match t.name? with
| none => false
| some `null => false
| some ``cdot => false
| some ``cdotTk => false
| some ``Lean.Parser.Term.byTactic => false
| some ``Lean.Parser.Tactic.tacticSeq => false
| some ``Lean.Parser.Tactic.tacticSeq1Indented => false
| some ``Lean.Parser.Tactic.«tactic_<;>_» => false
| some ``Lean.Parser.Tactic.paren => false
| _ => true
end Lean.Elab.TacticInfo
namespace Lean.Elab.InfoTree
/--
Keep `.node` nodes and `.hole` nodes satisfying predicates.
Returns a `List InfoTree`, although in most situations this will be a singleton.
-/
partial def filter (p : Info → Bool) (m : MVarId → Bool := fun _ => false) :
InfoTree → List InfoTree
| .context ctx tree => tree.filter p m |>.map (.context ctx)
| .node info children =>
if p info then
[.node info (children.toList.map (filter p m)).join.toPArray']
else
(children.toList.map (filter p m)).join
| .hole mvar => if m mvar then [.hole mvar] else []
end Lean.Elab.InfoTree
namespace Pantograph.Compile
-- Info tree filtering functions
structure TacticInvocation where
info : Elab.TacticInfo
ctx : Elab.ContextInfo
children : PersistentArray Elab.InfoTree
namespace TacticInvocation
/-- Return the range of the tactic, as a pair of file positions. -/
protected def range (t : TacticInvocation) : Position × Position := t.ctx.fileMap.stxRange t.info.stx
/-- Pretty print a tactic. -/
protected def pp (t : TacticInvocation) : IO Format :=
t.ctx.runMetaM {} try
Lean.PrettyPrinter.ppTactic ⟨t.info.stx⟩
catch _ =>
pure "<failed to pretty print>"
/-- Run a tactic on the goals stored in a `TacticInvocation`. -/
protected def runMetaMGoalsBefore (t : TacticInvocation) (x : List MVarId → MetaM α) : IO α := do
t.ctx.runMetaM {} <| Meta.withMCtx t.info.mctxBefore <| x t.info.goalsBefore
/-- Run a tactic on the after goals stored in a `TacticInvocation`. -/
protected def runMetaMGoalsAfter (t : TacticInvocation) (x : List MVarId → MetaM α) : IO α := do
t.ctx.runMetaM {} <| Meta.withMCtx t.info.mctxAfter <| x t.info.goalsAfter
/-- Run a tactic on the main goal stored in a `TacticInvocation`. -/
protected def runMetaM (t : TacticInvocation) (x : MVarId → MetaM α) : IO α := do
match t.info.goalsBefore.head? with
| none => throw <| IO.userError s!"No goals at {← t.pp}"
| some g => t.runMetaMGoalsBefore fun _ => do g.withContext <| x g
protected def goalState (t : TacticInvocation) : IO (List Format) := do
t.runMetaMGoalsBefore (fun gs => gs.mapM fun g => do Meta.ppGoal g)
protected def goalStateAfter (t : TacticInvocation) : IO (List Format) := do
t.runMetaMGoalsAfter (fun gs => gs.mapM fun g => do Meta.ppGoal g)
protected def ppExpr (t : TacticInvocation) (e : Expr) : IO Format :=
t.runMetaM (fun _ => do Meta.ppExpr (← instantiateMVars e))
end TacticInvocation
/-- Analogue of `Lean.Elab.InfoTree.findInfo?`, but that returns a list of all results. -/
partial def findAllInfo (t : Elab.InfoTree) (ctx : Option Elab.ContextInfo) (pred : Elab.Info → Bool) :
List (Elab.Info × Option Elab.ContextInfo × PersistentArray Elab.InfoTree) :=
match t with
| .context inner t => findAllInfo t (inner.mergeIntoOuter? ctx) pred
| .node i children =>
(if pred i then [(i, ctx, children)] else []) ++ children.toList.bind (fun t => findAllInfo t ctx pred)
| _ => []
/-- Return all `TacticInfo` nodes in an `InfoTree` corresponding to tactics,
each equipped with its relevant `ContextInfo`, and any children info trees. -/
def collectTacticNodes (t : Elab.InfoTree) : List TacticInvocation :=
let infos := findAllInfo t none fun i => match i with
| .ofTacticInfo _ => true
| _ => false
infos.filterMap fun p => match p with
| (.ofTacticInfo i, some ctx, children) => .some ⟨i, ctx, children⟩
| _ => none
def collectTactics (t : Elab.InfoTree) : List TacticInvocation :=
collectTacticNodes t |>.filter fun i => i.info.isSubstantive
end Pantograph.Compile

View File

@ -0,0 +1,86 @@
import Lean.Parser
import Lean.Elab.Frontend
open Lean
namespace Lean.FileMap
/-- Extract the range of a `Syntax` expressed as lines and columns. -/
-- Extracted from the private declaration `Lean.Elab.formatStxRange`,
-- in `Lean.Elab.InfoTree.Main`.
protected def stxRange (fileMap : FileMap) (stx : Syntax) : Position × Position :=
let pos := stx.getPos?.getD 0
let endPos := stx.getTailPos?.getD pos
(fileMap.toPosition pos, fileMap.toPosition endPos)
end Lean.FileMap
namespace Lean.PersistentArray
/--
Drop the first `n` elements of a `PersistentArray`, returning the results as a `List`.
-/
-- We can't remove the `[Inhabited α]` hypotheses here until
-- `PersistentArray`'s `GetElem` instance also does.
protected def drop [Inhabited α] (t : PersistentArray α) (n : Nat) : List α :=
List.range (t.size - n) |>.map fun i => t.get! (n + i)
end Lean.PersistentArray
namespace Pantograph.Compile
structure CompilationStep where
fileName : String
fileMap : FileMap
src : Substring
stx : Syntax
before : Environment
after : Environment
msgs : List Message
trees : List Elab.InfoTree
/--
Process one command, returning a `CompilationStep` and
`done : Bool`, indicating whether this was the last command.
-/
def processOneCommand: Elab.Frontend.FrontendM (CompilationStep × Bool) := do
let s := (← get).commandState
let before := s.env
let done ← Elab.Frontend.processCommand
let stx := (← get).commands.back
let src := (← read).inputCtx.input.toSubstring.extract (← get).cmdPos (← get).parserState.pos
let s' := (← get).commandState
let after := s'.env
let msgs := s'.messages.toList.drop s.messages.toList.length
let trees := s'.infoState.trees.drop s.infoState.trees.size
let ⟨_, fileName, fileMap⟩ := (← read).inputCtx
return ({ fileName, fileMap, src, stx, before, after, msgs, trees }, done)
partial def processFile : Elab.Frontend.FrontendM (List CompilationStep) := do
let (cmd, done) ← processOneCommand
if done then
return [cmd]
else
return cmd :: (← processFile)
def findSourcePath (module : Name) : IO System.FilePath := do
return System.FilePath.mk ((← findOLean module).toString.replace ".lake/build/lib/" "") |>.withExtension "lean"
def processSource (module : Name) (opts : Options := {}) : IO (List CompilationStep) := unsafe do
let file ← IO.FS.readFile (← findSourcePath module)
let inputCtx := Parser.mkInputContext file module.toString
let (header, parserState, messages) ← Parser.parseHeader inputCtx
let (env, messages) ← Elab.processHeader header opts messages inputCtx
let commandState := Elab.Command.mkState env messages opts
processFile.run { inputCtx }
|>.run' {
commandState := { commandState with infoState.enabled := true },
parserState,
cmdPos := parserState.pos
}
end Pantograph.Compile

View File

@ -0,0 +1,14 @@
import Lean
open Lean
namespace Pantograph.Compile
def parseTermM [Monad m] [MonadEnv m] (s: String): m (Except String Syntax) := do
return Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := "<stdin>")
end Pantograph.Compile

96
Pantograph/Condensed.lean Normal file
View File

@ -0,0 +1,96 @@
/- structures for FFI based interface -/
import Lean
import Pantograph.Goal
import Pantograph.Expr
import Pantograph.Protocol
open Lean
namespace Pantograph
namespace Condensed
-- Mirrors Lean's LocalDecl
structure LocalDecl where
-- Default value is for testing
fvarId: FVarId := { name := .anonymous }
userName: Name
-- Normalized expression
type : Expr
value? : Option Expr := .none
structure Goal where
mvarId: MVarId := { name := .anonymous }
userName: Name := .anonymous
context: Array LocalDecl
target: Expr
@[export pantograph_goal_is_lhs]
def isLHS (g: Goal) : Bool := isLHSGoal? g.target |>.isSome
-- Functions for creating contexts and states
@[export pantograph_elab_context]
def elabContext: Elab.Term.Context := {
errToSorry := false
}
end Condensed
-- Get the list of visible (by default) free variables from a goal
@[export pantograph_visible_fvars_of_mvar]
protected def visibleFVarsOfMVar (mctx: MetavarContext) (mvarId: MVarId): Option (Array FVarId) := do
let mvarDecl ← mctx.findDecl? mvarId
let lctx := mvarDecl.lctx
return lctx.decls.foldl (init := #[]) fun r decl? => match decl? with
| some decl => if decl.isAuxDecl decl.isImplementationDetail then r else r.push decl.fvarId
| none => r
@[export pantograph_to_condensed_goal_m]
def toCondensedGoal (mvarId: MVarId): MetaM Condensed.Goal := do
let ppAuxDecls := Meta.pp.auxDecls.get (← getOptions)
let ppImplDetailHyps := Meta.pp.implementationDetailHyps.get (← getOptions)
let mvarDecl ← mvarId.getDecl
let lctx := mvarDecl.lctx
let lctx := lctx.sanitizeNames.run' { options := (← getOptions) }
Meta.withLCtx lctx mvarDecl.localInstances do
let ppVar (localDecl : LocalDecl) : MetaM Condensed.LocalDecl := do
match localDecl with
| .cdecl _ fvarId userName type _ _ =>
let type ← instantiate type
return { fvarId, userName, type }
| .ldecl _ fvarId userName type value _ _ => do
let userName := userName.simpMacroScopes
let type ← instantiate type
let value ← instantiate value
return { fvarId, userName, type, value? := .some value }
let vars ← lctx.foldlM (init := []) fun acc (localDecl : LocalDecl) => do
let skip := !ppAuxDecls && localDecl.isAuxDecl ||
!ppImplDetailHyps && localDecl.isImplementationDetail
if skip then
return acc
else
let var ← ppVar localDecl
return var::acc
return {
mvarId,
userName := mvarDecl.userName,
context := vars.reverse.toArray,
target := ← instantiate mvarDecl.type
}
where
instantiate := instantiateAll
@[export pantograph_goal_state_to_condensed_m]
protected def GoalState.toCondensed (state: GoalState):
CoreM (Array Condensed.Goal):= do
let metaM := do
let goals := state.goals.toArray
goals.mapM fun goal => do
match state.mctx.findDecl? goal with
| .some _ =>
let serializedGoal ← toCondensedGoal goal
pure serializedGoal
| .none => throwError s!"Metavariable does not exist in context {goal.name}"
metaM.run' (s := state.savedState.term.meta.meta)
end Pantograph

View File

@ -7,15 +7,36 @@ open Pantograph
namespace Pantograph.Environment
def isNameInternal (n: Lean.Name): Bool :=
@[export pantograph_is_name_internal]
def isNameInternal (n: Name): Bool :=
-- Returns true if the name is an implementation detail which should not be shown to the user.
isLeanSymbol n (Lean.privateToUserName? n |>.map isLeanSymbol |>.getD false) n.isAuxLemma n.hasMacroScopes
where
isLeanSymbol (name: Lean.Name): Bool := match name.getRoot with
isLeanSymbol (name: Name): Bool := match name.getRoot with
| .str _ name => name == "Lean"
| _ => true
def toCompactSymbolName (n: Lean.Name) (info: Lean.ConstantInfo): String :=
/-- Catalog all the non-internal and safe names -/
@[export pantograph_environment_catalog]
def env_catalog (env: Environment): Array Name := env.constants.fold (init := #[]) (λ acc name info =>
match isNameInternal name || info.isUnsafe with
| false => acc.push name
| true => acc)
@[export pantograph_environment_module_of_name]
def module_of_name (env: Environment) (name: Name): Option Name := do
let moduleId ← env.getModuleIdxFor? name
return env.allImportedModuleNames.get! moduleId.toNat
@[export pantograph_constant_info_is_unsafe_or_partial]
def constantInfoIsUnsafeOrPartial (info: ConstantInfo): Bool := info.isUnsafe || info.isPartial
@[export pantograph_constant_info_type]
def constantInfoType (info: ConstantInfo): CoreM Expr := unfoldAuxLemmas info.type
@[export pantograph_constant_info_value]
def constantInfoValue (info: ConstantInfo): CoreM (Option Expr) := info.value?.mapM unfoldAuxLemmas
def toCompactSymbolName (n: Name) (info: ConstantInfo): String :=
let pref := match info with
| .axiomInfo _ => "a"
| .defnInfo _ => "d"
@ -52,21 +73,22 @@ def inspect (args: Protocol.EnvInspect) (options: @&Protocol.Options): CoreM (Pr
| .some false, _ => .none
| .none, .defnInfo _ => info.value?
| .none, _ => .none
let type ← unfoldAuxLemmas info.type
let value? ← value?.mapM (λ v => unfoldAuxLemmas v)
-- Information common to all symbols
let core := {
type := ← (serializeExpression options info.type).run',
type := ← (serializeExpression options type).run',
isUnsafe := info.isUnsafe,
value? := ← value?.mapM (λ v => serializeExpression options v |>.run'),
publicName? := Lean.privateToUserName? name |>.map (·.toString),
-- BUG: Warning: getUsedConstants here will not include projections. This is a known bug.
typeDependency? := if args.dependency?.getD false
then .some <| info.type.getUsedConstants.map (λ n => serializeName n)
then .some <| type.getUsedConstants.map (λ n => serializeName n)
else .none,
valueDependency? := if args.dependency?.getD false
then value?.map (λ e =>
e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
else .none,
valueDependency? := ← if args.dependency?.getD false
then info.value?.mapM (λ e => do
let e ← unfoldAuxLemmas e
pure $ e.getUsedConstants.filter (!isNameInternal ·) |>.map (λ n => serializeName n) )
else pure (.none),
module? := module?
}
let result ← match info with
@ -131,7 +153,7 @@ def addDecl (args: Protocol.EnvAdd): CoreM (Protocol.CR Protocol.EnvAddResult) :
(hints := Lean.mkReducibilityHintsRegularEx 1)
(safety := Lean.DefinitionSafety.safe)
(all := [])
let env' ← match env.addDecl constant with
let env' ← match env.addDecl (← getOptions) constant with
| .error e => do
let options ← Lean.MonadOptions.getOptions
let desc ← (e.toMessageData options).toString

160
Pantograph/Expr.lean Normal file
View File

@ -0,0 +1,160 @@
import Lean
open Lean
namespace Pantograph
structure ProjectionApplication where
projector: Name
numParams: Nat
inner: Expr
@[export pantograph_expr_proj_to_app]
def exprProjToApp (env: Environment) (e: Expr): ProjectionApplication :=
let (typeName, idx, inner) := match e with
| .proj typeName idx inner => (typeName, idx, inner)
| _ => panic! "Argument must be proj"
let ctor := getStructureCtor env typeName
let fieldName := getStructureFields env typeName |>.get! idx
let projector := getProjFnForField? env typeName fieldName |>.get!
{
projector,
numParams := ctor.numParams,
inner,
}
def _root_.Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _
/-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/
@[export pantograph_unfold_aux_lemmas]
def unfoldAuxLemmas (e : Expr) : CoreM Expr := do
Lean.Meta.deltaExpand e Lean.Name.isAuxLemma
/--
Force the instantiation of delayed metavariables even if they cannot be fully
instantiated. This is used during resumption to provide diagnostic data about
the current goal.
Since Lean 4 does not have an `Expr` constructor corresponding to delayed
metavariables, any delayed metavariables must be recursively handled by this
function to ensure that nested delayed metavariables can be properly processed.
The caveat is this recursive call will lead to infinite recursion if a loop
between metavariable assignment exists.
This function ensures any metavariable in the result is either
1. Delayed assigned with its pending mvar not assigned in any form
2. Not assigned (delay or not)
-/
partial def instantiateDelayedMVars (eOrig: Expr) : MetaM Expr := do
--let padding := String.join $ List.replicate level "│ "
--IO.println s!"{padding}Starting {toString eOrig}"
let mut result ← Meta.transform (← instantiateMVars eOrig)
(pre := fun e => e.withApp fun f args => do
let .mvar mvarId := f | return .continue
--IO.println s!"{padding}├V {e}"
let mvarDecl ← mvarId.getDecl
-- This is critical to maintaining the interdependency of metavariables.
-- Without setting `.syntheticOpaque`, Lean's metavariable elimination
-- system will not make the necessary delayed assigned mvars in case of
-- nested mvars.
mvarId.setKind .syntheticOpaque
let lctx ← MonadLCtx.getLCtx
if mvarDecl.lctx.any (λ decl => !lctx.contains decl.fvarId) then
let violations := mvarDecl.lctx.decls.foldl (λ acc decl? => match decl? with
| .some decl => if lctx.contains decl.fvarId then acc else acc ++ [decl.fvarId.name]
| .none => acc) []
panic! s!"Local context variable violation: {violations}"
if let .some assign ← getExprMVarAssignment? mvarId then
--IO.println s!"{padding}├A ?{mvarId.name}"
assert! !(← mvarId.isDelayedAssigned)
return .visit (mkAppN assign args)
else if let some { fvars, mvarIdPending } ← getDelayedMVarAssignment? mvarId then
--let substTableStr := String.intercalate ", " $ Array.zipWith fvars args (λ fvar assign => s!"{fvar.fvarId!.name} := {assign}") |>.toList
--IO.println s!"{padding}├MD ?{mvarId.name} := ?{mvarIdPending.name} [{substTableStr}]"
if args.size < fvars.size then
throwError "Not enough arguments to instantiate a delay assigned mvar. This is due to bad implementations of a tactic: {args.size} < {fvars.size}. Expr: {toString e}; Origin: {toString eOrig}"
--if !args.isEmpty then
--IO.println s!"{padding}├── Arguments Begin"
let args ← args.mapM self
--if !args.isEmpty then
--IO.println s!"{padding}├── Arguments End"
if !(← mvarIdPending.isAssignedOrDelayedAssigned) then
--IO.println s!"{padding}├T1"
let result := mkAppN f args
return .done result
let pending ← mvarIdPending.withContext do
let inner ← instantiateDelayedMVars (.mvar mvarIdPending) --(level := level + 1)
--IO.println s!"{padding}├Pre: {inner}"
pure <| (← inner.abstractM fvars).instantiateRev args
-- Tail arguments
let result := mkAppRange pending fvars.size args.size args
--IO.println s!"{padding}├MD {result}"
return .done result
else
assert! !(← mvarId.isAssigned)
assert! !(← mvarId.isDelayedAssigned)
--if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments Begin"
let args ← args.mapM self
--if !args.isEmpty then
-- IO.println s!"{padding}├── Arguments End"
--IO.println s!"{padding}├M ?{mvarId.name}"
return .done (mkAppN f args))
--IO.println s!"{padding}└Result {result}"
return result
where
self e := instantiateDelayedMVars e --(level := level + 1)
/--
Convert an expression to an equiavlent form with
1. No nested delayed assigned mvars
2. No aux lemmas
3. No assigned mvars
-/
@[export pantograph_instantiate_all_m]
def instantiateAll (e: Expr): MetaM Expr := do
let e ← instantiateDelayedMVars e
let e ← unfoldAuxLemmas e
return e
structure DelayedMVarInvocation where
mvarIdPending: MVarId
args: Array (FVarId × (Option Expr))
-- Extra arguments applied to the result of this substitution
tail: Array Expr
-- The pending mvar of any delayed assigned mvar must not be assigned in any way.
@[export pantograph_to_delayed_mvar_invocation_m]
def toDelayedMVarInvocation (e: Expr): MetaM (Option DelayedMVarInvocation) := do
let .mvar mvarId := e.getAppFn | return .none
let .some decl ← getDelayedMVarAssignment? mvarId | return .none
let mvarIdPending := decl.mvarIdPending
let mvarDecl ← mvarIdPending.getDecl
-- Print the function application e. See Lean's `withOverApp`
let args := e.getAppArgs
assert! args.size ≥ decl.fvars.size
assert! !(← mvarIdPending.isAssigned)
assert! !(← mvarIdPending.isDelayedAssigned)
let fvarArgMap: HashMap FVarId Expr := HashMap.ofList $ (decl.fvars.map (·.fvarId!) |>.zip args).toList
let subst ← mvarDecl.lctx.foldlM (init := []) λ acc localDecl => do
let fvarId := localDecl.fvarId
let a := fvarArgMap.find? fvarId
return acc ++ [(fvarId, a)]
assert! decl.fvars.all (λ fvar => mvarDecl.lctx.findFVar? fvar |>.isSome)
return .some {
mvarIdPending,
args := subst.toArray,
tail := args.toList.drop decl.fvars.size |>.toArray,
}
end Pantograph

View File

@ -4,13 +4,10 @@ Functions for handling metavariables
All the functions starting with `try` resume their inner monadic state.
-/
import Pantograph.Protocol
import Pantograph.Tactic
import Pantograph.Compile.Parse
import Lean
def Lean.MessageLog.getErrorMessages (log : MessageLog) : MessageLog :=
{
msgs := log.msgs.filter fun m => match m.severity with | MessageSeverity.error => true | _ => false
}
namespace Pantograph
open Lean
@ -25,78 +22,165 @@ structure GoalState where
-- The root hole which is the search target
root: MVarId
-- New metavariables acquired in this state
newMVars: SSet MVarId
-- Parent state metavariable source
parentMVar?: Option MVarId
-- Existence of this field shows that we are currently in `conv` mode.
convMVar?: Option (MVarId × MVarId) := .none
-- (convRhs, goal, dormant)
convMVar?: Option (MVarId × MVarId × List MVarId) := .none
-- Previous RHS for calc, so we don't have to repeat it every time
-- WARNING: If using `state with` outside of `calc`, this must be set to `.none`
calcPrevRhs?: Option Expr := .none
calcPrevRhs?: Option (MVarId × Expr) := .none
@[export pantograph_goal_state_create_m]
protected def GoalState.create (expr: Expr): Elab.TermElabM GoalState := do
-- May be necessary to immediately synthesise all metavariables if we need to leave the elaboration context.
-- See https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Unknown.20universe.20metavariable/near/360130070
--Elab.Term.synthesizeSyntheticMVarsNoPostponing
--let expr ← instantiateMVars expr
let goal ← Meta.mkFreshExprMVar expr (kind := MetavarKind.synthetic) (userName := .anonymous)
let root ← Meta.mkFreshExprMVar expr (kind := MetavarKind.synthetic) (userName := .anonymous)
let savedStateMonad: Elab.Tactic.TacticM Elab.Tactic.SavedState := MonadBacktrack.saveState
let root := goal.mvarId!
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [root]}
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [root.mvarId!]}
return {
root,
root := root.mvarId!,
savedState,
newMVars := SSet.insert .empty root,
parentMVar? := .none,
}
@[export pantograph_goal_state_is_conv]
protected def GoalState.isConv (state: GoalState): Bool :=
state.convMVar?.isSome
protected def GoalState.goals (state: GoalState): List MVarId :=
state.savedState.tactic.goals
@[export pantograph_goal_state_goals]
protected def GoalState.goalsArray (state: GoalState): Array MVarId := state.goals.toArray
protected def GoalState.mctx (state: GoalState): MetavarContext :=
state.savedState.term.meta.meta.mctx
protected def GoalState.env (state: GoalState): Environment :=
state.savedState.term.meta.core.env
@[export pantograph_goal_state_meta_context_of_goal]
protected def GoalState.metaContextOfGoal (state: GoalState) (mvarId: MVarId): Option Meta.Context := do
let mvarDecl ← state.mctx.findDecl? mvarId
return { lctx := mvarDecl.lctx, localInstances := mvarDecl.localInstances }
protected def GoalState.metaState (state: GoalState): Meta.State :=
state.savedState.term.meta.meta
protected def GoalState.withContext (state: GoalState) (mvarId: MVarId) (m: MetaM α): MetaM α := do
mvarId.withContext m |>.run' (← read) state.metaState
protected def GoalState.withParentContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.parentMVar?.get!
protected def GoalState.withRootContext { n } [MonadControlT MetaM n] [Monad n] (state: GoalState): n α → n α :=
Meta.mapMetaM <| state.withContext state.root
private def GoalState.mvars (state: GoalState): SSet MVarId :=
state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k
protected def GoalState.restoreMetaM (state: GoalState): MetaM Unit :=
state.savedState.term.meta.restore
private def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit :=
protected def GoalState.restoreElabM (state: GoalState): Elab.TermElabM Unit :=
state.savedState.term.restore
private def GoalState.restoreTacticM (state: GoalState) (goal: MVarId): Elab.Tactic.TacticM Unit := do
state.savedState.restore
Elab.Tactic.setGoals [goal]
private def newMVarSet (mctxOld: @&MetavarContext) (mctxNew: @&MetavarContext): SSet MVarId :=
mctxNew.decls.foldl (fun acc mvarId mvarDecl =>
if let .some prevMVarDecl := mctxOld.decls.find? mvarId then
assert! prevMVarDecl.type == mvarDecl.type
acc
else
acc.insert mvarId
) SSet.empty
@[export pantograph_goal_state_focus]
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId
return {
state with
savedState := {
state.savedState with
tactic := { goals := [goal] },
},
calcPrevRhs? := .none,
}
/-- Inner function for executing tactic on goal state -/
def executeTactic (state: Elab.Tactic.SavedState) (goal: MVarId) (tactic: Syntax) :
Elab.TermElabM (Except (Array String) Elab.Tactic.SavedState):= do
let tacticM (stx: Syntax): Elab.Tactic.TacticM (Except (Array String) Elab.Tactic.SavedState) := do
state.restore
Elab.Tactic.setGoals [goal]
try
Elab.Tactic.evalTactic stx
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map (·.data)).mapM fun md => md.toString
return .error errors
else
return .ok (← MonadBacktrack.saveState)
catch exception =>
return .error #[← exception.toMessageData.toString]
tacticM tactic { elaborator := .anonymous } |>.run' state.tactic
/-- Immediately bring all parent goals back into scope. Used in automatic mode -/
@[export pantograph_goal_state_immediate_resume_parent]
protected def GoalState.immediateResume (state: GoalState) (parent: GoalState): GoalState :=
-- Prune parents solved goals
let mctx := state.mctx
let parentGoals := parent.goals.filter $ λ goal => mctx.eAssignment.contains goal
{
state with
savedState := {
state.savedState with
tactic := { goals := state.goals ++ parentGoals },
},
}
/--
Brings into scope a list of goals
-/
@[export pantograph_goal_state_resume]
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState :=
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then
let invalid_goals := goals.filter (λ goal => ¬ state.mvars.contains goal) |>.map (·.name.toString)
.error s!"Goals {invalid_goals} are not in scope"
else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal =>
let mctx := state.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok {
state with
savedState := {
term := state.savedState.term,
tactic := { goals := unassigned },
},
}
/--
Brings into scope all goals from `branch`
-/
@[export pantograph_goal_state_continue]
protected def GoalState.continue (target: GoalState) (branch: GoalState): Except String GoalState :=
if !target.goals.isEmpty then
.error s!"Target state has unresolved goals"
else if target.root != branch.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {branch.root.name}"
else
target.resume (goals := branch.goals)
@[export pantograph_goal_state_root_expr]
protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
if expr.hasExprMVar then
-- Must not assert that the goal state is empty here. We could be in a branch goal.
--assert! ¬goalState.goals.isEmpty
.none
else
assert! goalState.goals.isEmpty
return expr
@[export pantograph_goal_state_parent_expr]
protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do
let parent ← goalState.parentMVar?
let expr := goalState.mctx.eAssignment.find! parent
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
@[export pantograph_goal_state_get_mvar_e_assignment]
protected def GoalState.getMVarEAssignment (goalState: GoalState) (mvarId: MVarId): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? mvarId
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
--- Tactic execution functions ---
protected def GoalState.step (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit)
: Elab.TermElabM GoalState := do
unless (← getMCtx).decls.contains goal do
throwError s!"Goal is not in context: {goal.name}"
goal.checkNotAssigned `GoalState.step
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
let nextElabState ← MonadBacktrack.saveState
return {
state with
savedState := { term := nextElabState, tactic := newGoals },
parentMVar? := .some goal,
calcPrevRhs? := .none,
}
/-- Response for executing a tactic -/
inductive TacticResult where
@ -106,19 +190,22 @@ inductive TacticResult where
| failure (messages: Array String)
-- Could not parse tactic
| parseError (message: String)
-- The goal index is out of bounds
| indexError (goalId: Nat)
-- The given action cannot be executed in the state
| invalidAction (message: String)
/-- Execute tactic on given state -/
protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: String):
/-- Executes a `TacticM` monads on this `GoalState`, collecting the errors as necessary -/
protected def GoalState.tryTacticM (state: GoalState) (goal: MVarId) (tacticM: Elab.Tactic.TacticM Unit):
Elab.TermElabM TacticResult := do
try
let nextState ← state.step goal tacticM
return .success nextState
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Execute a string tactic on given state. Restores TermElabM -/
protected def GoalState.tryTactic (state: GoalState) (goal: MVarId) (tactic: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure $ goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.tryTactic
let tactic ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := if state.isConv then `conv else `tactic)
@ -126,213 +213,68 @@ protected def GoalState.tryTactic (state: GoalState) (goalId: Nat) (tactic: Stri
(fileName := filename) with
| .ok stx => pure $ stx
| .error error => return .parseError error
match ← executeTactic (state := state.savedState) (goal := goal) (tactic := tactic) with
| .error errors =>
return .failure errors
| .ok nextSavedState =>
-- Assert that the definition of metavariables are the same
let nextMCtx := nextSavedState.term.meta.meta.mctx
let prevMCtx := state.mctx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
return .success {
state with
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
calcPrevRhs? := .none,
}
state.tryTacticM goal $ Elab.Tactic.evalTactic tactic
/-- Assumes elabM has already been restored. Assumes expr has already typechecked -/
protected def GoalState.assign (state: GoalState) (goal: MVarId) (expr: Expr):
Elab.TermElabM TacticResult := do
let goalType ← goal.getType
try
-- For some reason this is needed. One of the unit tests will fail if this isn't here
let error?: Option String ← goal.withContext do
let exprType ← Meta.inferType expr
if ← Meta.isDefEq goalType exprType then
pure .none
else do
return .some s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} != {← Meta.ppExpr goalType}"
if let .some error := error? then
return .parseError error
goal.checkNotAssigned `GoalState.assign
goal.assign expr
if (← getThe Core.State).messages.hasErrors then
let messages := (← getThe Core.State).messages.getErrorMessages |>.toList.toArray
let errors ← (messages.map (·.data)).mapM fun md => md.toString
return .failure errors
let prevMCtx := state.savedState.term.meta.meta.mctx
let nextMCtx ← getMCtx
-- Generate a list of mvarIds that exist in the parent state; Also test the
-- assertion that the types have not changed on any mvars.
let newMVars := newMVarSet prevMCtx nextMCtx
let nextGoals ← newMVars.toList.filterM (λ mvar => do pure !(← mvar.isAssigned))
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryAssign (state: GoalState) (goalId: Nat) (expr: String):
protected def GoalState.tryAssign (state: GoalState) (goal: MVarId) (expr: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let expr ← match Parser.runParserCategory
(env := state.env)
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := expr)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let goalType ← goal.getType
try
let expr ← goal.withContext $
Elab.Term.elabTermAndSynthesize (stx := expr) (expectedType? := .some goalType)
state.assign goal expr
catch exception =>
return .failure #[← exception.toMessageData.toString]
state.tryTacticM goal $ Tactic.evalAssign expr
-- Specialized Tactics
protected def GoalState.tryHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
protected def GoalState.tryLet (state: GoalState) (goal: MVarId) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let type ← match Parser.runParserCategory
(env := state.env)
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let fvar := mkFVar fvarId
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[fvar] 0 do
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
(← goal.getType) (kind := MetavarKind.synthetic) (userName := .anonymous)
let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
goal.assign expr
pure mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.tryLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let type ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
(input := type)
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let binderName := binderName.toName
try
-- Implemented similarly to the intro tactic
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
let upstreamType := .letE binderName type mvarBranch (← goal.getType) false
let mvarUpstream ← Meta.mkFreshExprMVarAt (← getLCtx) (← Meta.getLocalInstances)
upstreamType (kind := MetavarKind.synthetic) (userName := (← goal.getTag))
goal.assign mvarUpstream
pure [mvarBranch.mvarId!, mvarUpstream.mvarId!]
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals := nextGoals }
},
newMVars := nextGoals.toSSet,
parentMVar? := .some goal,
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
state.tryTacticM goal $ Tactic.evalLet binderName.toName type
/-- Enter conv tactic mode -/
protected def GoalState.conv (state: GoalState) (goalId: Nat):
protected def GoalState.conv (state: GoalState) (goal: MVarId):
Elab.TermElabM TacticResult := do
if state.convMVar?.isSome then
return .invalidAction "Already in conv state"
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
goal.checkNotAssigned `GoalState.conv
let tacticM : Elab.Tactic.TacticM (Elab.Tactic.SavedState × MVarId) := do
state.restoreTacticM goal
-- See Lean.Elab.Tactic.Conv.convTarget
let convMVar ← Elab.Tactic.withMainContext do
let (rhs, newGoal) ← Elab.Tactic.Conv.mkConvGoalFor (← Elab.Tactic.getMainTarget)
Elab.Tactic.setGoals [newGoal.mvarId!]
Elab.Tactic.replaceMainGoal [newGoal.mvarId!]
pure rhs.mvarId!
return (← MonadBacktrack.saveState, convMVar)
try
let (nextSavedState, convRhs) ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let prevMCtx := state.mctx
let nextMCtx := nextSavedState.term.meta.meta.mctx
-- Other goals are now dormant
let otherGoals := state.goals.filter $ λ g => g != goal
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some goal,
convMVar? := .some (convRhs, goal),
convMVar? := .some (convRhs, goal, otherGoals),
calcPrevRhs? := .none
}
catch exception =>
return .failure #[← exception.toMessageData.toString]
/-- Exit from `conv` mode. Resumes all goals before the mode starts and applys the conv -/
@[export pantograph_goal_state_conv_exit_m]
protected def GoalState.convExit (state: GoalState):
Elab.TermElabM TacticResult := do
let (convRhs, convGoal) ← match state.convMVar? with
let (convRhs, convGoal, _) ← match state.convMVar? with
| .some mvar => pure mvar
| .none => return .invalidAction "Not in conv state"
let tacticM : Elab.Tactic.TacticM Elab.Tactic.SavedState:= do
@ -355,12 +297,9 @@ protected def GoalState.convExit (state: GoalState):
MonadBacktrack.saveState
try
let nextSavedState ← tacticM { elaborator := .anonymous } |>.run' state.savedState.tactic
let nextMCtx := nextSavedState.term.meta.meta.mctx
let prevMCtx := state.savedState.term.meta.meta.mctx
return .success {
root := state.root,
savedState := nextSavedState
newMVars := newMVarSet prevMCtx nextMCtx,
parentMVar? := .some convGoal,
convMVar? := .none
calcPrevRhs? := .none
@ -368,19 +307,18 @@ protected def GoalState.convExit (state: GoalState):
catch exception =>
return .failure #[← exception.toMessageData.toString]
protected def GoalState.calcPrevRhsOf? (state: GoalState) (goalId: Nat) :=
if goalId == 1 then
state.calcPrevRhs?
protected def GoalState.calcPrevRhsOf? (state: GoalState) (goal: MVarId): Option Expr := do
let (mvarId, rhs) ← state.calcPrevRhs?
if mvarId == goal then
.some rhs
else
.none
protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
@[export pantograph_goal_state_try_calc_m]
protected def GoalState.tryCalc (state: GoalState) (goal: MVarId) (pred: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
if state.convMVar?.isSome then
return .invalidAction "Cannot initiate `calc` while in `conv` state"
let goal ← match state.savedState.tactic.goals.get? goalId with
| .some goal => pure goal
| .none => return .indexError goalId
let `(term|$pred) ← match Parser.runParserCategory
(env := state.env)
(catName := `term)
@ -388,9 +326,11 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
(fileName := filename) with
| .ok syn => pure syn
| .error error => return .parseError error
let calcPrevRhs? := state.calcPrevRhsOf? goalId
let target ← instantiateMVars (← goal.getDecl).type
let tag := (← goal.getDecl).userName
goal.checkNotAssigned `GoalState.tryCalc
let calcPrevRhs? := state.calcPrevRhsOf? goal
let decl ← goal.getDecl
let target ← instantiateMVars decl.type
let tag := decl.userName
try
goal.withContext do
@ -414,9 +354,8 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
(userName := tag ++ `calc)
let mvarBranch := proof.mvarId!
let calcPrevRhs? := Option.some rhs
let mut proofType ← Meta.inferType proof
let mut remainder := Option.none
let mut remainder? := Option.none
-- The calc tactic either solves the main goal or leaves another relation.
-- Replace the main goal, and save the new goal if necessary
@ -429,17 +368,17 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
let lastStepGoal ← Meta.mkFreshExprSyntheticOpaqueMVar lastStep tag
(proof, proofType) ← Elab.Term.mkCalcTrans proof proofType lastStepGoal lastStep
unless ← Meta.isDefEq proofType target do throwFailed
remainder := .some lastStepGoal.mvarId!
remainder? := .some lastStepGoal.mvarId!
goal.assign proof
let goals := [ mvarBranch ] ++ remainder.toList
let goals := [ mvarBranch ] ++ remainder?.toList
let calcPrevRhs? := remainder?.map $ λ g => (g, rhs)
return .success {
root := state.root,
savedState := {
term := ← MonadBacktrack.saveState,
tactic := { goals },
},
newMVars := goals.toSSet,
parentMVar? := .some goal,
calcPrevRhs?
}
@ -447,66 +386,19 @@ protected def GoalState.tryCalc (state: GoalState) (goalId: Nat) (pred: String):
return .failure #[← exception.toMessageData.toString]
protected def GoalState.focus (state: GoalState) (goalId: Nat): Option GoalState := do
let goal ← state.savedState.tactic.goals.get? goalId
return {
state with
savedState := {
state.savedState with
tactic := { goals := [goal] },
},
calcPrevRhs? := .none,
}
/--
Brings into scope a list of goals
-/
protected def GoalState.resume (state: GoalState) (goals: List MVarId): Except String GoalState :=
if ¬ (goals.all (λ goal => state.mvars.contains goal)) then
.error s!"Goals not in scope"
else
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
let unassigned := goals.filter (λ goal =>
let mctx := state.mctx
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
.ok {
state with
savedState := {
term := state.savedState.term,
tactic := { goals := unassigned },
},
calcPrevRhs? := .none,
}
/--
Brings into scope all goals from `branch`
-/
protected def GoalState.continue (target: GoalState) (branch: GoalState): Except String GoalState :=
if !target.goals.isEmpty then
.error s!"Target state has unresolved goals"
else if target.root != branch.root then
.error s!"Roots of two continued goal states do not match: {target.root.name} != {branch.root.name}"
else
target.resume (goals := branch.goals)
protected def GoalState.rootExpr? (goalState: GoalState): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? goalState.root
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
if expr.hasMVar then
-- Must not assert that the goal state is empty here. We could be in a branch goal.
--assert! ¬goalState.goals.isEmpty
.none
else
assert! goalState.goals.isEmpty
return expr
protected def GoalState.parentExpr? (goalState: GoalState): Option Expr := do
let parent ← goalState.parentMVar?
let expr := goalState.mctx.eAssignment.find! parent
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
protected def GoalState.assignedExprOf? (goalState: GoalState) (mvar: MVarId): Option Expr := do
let expr ← goalState.mctx.eAssignment.find? mvar
let (expr, _) := instantiateMVarsCore (mctx := goalState.mctx) (e := expr)
return expr
protected def GoalState.tryMotivatedApply (state: GoalState) (goal: MVarId) (recursor: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let recursor ← match (← Compile.parseTermM recursor) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal (tacticM := Tactic.evalMotivatedApply recursor)
protected def GoalState.tryNoConfuse (state: GoalState) (goal: MVarId) (eq: String):
Elab.TermElabM TacticResult := do
state.restoreElabM
let eq ← match (← Compile.parseTermM eq) with
| .ok syn => pure syn
| .error error => return .parseError error
state.tryTacticM goal (tacticM := Tactic.evalNoConfuse eq)
end Pantograph

View File

@ -1,3 +1,4 @@
import Pantograph.Condensed
import Pantograph.Environment
import Pantograph.Goal
import Pantograph.Protocol
@ -38,13 +39,10 @@ open Lean
namespace Pantograph
def defaultTermElabMContext: Elab.Term.Context := {
errToSorry := false
}
def runMetaM { α } (metaM: MetaM α): CoreM α :=
metaM.run'
def runTermElabM { α } (termElabM: Elab.TermElabM α): CoreM α :=
termElabM.run' (ctx := defaultTermElabMContext) |>.run'
termElabM.run' (ctx := Condensed.elabContext) |>.run'
def errorI (type desc: String): Protocol.InteractionError := { error := type, desc := desc }
@ -78,22 +76,12 @@ def createCoreState (imports: Array String): IO Core.State := do
(trustLevel := 1)
return { env := env }
@[export pantograph_env_catalog_m]
def envCatalog: CoreM Protocol.EnvCatalogResult :=
Environment.catalog ({}: Protocol.EnvCatalog)
@[export pantograph_env_inspect_m]
def envInspect (name: String) (value: Bool) (dependency: Bool) (options: @&Protocol.Options):
CoreM (Protocol.CR Protocol.EnvInspectResult) :=
Environment.inspect ({
name, value? := .some value, dependency?:= .some dependency
}: Protocol.EnvInspect) options
@[export pantograph_env_add_m]
def envAdd (name: String) (type: String) (value: String) (isTheorem: Bool):
CoreM (Protocol.CR Protocol.EnvAddResult) :=
Environment.addDecl { name, type, value, isTheorem }
@[export pantograph_parse_elab_type_m]
def parseElabType (type: String): Elab.TermElabM (Protocol.CR Expr) := do
let env ← MonadEnv.getEnv
let syn ← match parseTerm env type with
@ -104,6 +92,7 @@ def parseElabType (type: String): Elab.TermElabM (Protocol.CR Expr) := do
| .ok expr => return .ok (← instantiateMVars expr)
/-- This must be a TermElabM since the parsed expr contains extra information -/
@[export pantograph_parse_elab_expr_m]
def parseElabExpr (expr: String) (expectedType?: Option String := .none): Elab.TermElabM (Protocol.CR Expr) := do
let env ← MonadEnv.getEnv
let expectedType? ← match ← expectedType?.mapM parseElabType with
@ -141,45 +130,10 @@ def goalStartExpr (expr: String) (levels: Array String): CoreM (Protocol.CR Goal
| .ok expr => pure $ expr
return .ok $ ← GoalState.create expr
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goalId: Nat) (tactic: String): CoreM TacticResult :=
runTermElabM <| state.tryTactic goalId tactic
@[export pantograph_goal_assign_m]
def goalAssign (state: GoalState) (goalId: Nat) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goalId expr
@[export pantograph_goal_have_m]
def goalHave (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryHave goalId binderName type
@[export pantograph_goal_let_m]
def goalLet (state: GoalState) (goalId: Nat) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryLet goalId binderName type
@[export pantograph_goal_conv_m]
def goalConv (state: GoalState) (goalId: Nat): CoreM TacticResult :=
runTermElabM <| state.conv goalId
@[export pantograph_goal_conv_exit_m]
def goalConvExit (state: GoalState): CoreM TacticResult :=
runTermElabM <| state.convExit
@[export pantograph_goal_calc_m]
def goalCalc (state: GoalState) (goalId: Nat) (pred: String): CoreM TacticResult :=
runTermElabM <| state.tryCalc goalId pred
@[export pantograph_goal_focus]
def goalFocus (state: GoalState) (goalId: Nat): Option GoalState :=
state.focus goalId
@[export pantograph_goal_resume]
def goalResume (target: GoalState) (goals: Array String): Except String GoalState :=
target.resume (goals.map (λ n => { name := n.toName }) |>.toList)
@[export pantograph_goal_continue]
def goalContinue (target: GoalState) (branch: GoalState): Except String GoalState :=
target.continue branch
@[export pantograph_goal_serialize_m]
def goalSerialize (state: GoalState) (options: @&Protocol.Options): CoreM (Array Protocol.Goal) :=
runMetaM <| state.serializeGoals (parent := .none) options
@ -189,11 +143,47 @@ def goalPrint (state: GoalState) (options: @&Protocol.Options): CoreM Protocol.G
runMetaM do
state.restoreMetaM
return {
root? := ← state.rootExpr?.mapM (λ expr => do
serializeExpression options (← unfoldAuxLemmas expr)),
parent? := ← state.parentExpr?.mapM (λ expr => do
serializeExpression options (← unfoldAuxLemmas expr)),
root? := ← state.rootExpr?.mapM (λ expr =>
state.withRootContext do
serializeExpression options (← instantiateAll expr)),
parent? := ← state.parentExpr?.mapM (λ expr =>
state.withParentContext do
serializeExpression options (← instantiateAll expr)),
}
@[export pantograph_goal_tactic_m]
def goalTactic (state: GoalState) (goal: MVarId) (tactic: String): CoreM TacticResult :=
runTermElabM <| state.tryTactic goal tactic
@[export pantograph_goal_assign_m]
def goalAssign (state: GoalState) (goal: MVarId) (expr: String): CoreM TacticResult :=
runTermElabM <| state.tryAssign goal expr
@[export pantograph_goal_have_m]
protected def GoalState.tryHave (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult := do
let type ← match (← Compile.parseTermM type) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goal $ Tactic.evalHave binderName.toName type
@[export pantograph_goal_try_define_m]
protected def GoalState.tryDefine (state: GoalState) (goal: MVarId) (binderName: String) (expr: String): CoreM TacticResult := do
let expr ← match (← Compile.parseTermM expr) with
| .ok syn => pure syn
| .error error => return .parseError error
runTermElabM do
state.restoreElabM
state.tryTacticM goal (Tactic.evalDefine binderName.toName expr)
@[export pantograph_goal_let_m]
def goalLet (state: GoalState) (goal: MVarId) (binderName: String) (type: String): CoreM TacticResult :=
runTermElabM <| state.tryLet goal binderName type
@[export pantograph_goal_conv_m]
def goalConv (state: GoalState) (goal: MVarId): CoreM TacticResult :=
runTermElabM <| state.conv goal
@[export pantograph_goal_conv_exit_m]
def goalConvExit (state: GoalState): CoreM TacticResult :=
runTermElabM <| state.convExit
@[export pantograph_goal_calc_m]
def goalCalc (state: GoalState) (goal: MVarId) (pred: String): CoreM TacticResult :=
runTermElabM <| state.tryCalc goal pred
end Pantograph

View File

@ -27,6 +27,8 @@ structure Options where
printAuxDecls: Bool := false
-- See `pp.implementationDetailHyps`
printImplementationDetailHyps: Bool := false
-- If this is set to `true`, goals will never go dormant, so you don't have to manage resumption
automaticMode: Bool := true
deriving Lean.ToJson
abbrev OptionsT := ReaderT Options
@ -51,7 +53,7 @@ structure Variable where
/-- The name displayed to the user -/
userName: String
/-- Does the name contain a dagger -/
isInaccessible?: Option Bool := .none
isInaccessible: Bool := false
type?: Option Expression := .none
value?: Option Expression := .none
deriving Lean.ToJson
@ -190,12 +192,12 @@ structure OptionsSet where
noRepeat?: Option Bool
printAuxDecls?: Option Bool
printImplementationDetailHyps?: Option Bool
automaticMode?: Option Bool
deriving Lean.FromJson
structure OptionsSetResult where
deriving Lean.ToJson
structure OptionsPrint where
deriving Lean.FromJson
abbrev OptionsPrintResult := Options
structure GoalStart where
-- Only one of the fields below may be populated.
@ -278,6 +280,26 @@ structure GoalDiag where
-- Print all mvars
printAll: Bool := false
instantiate: Bool := true
printSexp: Bool := false
/-- Executes the Lean compiler on a single file -/
structure CompileUnit where
module: String
-- If set to true, query the string boundaries of compilation units
compilationUnits: Bool := false
-- If set to true, collect tactic invocations
invocations: Bool := false
deriving Lean.FromJson
structure InvokedTactic where
goalBefore: String
goalAfter: String
tactic: String
deriving Lean.ToJson
structure CompileUnitResult where
units?: Option $ List (Nat × Nat)
invocations?: Option $ List InvokedTactic
deriving Lean.ToJson
abbrev CR α := Except InteractionError α

View File

@ -4,21 +4,17 @@ This replicates the behaviour of `Scope`s in `Lean/Elab/Command.lean` without
using `Scope`s.
-/
import Lean
import Pantograph.Protocol
import Pantograph.Condensed
import Pantograph.Expr
import Pantograph.Goal
import Pantograph.Protocol
open Lean
-- Symbol processing functions --
def Lean.Name.isAuxLemma (n : Lean.Name) : Bool := n matches .num (.str _ "_auxLemma") _
namespace Pantograph
/-- Unfold all lemmas created by `Lean.Meta.mkAuxLemma`. These end in `_auxLemma.nn` where `nn` is a number. -/
def unfoldAuxLemmas (e : Expr) : CoreM Expr := do
Lean.Meta.deltaExpand e Lean.Name.isAuxLemma
--- Input Functions ---
@ -86,6 +82,7 @@ partial def serializeSortLevel (level: Level) (sanitize: Bool): String :=
| _, .zero => s!"{k}"
| _, _ => s!"(+ {u_str} {k})"
/--
Completely serializes an expression tree. Json not used due to compactness
@ -94,7 +91,28 @@ A `_` symbol in the AST indicates automatic deductions not present in the origin
partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM String := do
self expr
where
self (e: Expr): MetaM String :=
delayedMVarToSexp (e: Expr): MetaM (Option String) := do
let .some invocation ← toDelayedMVarInvocation e | return .none
let callee ← self $ .mvar invocation.mvarIdPending
let sites ← invocation.args.mapM (λ (fvarId, arg) => do
let arg := match arg with
| .some arg => arg
| .none => .fvar fvarId
self arg
)
let tailArgs ← invocation.tail.mapM self
let sites := " ".intercalate sites.toList
let result := if tailArgs.isEmpty then
s!"(:subst {callee} {sites})"
else
let tailArgs := " ".intercalate tailArgs.toList
s!"((:subst {callee} {sites}) {tailArgs})"
return .some result
self (e: Expr): MetaM String := do
if let .some result ← delayedMVarToSexp e then
return result
match e with
| .bvar deBruijnIndex =>
-- This is very common so the index alone is shown. Literals are handled below.
@ -104,9 +122,10 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
| .fvar fvarId =>
let name := ofName fvarId.name
pure s!"(:fv {name})"
| .mvar mvarId =>
let name := ofName mvarId.name
pure s!"(:mv {name})"
| .mvar mvarId => do
let pref := if ← mvarId.isDelayedAssigned then "mvd" else "mv"
let name := ofName mvarId.name
pure s!"(:{pref} {name})"
| .sort level =>
let level := serializeSortLevel level sanitize
pure s!"(:sort {level})"
@ -149,15 +168,12 @@ partial def serializeExpressionSexp (expr: Expr) (sanitize: Bool := true): MetaM
-- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter
-- It may become necessary to incorporate the metadata.
self inner
| .proj typeName idx inner => do
| .proj _ _ _ => do
let env ← getEnv
let ctor := getStructureCtor env typeName
let fieldName := getStructureFields env typeName |>.get! idx
let projectorName := getProjFnForField? env typeName fieldName |>.get!
let autos := String.intercalate " " (List.replicate ctor.numParams "_")
let inner ← self inner
pure s!"((:c {projectorName}) {autos} {inner})"
let projApp := exprProjToApp env e
let autos := String.intercalate " " (List.replicate projApp.numParams "_")
let inner ← self projApp.inner
pure s!"((:c {projApp.projector}) {autos} {inner})"
-- Elides all unhygenic names
binderInfoSexp : Lean.BinderInfo → String
| .default => ""
@ -182,8 +198,9 @@ def serializeExpression (options: @&Protocol.Options) (e: Expr): MetaM Protocol.
dependentMVars?,
}
/-- Adapted from ppGoal -/
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl)
def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: MetavarDecl) (parentDecl?: Option MetavarDecl := .none)
: MetaM Protocol.Goal := do
-- Options for printing; See Meta.ppGoal for details
let showLetValues := true
@ -195,39 +212,40 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
let ppVarNameOnly (localDecl: LocalDecl): MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName _ _ _ =>
let userName := userName.simpMacroScopes
return {
name := ofName fvarId.name,
userName:= ofName userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
| .ldecl _ fvarId userName _ _ _ _ => do
return {
name := ofName fvarId.name,
userName := toString userName.simpMacroScopes,
isInaccessible := userName.isInaccessibleUserName
}
let ppVar (localDecl : LocalDecl) : MetaM Protocol.Variable := do
match localDecl with
| .cdecl _ fvarId userName type _ _ =>
let userName := userName.simpMacroScopes
let type ← instantiateMVars type
let type ← instantiate type
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
}
| .ldecl _ fvarId userName type val _ _ => do
let userName := userName.simpMacroScopes
let type ← instantiateMVars type
let type ← instantiate type
let value? ← if showLetValues then
let val ← instantiateMVars val
let val ← instantiate val
pure $ .some (← serializeExpression options val)
else
pure $ .none
return {
name := ofName fvarId.name,
userName:= ofName userName,
isInaccessible? := .some userName.isInaccessibleUserName
isInaccessible := userName.isInaccessibleUserName
type? := .some (← serializeExpression options type)
value? := value?
}
@ -247,10 +265,11 @@ def serializeGoal (options: @&Protocol.Options) (goal: MVarId) (mvarDecl: Metava
name := ofName goal.name,
userName? := if mvarDecl.userName == .anonymous then .none else .some (ofName mvarDecl.userName),
isConversion := isLHSGoal? mvarDecl.type |>.isSome,
target := (← serializeExpression options (← instantiateMVars mvarDecl.type)),
target := (← serializeExpression options (← instantiate mvarDecl.type)),
vars := vars.reverse.toArray
}
where
instantiate := instantiateAll
ofName (n: Name) := serializeName n (sanitize := false)
protected def GoalState.serializeGoals
@ -269,53 +288,68 @@ protected def GoalState.serializeGoals
| .none => throwError s!"Metavariable does not exist in context {goal.name}"
/-- Print the metavariables in a readable format -/
protected def GoalState.diag (goalState: GoalState) (options: Protocol.GoalDiag := {}): MetaM Unit := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => IO.println s!">{root.name}: ??"
goals.forM (fun mvarId => do
if mvarId != root then
@[export pantograph_goal_state_diag_m]
protected def GoalState.diag (goalState: GoalState) (parent?: Option GoalState := .none) (options: Protocol.GoalDiag := {}): CoreM String := do
let metaM: MetaM String := do
goalState.restoreMetaM
let savedState := goalState.savedState
let goals := savedState.tactic.goals
let mctx ← getMCtx
let root := goalState.root
-- Print the root
let result: String ← match mctx.decls.find? root with
| .some decl => printMVar ">" root decl
| .none => pure s!">{root.name}: ??"
let resultGoals ← goals.filter (· != root) |>.mapM (fun mvarId =>
match mctx.decls.find? mvarId with
| .some decl => printMVar "⊢" mvarId decl
| .none => IO.println s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
mctx.decls.forM (fun mvarId decl => do
if goals.contains mvarId || mvarId == root then
pure ()
-- Print the remainig ones that users don't see in Lean
else if options.printAll then
let pref := if goalState.newMVars.contains mvarId then "~" else " "
printMVar pref mvarId decl
else
pure ()
--IO.println s!" {mvarId.name}{userNameToString decl.userName}"
)
| .none => pure s!"⊢{mvarId.name}: ??"
)
let goals := goals.toSSet
let resultOthers ← mctx.decls.toList.filter (λ (mvarId, _) =>
!(goals.contains mvarId || mvarId == root) && options.printAll)
|>.mapM (fun (mvarId, decl) => do
let pref := if parentHasMVar mvarId then " " else "~"
printMVar pref mvarId decl
)
pure $ result ++ "\n" ++ (resultGoals.map (· ++ "\n") |> String.join) ++ (resultOthers.map (· ++ "\n") |> String.join)
metaM.run' {}
where
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): MetaM Unit := do
if options.printContext then
decl.lctx.fvarIdToDecl.forM printFVar
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): MetaM String := mvarId.withContext do
let resultFVars: List String ←
if options.printContext then
decl.lctx.fvarIdToDecl.toList.mapM (λ (fvarId, decl) =>
do pure $ (← printFVar fvarId decl) ++ "\n")
else
pure []
let type ← if options.instantiate
then instantiateMVars decl.type
then instantiateAll decl.type
else pure $ decl.type
let type_sexp ← serializeExpressionSexp type (sanitize := false)
IO.println s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type} {type_sexp}"
if options.printValue then
if let Option.some value := (← getMCtx).eAssignment.find? mvarId then
let value ← if options.instantiate
then instantiateMVars value
else pure $ value
IO.println s!" := {← Meta.ppExpr value}"
printFVar (fvarId: FVarId) (decl: LocalDecl): MetaM Unit := do
IO.println s!" | {fvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}"
let type_sexp ← if options.printSexp then
let sexp ← serializeExpressionSexp type (sanitize := false)
pure <| " " ++ sexp
else
pure ""
let resultMain: String := s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}{type_sexp}"
let resultValue: String ←
if options.printValue then
if let .some value ← getExprMVarAssignment? mvarId then
let value ← if options.instantiate
then instantiateAll value
else pure $ value
pure s!"\n := {← Meta.ppExpr value}"
else if let .some { mvarIdPending, .. } ← getDelayedMVarAssignment? mvarId then
pure s!"\n ::= {mvarIdPending.name}"
else
pure ""
else
pure ""
pure $ (String.join resultFVars) ++ resultMain ++ resultValue
printFVar (fvarId: FVarId) (decl: LocalDecl): MetaM String := do
pure s!" | {fvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type}"
userNameToString : Name → String
| .anonymous => ""
| other => s!"[{other}]"
parentHasMVar (mvarId: MVarId): Bool := parent?.map (λ state => state.mctx.decls.contains mvarId) |>.getD true
end Pantograph

5
Pantograph/Tactic.lean Normal file
View File

@ -0,0 +1,5 @@
import Pantograph.Tactic.Assign
import Pantograph.Tactic.Congruence
import Pantograph.Tactic.MotivatedApply
import Pantograph.Tactic.NoConfuse
import Pantograph.Tactic.Prograde

View File

@ -0,0 +1,31 @@
import Lean
open Lean
namespace Pantograph.Tactic
/-- WARNING: This should be used with a function like `elabTermWithHoles` that properly collects the mvar information from `expr`. -/
def assign (goal: MVarId) (expr: Expr) (nextGoals: List MVarId): MetaM (List MVarId) := do
goal.checkNotAssigned `Pantograph.Tactic.assign
-- This run of the unifier is critical in resolving mvars in passing
let exprType ← Meta.inferType expr
let goalType ← goal.getType
unless ← Meta.isDefEq goalType exprType do
throwError s!"{← Meta.ppExpr expr} : {← Meta.ppExpr exprType} ≠ {← Meta.ppExpr goalType}"
goal.assign expr
nextGoals.filterM (not <$> ·.isAssigned)
def evalAssign : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let target ← Elab.Tactic.getMainTarget
let goal ← Elab.Tactic.getMainGoal
goal.checkNotAssigned `Pantograph.Tactic.evalAssign
let (expr, nextGoals) ← Elab.Tactic.elabTermWithHoles stx
(expectedType? := .some target)
(tagSuffix := .anonymous )
(allowNaturalHoles := true)
goal.assign expr
Elab.Tactic.replaceMainGoal nextGoals
end Pantograph.Tactic

View File

@ -0,0 +1,98 @@
import Lean
open Lean
namespace Pantograph.Tactic
def congruenceArg (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceArg
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let f ← Meta.mkFreshExprMVar (.some <| .forallE .anonymous α β .default)
.synthetic (userName := userName ++ `f)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f a₁) (.app f a₂)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrArg f h)
let result := [α, a₁, a₂, f, h, conduit]
return result.map (·.mvarId!)
def evalCongruenceArg: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceArg goal
Elab.Tactic.replaceMainGoal nextGoals
def congruenceFun (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruenceFun
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a)
let h ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a) (.app f₂ a)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongrFun h a)
let result := [α, f₁, f₂, h, a, conduit]
return result.map (·.mvarId!)
def evalCongruenceFun: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruenceFun goal
Elab.Tactic.replaceMainGoal nextGoals
def congruence (mvarId: MVarId): MetaM (List MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.congruence
let target ← mvarId.getType
let .some (β, _, _) := (← instantiateMVars target).eq? | throwError "Goal is not an Eq"
let userName := (← mvarId.getDecl).userName
let u ← Meta.mkFreshLevelMVar
let α ← Meta.mkFreshExprMVar (.some $ mkSort u)
.natural (userName := userName ++ `α)
let fType := .forallE .anonymous α β .default
let f₁ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₁)
let f₂ ← Meta.mkFreshExprMVar (.some fType)
.synthetic (userName := userName ++ `f₂)
let a₁ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₁)
let a₂ ← Meta.mkFreshExprMVar (.some α)
.synthetic (userName := userName ++ `a₂)
let h₁ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq f₁ f₂)
.synthetic (userName := userName ++ `h₁)
let h₂ ← Meta.mkFreshExprMVar (.some $ ← Meta.mkEq a₁ a₂)
.synthetic (userName := userName ++ `h₂)
let conduitType ← Meta.mkEq (← Meta.mkEq (.app f₁ a₁) (.app f₂ a₂)) target
let conduit ← Meta.mkFreshExprMVar conduitType
.synthetic (userName := userName ++ `conduit)
mvarId.assign $ ← Meta.mkEqMP conduit (← Meta.mkCongr h₁ h₂)
let result := [α, f₁, f₂, a₁, a₂, h₁, h₂, conduit]
return result.map (·.mvarId!)
def evalCongruence: Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals ← congruence goal
Elab.Tactic.replaceMainGoal nextGoals
end Pantograph.Tactic

View File

@ -0,0 +1,105 @@
import Lean
open Lean
namespace Pantograph.Tactic
def getForallArgsBody: Expr → List Expr × Expr
| .forallE _ d b _ =>
let (innerArgs, innerBody) := getForallArgsBody b
(d :: innerArgs, innerBody)
| e => ([], e)
def replaceForallBody: Expr → Expr → Expr
| .forallE param domain body binderInfo, target =>
let body := replaceForallBody body target
.forallE param domain body binderInfo
| _, target => target
structure RecursorWithMotive where
args: List Expr
body: Expr
-- .bvar index for the motive and major from the body
iMotive: Nat
namespace RecursorWithMotive
protected def nArgs (info: RecursorWithMotive): Nat := info.args.length
protected def getMotiveType (info: RecursorWithMotive): Expr :=
let level := info.nArgs - info.iMotive - 1
let a := info.args.get! level
a
protected def surrogateMotiveType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveType := Expr.instantiateRev info.getMotiveType mvars
let resultantType ← Meta.inferType resultant
return replaceForallBody motiveType resultantType
protected def conduitType (info: RecursorWithMotive) (mvars: Array Expr) (resultant: Expr): MetaM Expr := do
let motiveCall := Expr.instantiateRev info.body mvars
Meta.mkEq motiveCall resultant
end RecursorWithMotive
def getRecursorInformation (recursorType: Expr): Option RecursorWithMotive := do
let (args, body) := getForallArgsBody recursorType
if ¬ body.isApp then
.none
let iMotive ← match body.getAppFn with
| .bvar iMotive => pure iMotive
| _ => .none
return {
args,
body,
iMotive,
}
def collectMotiveArguments (forallBody: Expr): SSet Nat :=
match forallBody with
| .app (.bvar i) _ => SSet.empty.insert i
| _ => SSet.empty
/-- Applies a symbol of the type `∀ (motive: α → Sort u) (a: α)..., (motive α)` -/
def motivatedApply (mvarId: MVarId) (recursor: Expr) : MetaM (Array Meta.InductionSubgoal) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.motivatedApply
let recursorType ← Meta.inferType recursor
let resultant ← mvarId.getType
let info ← match getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Recursor return type does not correspond with the invocation of a motive: {← Meta.ppExpr recursorType}"
let rec go (i: Nat) (prev: Array Expr): MetaM (Array Expr) := do
if i ≥ info.nArgs then
return prev
else
let argType := info.args.get! i
-- If `argType` has motive references, its goal needs to be placed in it
let argType := argType.instantiateRev prev
let bvarIndex := info.nArgs - i - 1
let argGoal ← if bvarIndex = info.iMotive then
let surrogateMotiveType ← info.surrogateMotiveType prev resultant
Meta.mkFreshExprMVar surrogateMotiveType .syntheticOpaque (userName := `motive)
else
Meta.mkFreshExprMVar argType .syntheticOpaque (userName := .anonymous)
let prev := prev ++ [argGoal]
go (i + 1) prev
termination_by info.nArgs - i
let mut newMVars ← go 0 #[]
-- Create the conduit type which proves the result of the motive is equal to the goal
let conduitType ← info.conduitType newMVars resultant
let goalConduit ← Meta.mkFreshExprMVar conduitType .natural (userName := `conduit)
mvarId.assign $ ← Meta.mkEqMP goalConduit (mkAppN recursor newMVars)
newMVars := newMVars ++ [goalConduit]
return newMVars.map (λ mvar => { mvarId := mvar.mvarId!})
def evalMotivatedApply : Elab.Tactic.Tactic := fun stx => Elab.Tactic.withMainContext do
let recursor ← Elab.Term.elabTerm (stx := stx) .none
let nextGoals ← motivatedApply (← Elab.Tactic.getMainGoal) recursor
Elab.Tactic.replaceMainGoal $ nextGoals.toList.map (·.mvarId)
end Pantograph.Tactic

View File

@ -0,0 +1,22 @@
import Lean
open Lean
namespace Pantograph.Tactic
def noConfuse (mvarId: MVarId) (h: Expr): MetaM Unit := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.noConfuse
let target ← mvarId.getType
let noConfusion ← Meta.mkNoConfusion (target := target) (h := h)
unless ← Meta.isDefEq (← Meta.inferType noConfusion) target do
throwError "invalid noConfuse call: The resultant type {← Meta.ppExpr $ ← Meta.inferType noConfusion} cannot be unified with {← Meta.ppExpr target}"
mvarId.assign noConfusion
def evalNoConfuse: Elab.Tactic.Tactic := λ stx => do
let goal ← Elab.Tactic.getMainGoal
let h ← goal.withContext $ Elab.Term.elabTerm (stx := stx) .none
noConfuse goal h
Elab.Tactic.replaceMainGoal []
end Pantograph.Tactic

View File

@ -0,0 +1,88 @@
/- Prograde (forward) reasoning tactics -/
import Lean
open Lean
namespace Pantograph.Tactic
private def mkUpstreamMVar (goal: MVarId) : MetaM Expr := do
Meta.mkFreshExprSyntheticOpaqueMVar (← goal.getType) (tag := ← goal.getTag)
/-- Introduces a fvar to the current mvar -/
def define (mvarId: MVarId) (binderName: Name) (expr: Expr): MetaM (FVarId × MVarId) := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.define
let type ← Meta.inferType expr
Meta.withLetDecl binderName type expr λ fvar => do
let mvarUpstream ← mkUpstreamMVar mvarId
mvarId.assign $ ← Meta.mkLetFVars #[fvar] mvarUpstream
pure (fvar.fvarId!, mvarUpstream.mvarId!)
def evalDefine (binderName: Name) (expr: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let expr ← goal.withContext $ Elab.Term.elabTerm (stx := expr) (expectedType? := .none)
let (_, mvarId) ← define goal binderName expr
Elab.Tactic.replaceMainGoal [mvarId]
structure BranchResult where
fvarId?: Option FVarId := .none
branch: MVarId
main: MVarId
def «have» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.have
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type
-- Create the context for the `upstream` goal
let fvarId ← mkFreshFVarId
let lctxUpstream := lctx.mkLocalDecl fvarId binderName type
let mvarUpstream ←
withTheReader Meta.Context (fun ctx => { ctx with lctx := lctxUpstream }) do
Meta.withNewLocalInstances #[.fvar fvarId] 0 do
let mvarUpstream ← mkUpstreamMVar mvarId
--let expr: Expr := .app (.lam binderName type mvarBranch .default) mvarUpstream
mvarId.assign $ ← Meta.mkLambdaFVars #[.fvar fvarId] mvarUpstream
pure mvarUpstream
return {
fvarId? := .some fvarId,
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalHave (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let nextGoals: List MVarId ← goal.withContext do
let type ← Elab.Term.elabType (stx := type)
let result ← «have» goal binderName type
pure [result.branch, result.main]
Elab.Tactic.replaceMainGoal nextGoals
def «let» (mvarId: MVarId) (binderName: Name) (type: Expr): MetaM BranchResult := mvarId.withContext do
mvarId.checkNotAssigned `Pantograph.Tactic.let
let lctx ← MonadLCtx.getLCtx
-- The branch goal inherits the same context, but with a different type
let mvarBranch ← Meta.mkFreshExprMVarAt lctx (← Meta.getLocalInstances) type (userName := binderName)
assert! ¬ type.hasLooseBVars
let mvarUpstream ← Meta.withLetDecl binderName type mvarBranch $ λ fvar => do
let mvarUpstream ← mkUpstreamMVar mvarId
mvarId.assign $ ← Meta.mkLetFVars #[fvar] mvarUpstream
pure mvarUpstream
return {
branch := mvarBranch.mvarId!,
main := mvarUpstream.mvarId!,
}
def evalLet (binderName: Name) (type: Syntax): Elab.Tactic.TacticM Unit := do
let goal ← Elab.Tactic.getMainGoal
let type ← goal.withContext $ Elab.Term.elabType (stx := type)
let result ← «let» goal binderName type
Elab.Tactic.replaceMainGoal [result.branch, result.main]
end Pantograph.Tactic

View File

@ -1,6 +1,6 @@
namespace Pantograph
@[export pantograph_version]
def version := "0.2.15"
def version := "0.2.18"
end Pantograph

View File

@ -11,9 +11,9 @@ examine the symbol list of a Lean project for machine learning.
For Nix based workflow, see below.
Install `elan` and `lake`. Execute
Install `elan` and `lake`, and run
``` sh
make
lake build
```
This builds the executable in `.lake/build/bin/pantograph`.
@ -90,6 +90,11 @@ See `Pantograph/Protocol.lean` for a description of the parameters and return va
only the values of definitions are printed.
* `options.set { key: value, ... }`: Set one or more options (not Lean options; those
have to be set via command line arguments.), for options, see `Pantograph/Protocol.lean`
One particular option for interest for machine learning researchers is the
automatic mode (flag: `"automaticMode"`). By default it is turned on, with
all goals automatically resuming. This makes Pantograph act like a gym,
with no resumption necessary to manage your goals.
* `options.print`: Display the current set of options
* `goal.start {["name": <name>], ["expr": <expr>], ["levels": [<levels>]], ["copyFrom": <symbol>]}`:
Start a new proof from a given expression or symbol
@ -138,6 +143,9 @@ ulimit -s unlimited
with `Pantograph` which mirrors the REPL commands above. It is recommended to
call Pantograph via this FFI since it provides a tremendous speed up.
Note that there isn't a 1-1 correspondence between executable (REPL) commands
and library functions.
## Developing
A Lean development shell is provided in the Nix flake.
@ -146,7 +154,12 @@ A Lean development shell is provided in the Nix flake.
The tests are based on `LSpec`. To run tests,
``` sh
make test
lake test
```
You can run an individual test by specifying a prefix
``` sh
lake test -- "Tactic/No Confuse"
```
## Nix based workflow

220
Repl.lean Normal file
View File

@ -0,0 +1,220 @@
import Lean.Data.HashMap
import Pantograph
namespace Pantograph
structure Context where
imports: List String
/-- Stores state of the REPL -/
structure State where
options: Protocol.Options := {}
nextId: Nat := 0
goalStates: Lean.HashMap Nat GoalState := Lean.HashMap.empty
/-- Main state monad for executing commands -/
abbrev MainM := ReaderT Context (StateT State Lean.CoreM)
-- HACK: For some reason writing `CommandM α := MainM (Except ... α)` disables
-- certain monadic features in `MainM`
abbrev CR α := Except Protocol.InteractionError α
def runMetaInMainM { α } (metaM: Lean.MetaM α): MainM α :=
metaM.run'
def runTermElabInMainM { α } (termElabM: Lean.Elab.TermElabM α) : MainM α :=
termElabM.run' (ctx := Condensed.elabContext) |>.run'
def execute (command: Protocol.Command): MainM Lean.Json := do
let run { α β: Type } [Lean.FromJson α] [Lean.ToJson β] (comm: α → MainM (CR β)): MainM Lean.Json :=
match Lean.fromJson? command.payload with
| .ok args => do
match (← comm args) with
| .ok result => return Lean.toJson result
| .error ierror => return Lean.toJson ierror
| .error error => return Lean.toJson $ errorCommand s!"Unable to parse json: {error}"
match command.cmd with
| "reset" => run reset
| "stat" => run stat
| "expr.echo" => run expr_echo
| "env.catalog" => run env_catalog
| "env.inspect" => run env_inspect
| "env.add" => run env_add
| "options.set" => run options_set
| "options.print" => run options_print
| "goal.start" => run goal_start
| "goal.tactic" => run goal_tactic
| "goal.continue" => run goal_continue
| "goal.delete" => run goal_delete
| "goal.print" => run goal_print
| "compile.unit" => run compile_unit
| cmd =>
let error: Protocol.InteractionError :=
errorCommand s!"Unknown command {cmd}"
return Lean.toJson error
where
errorCommand := errorI "command"
errorIndex := errorI "index"
-- Command Functions
reset (_: Protocol.Reset): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
set { state with nextId := 0, goalStates := Lean.HashMap.empty }
return .ok { nGoals }
stat (_: Protocol.Stat): MainM (CR Protocol.StatResult) := do
let state ← get
let nGoals := state.goalStates.size
return .ok { nGoals }
env_catalog (args: Protocol.EnvCatalog): MainM (CR Protocol.EnvCatalogResult) := do
let result ← Environment.catalog args
return .ok result
env_inspect (args: Protocol.EnvInspect): MainM (CR Protocol.EnvInspectResult) := do
let state ← get
Environment.inspect args state.options
env_add (args: Protocol.EnvAdd): MainM (CR Protocol.EnvAddResult) := do
Environment.addDecl args
expr_echo (args: Protocol.ExprEcho): MainM (CR Protocol.ExprEchoResult) := do
let state ← get
exprEcho args.expr (expectedType? := args.type?) (levels := args.levels.getD #[]) (options := state.options)
options_set (args: Protocol.OptionsSet): MainM (CR Protocol.OptionsSetResult) := do
let state ← get
let options := state.options
set { state with
options := {
-- FIXME: This should be replaced with something more elegant
printJsonPretty := args.printJsonPretty?.getD options.printJsonPretty,
printExprPretty := args.printExprPretty?.getD options.printExprPretty,
printExprAST := args.printExprAST?.getD options.printExprAST,
printDependentMVars := args.printDependentMVars?.getD options.printDependentMVars,
noRepeat := args.noRepeat?.getD options.noRepeat,
printAuxDecls := args.printAuxDecls?.getD options.printAuxDecls,
printImplementationDetailHyps := args.printImplementationDetailHyps?.getD options.printImplementationDetailHyps
automaticMode := args.automaticMode?.getD options.automaticMode,
}
}
return .ok { }
options_print (_: Protocol.OptionsPrint): MainM (CR Protocol.Options) := do
return .ok (← get).options
goal_start (args: Protocol.GoalStart): MainM (CR Protocol.GoalStartResult) := do
let state ← get
let env ← Lean.MonadEnv.getEnv
let expr?: Except _ GoalState ← runTermElabInMainM (match args.expr, args.copyFrom with
| .some expr, .none => goalStartExpr expr (args.levels.getD #[])
| .none, .some copyFrom =>
(match env.find? <| copyFrom.toName with
| .none => return .error <| errorIndex s!"Symbol not found: {copyFrom}"
| .some cInfo => return .ok (← GoalState.create cInfo.type))
| _, _ =>
return .error <| errorI "arguments" "Exactly one of {expr, copyFrom} must be supplied")
match expr? with
| .error error => return .error error
| .ok goalState =>
let stateId := state.nextId
set { state with
goalStates := state.goalStates.insert stateId goalState,
nextId := state.nextId + 1
}
return .ok { stateId, root := goalState.root.name.toString }
goal_tactic (args: Protocol.GoalTactic): MainM (CR Protocol.GoalTacticResult) := do
let state ← get
let .some goalState := state.goalStates.find? args.stateId |
return .error $ errorIndex s!"Invalid state index {args.stateId}"
let .some goal := goalState.goals.get? args.goalId |
return .error $ errorIndex s!"Invalid goal index {args.goalId}"
let nextGoalState?: Except _ TacticResult ← runTermElabInMainM do
match args.tactic?, args.expr?, args.have?, args.calc?, args.conv? with
| .some tactic, .none, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryTactic goal tactic
| .none, .some expr, .none, .none, .none => do
pure <| Except.ok <| ← goalState.tryAssign goal expr
| .none, .none, .some type, .none, .none => do
let binderName := args.binderName?.getD ""
pure <| Except.ok <| ← goalState.tryHave goal binderName type
| .none, .none, .none, .some pred, .none => do
pure <| Except.ok <| ← goalState.tryCalc goal pred
| .none, .none, .none, .none, .some true => do
pure <| Except.ok <| ← goalState.conv goal
| .none, .none, .none, .none, .some false => do
pure <| Except.ok <| ← goalState.convExit
| _, _, _, _, _ =>
let error := errorI "arguments" "Exactly one of {tactic, expr, have, calc, conv} must be supplied"
pure $ Except.error $ error
match nextGoalState? with
| .error error => return .error error
| .ok (.success nextGoalState) => do
let nextGoalState ← match state.options.automaticMode, args.conv? with
| true, .none => do
let .ok result := nextGoalState.resume (nextGoalState.goals ++ goalState.goals) | throwError "Resuming known goals"
pure result
| true, .some true => pure nextGoalState
| true, .some false => do
let .some (_, _, dormantGoals) := goalState.convMVar? | throwError "If conv exit succeeded this should not fail"
let .ok result := nextGoalState.resume (nextGoalState.goals ++ dormantGoals) | throwError "Resuming known goals"
pure result
| false, _ => pure nextGoalState
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert state.nextId nextGoalState,
nextId := state.nextId + 1,
}
let goals ← nextGoalState.serializeGoals (parent := .some goalState) (options := state.options) |>.run'
return .ok {
nextStateId? := .some nextStateId,
goals? := .some goals,
}
| .ok (.parseError message) =>
return .ok { parseError? := .some message }
| .ok (.invalidAction message) =>
return .error $ errorI "invalid" message
| .ok (.failure messages) =>
return .ok { tacticErrors? := .some messages }
goal_continue (args: Protocol.GoalContinue): MainM (CR Protocol.GoalContinueResult) := do
let state ← get
let .some target := state.goalStates.find? args.target | return .error $ errorIndex s!"Invalid state index {args.target}"
let nextState? ← match args.branch?, args.goals? with
| .some branchId, .none => do
match state.goalStates.find? branchId with
| .none => return .error $ errorIndex s!"Invalid state index {branchId}"
| .some branch => pure $ target.continue branch
| .none, .some goals =>
pure $ goalResume target goals
| _, _ => return .error <| errorI "arguments" "Exactly one of {branch, goals} must be supplied"
match nextState? with
| .error error => return .error <| errorI "structure" error
| .ok nextGoalState =>
let nextStateId := state.nextId
set { state with
goalStates := state.goalStates.insert nextStateId nextGoalState,
nextId := state.nextId + 1
}
let goals ← goalSerialize nextGoalState (options := state.options)
return .ok {
nextStateId,
goals,
}
goal_delete (args: Protocol.GoalDelete): MainM (CR Protocol.GoalDeleteResult) := do
let state ← get
let goalStates := args.stateIds.foldl (λ map id => map.erase id) state.goalStates
set { state with goalStates }
return .ok {}
goal_print (args: Protocol.GoalPrint): MainM (CR Protocol.GoalPrintResult) := do
let state ← get
let .some goalState := state.goalStates.find? args.stateId | return .error $ errorIndex s!"Invalid state index {args.stateId}"
let result ← runMetaInMainM <| goalPrint goalState state.options
return .ok result
compile_unit (args: Protocol.CompileUnit): MainM (CR Protocol.CompileUnitResult) := do
let module := args.module.toName
try
let steps ← Compile.processSource module
let units? := if args.compilationUnits then
.some $ steps.map λ step => (step.src.startPos.byteIdx, step.src.stopPos.byteIdx)
else
.none
let invocations? ← if args.invocations then
pure $ .some (← Compile.collectTacticsFromCompilation steps)
else
pure .none
return .ok { units?, invocations? }
catch e =>
return .error $ errorI "compile" (← e.toMessageData.toString)
end Pantograph

View File

@ -1,6 +1,7 @@
import Pantograph.Goal
import Pantograph.Library
import Pantograph.Protocol
import Pantograph.Condensed
import Lean
import LSpec
@ -8,20 +9,33 @@ open Lean
namespace Pantograph
deriving instance Repr for Expr
-- Use strict equality check for expressions
instance : BEq Expr := ⟨Expr.equal⟩
def uniq (n: Nat): Name := .num (.str .anonymous "_uniq") n
-- Auxiliary functions
namespace Protocol
/-- Set internal names to "" -/
def Goal.devolatilize (goal: Goal): Goal :=
def Goal.devolatilizeVars (goal: Goal): Goal :=
{
goal with
name := "",
vars := goal.vars.map removeInternalAux,
}
where removeInternalAux (v: Variable): Variable :=
{
v with
name := ""
}
/-- Set internal names to "" -/
def Goal.devolatilize (goal: Goal): Goal :=
{
goal.devolatilizeVars with
name := "",
}
deriving instance DecidableEq, Repr for Name
deriving instance DecidableEq, Repr for Expression
deriving instance DecidableEq, Repr for Variable
deriving instance DecidableEq, Repr for Goal
@ -30,13 +44,33 @@ deriving instance DecidableEq, Repr for InteractionError
deriving instance DecidableEq, Repr for Option
end Protocol
namespace Condensed
deriving instance BEq, Repr for LocalDecl
deriving instance BEq, Repr for Goal
protected def LocalDecl.devolatilize (decl: LocalDecl): LocalDecl :=
{
decl with fvarId := { name := .anonymous }
}
protected def Goal.devolatilize (goal: Goal): Goal :=
{
goal with
mvarId := { name := .anonymous },
context := goal.context.map LocalDecl.devolatilize
}
end Condensed
def GoalState.get! (state: GoalState) (i: Nat): MVarId := state.goals.get! i
def GoalState.tacticOn (state: GoalState) (goalId: Nat) (tactic: String) := state.tryTactic (state.goals.get! goalId) tactic
def TacticResult.toString : TacticResult → String
| .success state => s!".success ({state.goals.length} goals)"
| .failure messages =>
let messages := "\n".intercalate messages.toList
s!".failure {messages}"
| .parseError error => s!".parseError {error}"
| .indexError index => s!".indexError {index}"
| .invalidAction error => s!".invalidAction {error}"
namespace Test
@ -56,7 +90,65 @@ def runCoreMSeq (env: Environment) (coreM: CoreM LSpec.TestSeq) (options: Array
def runMetaMSeq (env: Environment) (metaM: MetaM LSpec.TestSeq): IO LSpec.TestSeq :=
runCoreMSeq env metaM.run'
def runTermElabMInMeta { α } (termElabM: Lean.Elab.TermElabM α): Lean.MetaM α :=
termElabM.run' (ctx := Pantograph.defaultTermElabMContext)
termElabM.run' (ctx := Condensed.elabContext)
def runTermElabMSeq (env: Environment) (termElabM: Elab.TermElabM LSpec.TestSeq): IO LSpec.TestSeq :=
runMetaMSeq env $ termElabM.run' (ctx := Condensed.elabContext)
def exprToStr (e: Expr): Lean.MetaM String := toString <$> Meta.ppExpr e
def strToTermSyntax [Monad m] [MonadEnv m] (s: String): m Syntax := do
let .ok stx := Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) | panic! s!"Failed to parse {s}"
return stx
def parseSentence (s: String): Elab.TermElabM Expr := do
let stx ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := s)
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
Elab.Term.elabTerm (stx := stx) .none
def runTacticOnMVar (tacticM: Elab.Tactic.TacticM Unit) (goal: MVarId): Elab.TermElabM (List MVarId) := do
let (_, newGoals) ← tacticM { elaborator := .anonymous } |>.run { goals := [goal] }
return newGoals.goals
def mvarUserNameAndType (mvarId: MVarId): MetaM (Name × String) := do
let name := (← mvarId.getDecl).userName
let t ← exprToStr (← mvarId.getType)
return (name, t)
-- Monadic testing
abbrev TestT := StateT LSpec.TestSeq
def addTest [Monad m] (test: LSpec.TestSeq): TestT m Unit := do
set $ (← get) ++ test
def runTest [Monad m] (t: TestT m Unit): m LSpec.TestSeq :=
Prod.snd <$> t.run LSpec.TestSeq.done
def runTestTermElabM (env: Environment) (t: TestT Elab.TermElabM Unit):
IO LSpec.TestSeq :=
runTermElabMSeq env $ runTest t
def cdeclOf (userName: Name) (type: Expr): Condensed.LocalDecl :=
{ userName, type }
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
end Test

View File

@ -2,39 +2,24 @@
-/
import LSpec
import Pantograph
import Repl
import Test.Common
namespace Pantograph.Test.Integration
open Pantograph
def subroutine_named_step (name cmd: String) (payload: List (String × Lean.Json))
(expected: Lean.Json): MainM LSpec.TestSeq := do
let result ← execute { cmd := cmd, payload := Lean.Json.mkObj payload }
return LSpec.test name (toString result = toString expected)
def subroutine_step (cmd: String) (payload: List (String × Lean.Json))
(expected: Lean.Json): MainM LSpec.TestSeq := subroutine_named_step cmd cmd payload expected
def step { α } [Lean.ToJson α] (cmd: String) (payload: List (String × Lean.Json))
(expected: α) (name? : Option String := .none): MainM LSpec.TestSeq := do
let payload := Lean.Json.mkObj payload
let name := name?.getD s!"{cmd} {payload.compress}"
let result ← execute { cmd, payload }
return LSpec.test name (toString result = toString (Lean.toJson expected))
def subroutine_runner (steps: List (MainM LSpec.TestSeq)): IO LSpec.TestSeq := do
-- Setup the environment for execution
let env ← Lean.importModules
(imports := #[{module := Lean.Name.str .anonymous "Init", runtimeOnly := false }])
(opts := {})
(trustLevel := 1)
let context: Context := {
imports := ["Init"]
}
let coreContext: Lean.Core.Context ← createCoreContext #[]
let commands: MainM LSpec.TestSeq :=
steps.foldlM (λ suite step => do
let result ← step
return suite ++ result) LSpec.TestSeq.done
try
let coreM := commands.run context |>.run' {}
return Prod.fst $ (← coreM.toIO coreContext { env := env })
catch ex =>
return LSpec.check s!"Uncaught IO exception: {ex.toString}" false
abbrev Test := List (MainM LSpec.TestSeq)
def test_elab : IO LSpec.TestSeq :=
subroutine_runner [
subroutine_step "expr.echo"
def test_elab : Test :=
[
step "expr.echo"
[("expr", .str "λ {α : Sort (u + 1)} => List α"), ("levels", .arr #["u"])]
(Lean.toJson ({
type := { pp? := .some "{α : Type u} → Type u" },
@ -42,130 +27,163 @@ def test_elab : IO LSpec.TestSeq :=
}: Protocol.ExprEchoResult)),
]
def test_option_modify : IO LSpec.TestSeq :=
def test_option_modify : Test :=
let pp? := Option.some "∀ (n : Nat), n + 1 = n.succ"
let sexp? := Option.some "(:forall n (:c Nat) ((:c Eq) (:c Nat) ((:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat)) 0 ((:c OfNat.ofNat) (:c Nat) (:lit 1) ((:c instOfNatNat) (:lit 1)))) ((:c Nat.succ) 0)))"
let module? := Option.some "Init.Data.Nat.Basic"
let options: Protocol.Options := {}
subroutine_runner [
subroutine_step "env.inspect"
[("name", .str "Nat.add_one")]
(Lean.toJson ({
type := { pp? }, module? }:
Protocol.EnvInspectResult)),
subroutine_step "options.set"
[("printExprAST", .bool true)]
(Lean.toJson ({ }:
Protocol.OptionsSetResult)),
subroutine_step "env.inspect"
[("name", .str "Nat.add_one")]
(Lean.toJson ({
type := { pp?, sexp? }, module? }:
Protocol.EnvInspectResult)),
subroutine_step "options.print"
[]
(Lean.toJson ({ options with printExprAST := true }:
Protocol.OptionsPrintResult))
[
step "env.inspect" [("name", .str "Nat.add_one")]
({ type := { pp? }, module? }: Protocol.EnvInspectResult),
step "options.set" [("printExprAST", .bool true)]
({ }: Protocol.OptionsSetResult),
step "env.inspect" [("name", .str "Nat.add_one")]
({ type := { pp?, sexp? }, module? }: Protocol.EnvInspectResult),
step "options.print" []
({ options with printExprAST := true }: Protocol.Options),
]
def test_malformed_command : IO LSpec.TestSeq :=
def test_malformed_command : Test :=
let invalid := "invalid"
subroutine_runner [
subroutine_named_step "Invalid command" invalid
[("name", .str "Nat.add_one")]
(Lean.toJson ({
error := "command", desc := s!"Unknown command {invalid}"}:
Protocol.InteractionError)),
subroutine_named_step "JSON Deserialization" "expr.echo"
[(invalid, .str "Random garbage data")]
(Lean.toJson ({
error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected"}:
Protocol.InteractionError))
[
step invalid [("name", .str "Nat.add_one")]
({ error := "command", desc := s!"Unknown command {invalid}" }: Protocol.InteractionError)
(name? := .some "Invalid Command"),
step "expr.echo" [(invalid, .str "Random garbage data")]
({ error := "command", desc := s!"Unable to parse json: Pantograph.Protocol.ExprEcho.expr: String expected" }:
Protocol.InteractionError)
(name? := .some "JSON Deserialization")
]
def test_tactic : IO LSpec.TestSeq :=
def test_tactic : Test :=
let goal1: Protocol.Goal := {
name := "_uniq.11",
target := { pp? := .some "∀ (q : Prop), x q → q x" },
vars := #[{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}],
vars := #[{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }}],
}
let goal2: Protocol.Goal := {
name := "_uniq.14",
name := "_uniq.17",
target := { pp? := .some "x y → y x" },
vars := #[
{ name := "_uniq.10", userName := "x", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.13", userName := "y", isInaccessible? := .some false, type? := .some { pp? := .some "Prop" }}
{ name := "_uniq.10", userName := "x", type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.16", userName := "y", type? := .some { pp? := .some "Prop" }}
],
}
subroutine_runner [
subroutine_step "goal.start"
[("expr", .str "∀ (p q: Prop), p q → q p")]
(Lean.toJson ({stateId := 0, root := "_uniq.9"}:
Protocol.GoalStartResult)),
subroutine_step "goal.tactic"
[("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro x")]
(Lean.toJson ({
nextStateId? := .some 1,
goals? := #[goal1],
}:
Protocol.GoalTacticResult)),
subroutine_step "goal.print"
[("stateId", .num 1)]
(Lean.toJson ({
parent? := .some { pp? := .some "fun x => ?m.12 x" },
}:
Protocol.GoalPrintResult)),
subroutine_step "goal.tactic"
[("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "intro y")]
(Lean.toJson ({
nextStateId? := .some 2,
goals? := #[goal2],
}:
Protocol.GoalTacticResult))
[
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")]
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro x")]
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.print" [("stateId", .num 1)]
({ parent? := .some { pp? := .some "fun x => ?m.12 x" }, }: Protocol.GoalPrintResult),
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "intro y")]
({ nextStateId? := .some 2, goals? := #[goal2], }: Protocol.GoalTacticResult),
]
def test_automatic_mode (automatic: Bool): Test :=
let varsPQ := #[
{ name := "_uniq.10", userName := "p", type? := .some { pp? := .some "Prop" }},
{ name := "_uniq.13", userName := "q", type? := .some { pp? := .some "Prop" }}
]
let goal1: Protocol.Goal := {
name := "_uniq.17",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.16", userName := "h", type? := .some { pp? := .some "p q" }}
],
}
let goal2l: Protocol.Goal := {
name := "_uniq.59",
userName? := .some "inl",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
],
}
let goal2r: Protocol.Goal := {
name := "_uniq.72",
userName? := .some "inr",
target := { pp? := .some "q p" },
vars := varsPQ ++ #[
{ name := "_uniq.60", userName := "h✝", type? := .some { pp? := .some "q" }, isInaccessible := true}
],
}
let goal3l: Protocol.Goal := {
name := "_uniq.78",
userName? := .some "inl.h",
target := { pp? := .some "p" },
vars := varsPQ ++ #[
{ name := "_uniq.47", userName := "h✝", type? := .some { pp? := .some "p" }, isInaccessible := true}
],
}
[
step "options.set" [("automaticMode", .bool automatic)]
({}: Protocol.OptionsSetResult),
step "goal.start" [("expr", .str "∀ (p q: Prop), p q → q p")]
({ stateId := 0, root := "_uniq.9" }: Protocol.GoalStartResult),
step "goal.tactic" [("stateId", .num 0), ("goalId", .num 0), ("tactic", .str "intro p q h")]
({ nextStateId? := .some 1, goals? := #[goal1], }: Protocol.GoalTacticResult),
step "goal.tactic" [("stateId", .num 1), ("goalId", .num 0), ("tactic", .str "cases h")]
({ nextStateId? := .some 2, goals? := #[goal2l, goal2r], }: Protocol.GoalTacticResult),
let goals? := if automatic then #[goal3l, goal2r] else #[goal3l]
step "goal.tactic" [("stateId", .num 2), ("goalId", .num 0), ("tactic", .str "apply Or.inr")]
({ nextStateId? := .some 3, goals?, }: Protocol.GoalTacticResult),
]
def test_env_add_inspect : IO LSpec.TestSeq :=
def test_env_add_inspect : Test :=
let name1 := "Pantograph.mystery"
let name2 := "Pantograph.mystery2"
subroutine_runner [
subroutine_step "env.add"
[
step "env.add"
[
("name", .str name1),
("type", .str "Prop → Prop → Prop"),
("value", .str "λ (a b: Prop) => Or a b"),
("isTheorem", .bool false)
]
(Lean.toJson ({}: Protocol.EnvAddResult)),
subroutine_step "env.inspect"
[("name", .str name1)]
(Lean.toJson ({
({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name1)]
({
value? := .some { pp? := .some "fun a b => a b" },
type := { pp? := .some "Prop → Prop → Prop" },
}:
Protocol.EnvInspectResult)),
subroutine_step "env.add"
Protocol.EnvInspectResult),
step "env.add"
[
("name", .str name2),
("type", .str "Nat → Int"),
("value", .str "λ (a: Nat) => a + 1"),
("isTheorem", .bool false)
]
(Lean.toJson ({}: Protocol.EnvAddResult)),
subroutine_step "env.inspect"
[("name", .str name2)]
(Lean.toJson ({
({}: Protocol.EnvAddResult),
step "env.inspect" [("name", .str name2)]
({
value? := .some { pp? := .some "fun a => ↑a + 1" },
type := { pp? := .some "Nat → Int" },
}:
Protocol.EnvInspectResult))
Protocol.EnvInspectResult)
]
def suite: List (String × IO LSpec.TestSeq) :=
[
("Elab", test_elab),
("Option modify", test_option_modify),
def runTest (env: Lean.Environment) (steps: Test): IO LSpec.TestSeq := do
-- Setup the environment for execution
let context: Context := {
imports := ["Init"]
}
let commands: MainM LSpec.TestSeq :=
steps.foldlM (λ suite step => do
let result ← step
return suite ++ result) LSpec.TestSeq.done
runCoreMSeq env <| commands.run context |>.run' {}
def suite (env : Lean.Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("expr.echo", test_elab),
("options.set options.print", test_option_modify),
("Malformed command", test_malformed_command),
("Tactic", test_tactic),
("Manual Mode", test_automatic_mode false),
("Automatic Mode", test_automatic_mode true),
("env.add env.inspect", test_env_add_inspect),
]
tests.map (fun (name, test) => (name, runTest env test))
end Pantograph.Test.Integration

View File

@ -5,6 +5,7 @@ import Test.Library
import Test.Metavar
import Test.Proofs
import Test.Serial
import Test.Tactic
-- Test running infrastructure
@ -43,11 +44,15 @@ def main (args: List String) := do
let suites: List (String × List (String × IO LSpec.TestSeq)) := [
("Environment", Environment.suite),
("Integration", Integration.suite),
("Integration", Integration.suite env_default),
("Library", Library.suite env_default),
("Metavar", Metavar.suite env_default),
("Proofs", Proofs.suite env_default),
("Serial", Serial.suite env_default),
("Tactic/Congruence", Tactic.Congruence.suite env_default),
("Tactic/Motivated Apply", Tactic.MotivatedApply.suite env_default),
("Tactic/No Confuse", Tactic.NoConfuse.suite env_default),
("Tactic/Prograde", Tactic.Prograde.suite env_default),
]
let tests: List (String × IO LSpec.TestSeq) := suites.foldl (λ acc (name, suite) => acc ++ (addPrefix name suite)) []
LSpec.lspecIO (← runTestGroup name_filter tests)

View File

@ -60,14 +60,13 @@ def buildGoal (nameType: List (String × String)) (target: String) (userName?: O
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context ← createCoreContext #[]
let metaM := termElabM.run' (ctx := defaultTermElabMContext)
let metaM := termElabM.run' (ctx := Condensed.elabContext)
let coreM := metaM.run'
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
@ -84,7 +83,7 @@ def test_m_couple: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -93,7 +92,7 @@ def test_m_couple: TestM Unit := do
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
-- Set m to 3
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 3") with
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 3") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -116,7 +115,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -127,7 +126,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ LSpec.check "(metavariables)" (serializedState1.map (·.target.dependentMVars?.get!) =
#[#["_uniq.38"], #["_uniq.38"], #[]])
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "exact 2") with
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "exact 2") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -141,7 +140,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ LSpec.check "exact 2" ((← state1b.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ 2", .some "2 ≤ 5"])
addTest $ LSpec.test "(2 root)" state1b.rootExpr?.isNone
let state3 ← match ← state1b.tryTactic (goalId := 0) (tactic := "simp") with
let state3 ← match ← state1b.tacticOn (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -151,7 +150,7 @@ def test_m_couple_simp: TestM Unit := do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := "simp") with
let state5 ← match ← state4.tacticOn (goalId := 0) (tactic := "simp") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -178,7 +177,7 @@ def test_proposition_generation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply PSigma.mk") with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply PSigma.mk") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -192,21 +191,22 @@ def test_proposition_generation: TestM Unit := do
addTest $ LSpec.test "(1 reference)" (goal1.target.sexp? = .some s!"(:mv {goal2.name})")
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := "λ (x: Nat) => _") with
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := "λ (x: Nat) => _") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= λ (x: Nat), _" ((← state2.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "Nat → Prop", .some "∀ (x : Nat), ?m.29 x"])
#[.some "?m.29 x"])
addTest $ LSpec.test "(2 root)" state2.rootExpr?.isNone
let state3 ← match ← state2.tryAssign (goalId := 1) (expr := "fun x => Eq.refl x") with
let assign := "Eq.refl x"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := assign) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check ":= Eq.refl" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
addTest $ LSpec.check s!":= {assign}" ((← state3.serializeGoals (options := ← read)).map (·.target.pp?) =
#[])
addTest $ LSpec.test "(3 root)" state3.rootExpr?.isSome
@ -220,7 +220,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "apply Nat.le_trans") with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "apply Nat.le_trans") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -228,7 +228,7 @@ def test_partial_continuation: TestM Unit := do
addTest $ LSpec.check "apply Nat.le_trans" ((← state1.serializeGoals (options := ← read)).map (·.target.pp?) =
#[.some "2 ≤ ?m", .some "?m ≤ 5", .some "Nat"])
let state2 ← match ← state1.tryTactic (goalId := 2) (tactic := "apply Nat.succ") with
let state2 ← match ← state1.tacticOn (goalId := 2) (tactic := "apply Nat.succ") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -263,7 +263,7 @@ def test_partial_continuation: TestM Unit := do
-- Continuation should fail if the state does not exist:
match state0.resume coupled_goals with
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Goals not in scope")
| .error error => addTest $ LSpec.check "(continuation failure message)" (error = "Goals [_uniq.40, _uniq.41, _uniq.38, _uniq.47] are not in scope")
| .ok _ => addTest $ assertUnreachable "(continuation failure)"
-- Continuation should fail if some goals have not been solved
match state2.continue state1 with

View File

@ -49,21 +49,32 @@ def startProof (start: Start): TestM (Option GoalState) := do
let goal ← GoalState.create (expr := expr)
return Option.some goal
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none): Protocol.Goal :=
def buildNamedGoal (name: String) (nameType: List (String × String)) (target: String)
(userName?: Option String := .none): Protocol.Goal :=
{
name,
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
})).toArray
}
def buildGoal (nameType: List (String × String)) (target: String) (userName?: Option String := .none):
Protocol.Goal :=
{
userName?,
target := { pp? := .some target},
vars := (nameType.map fun x => ({
userName := x.fst,
type? := .some { pp? := .some x.snd },
isInaccessible? := .some false
})).toArray
}
def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq := do
let termElabM := tests.run LSpec.TestSeq.done |>.run {} -- with default options
let coreContext: Lean.Core.Context ← createCoreContext #[]
let metaM := termElabM.run' (ctx := defaultTermElabMContext)
let metaM := termElabM.run' (ctx := Condensed.elabContext)
let coreM := metaM.run'
match ← (coreM.run' coreContext { env := env }).toBaseIO with
| .error exception =>
@ -71,6 +82,27 @@ def proofRunner (env: Lean.Environment) (tests: TestM Unit): IO LSpec.TestSeq :=
| .ok (_, a) =>
return a
def test_identity: TestM Unit := do
let state? ← startProof (.expr "∀ (p: Prop), p → p")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p h"
let state1 ← match ← state0.tacticOn 0 tactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let inner := "_uniq.12"
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.name) =
#[inner])
let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda h 0 (:subst (:mv {inner}) 1 0)))")
-- Individual test cases
example: ∀ (a b: Nat), a + b = b + a := by
intro n m
@ -86,7 +118,7 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n m") with
let state1 ← match ← state0.tacticOn 0 "intro n m" with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -94,13 +126,13 @@ def test_nat_add_comm (manual: Bool): TestM Unit := do
addTest $ LSpec.check "intro n m" ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("m", "Nat")] "n + m = m + n"])
match ← state1.tryTactic (goalId := 0) (tactic := "assumption") with
match ← state1.tacticOn 0 "assumption" with
| .failure #[message] =>
addTest $ LSpec.check "assumption" (message = "tactic 'assumption' failed\nn m : Nat\n⊢ n + m = m + n")
| other => do
addTest $ assertUnreachable $ other.toString
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "rw [Nat.add_comm]") with
let state2 ← match ← state1.tacticOn 0 "rw [Nat.add_comm]" with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -118,14 +150,14 @@ def test_delta_variable: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := "intro n") with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := "intro n") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "intro n" ((← state1.serializeGoals (parent := state0) options).map (·.devolatilize) =
#[buildGoalSelective [("n", .some "Nat")] "∀ (b : Nat), n + b = b + n"])
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "intro m") with
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "intro m") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -141,7 +173,6 @@ def test_delta_variable: TestM Unit := do
vars := (nameType.map fun x => ({
userName := x.fst,
type? := x.snd.map (λ type => { pp? := type }),
isInaccessible? := x.snd.map (λ _ => false)
})).toArray
}
@ -158,14 +189,14 @@ def test_arith: TestM Unit := do
return ()
let tactic := "intros"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic (state1.goals.length = 1)
addTest $ LSpec.test "(1 root)" state1.rootExpr?.isNone
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := "simp [Nat.add_assoc, Nat.add_comm, Nat.add_left_comm, Nat.mul_comm, Nat.mul_assoc, Nat.mul_left_comm] at *") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -173,7 +204,7 @@ def test_arith: TestM Unit := do
addTest $ LSpec.check "simp ..." (state2.goals.length = 1)
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone
let tactic := "assumption"
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -208,56 +239,81 @@ def test_or_comm: TestM Unit := do
addTest $ LSpec.check "(0 root)" state0.rootExpr?.isNone
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p q")] "q p"])
let fvP := "_uniq.10"
let fvQ := "_uniq.13"
let fvH := "_uniq.16"
let state1g0 := "_uniq.17"
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)) =
#[{
name := state1g0,
target := { pp? := .some "q p" },
vars := #[
{ name := fvP, userName := "p", type? := .some { pp? := .some "Prop" } },
{ name := fvQ, userName := "q", type? := .some { pp? := .some "Prop" } },
{ name := fvH, userName := "h", type? := .some { pp? := .some "p q" } }
]
}])
addTest $ LSpec.check "(1 parent)" state1.parentExpr?.isSome
addTest $ LSpec.check "(1 root)" state1.rootExpr?.isNone
let state1parent ← state1.withParentContext do
serializeExpressionSexp (← instantiateAll state1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(1 parent)" (state1parent == s!"(:lambda p (:sort 0) (:lambda q (:sort 0) (:lambda h ((:c Or) 1 0) (:subst (:mv {state1g0}) 2 1 0))))")
let tactic := "cases h"
let state2 ← match ← state1.tryTactic (goalId := 0) (tactic := tactic) with
let state2 ← match ← state1.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[branchGoal "inl" "p", branchGoal "inr" "q"])
addTest $ LSpec.check "(2 parent)" state2.parentExpr?.isSome
let (caseL, caseR) := ("_uniq.64", "_uniq.77")
addTest $ LSpec.check tactic ((← state2.serializeGoals (options := ← read)).map (·.name) =
#[caseL, caseR])
addTest $ LSpec.check "(2 parent exists)" state2.parentExpr?.isSome
addTest $ LSpec.check "(2 root)" state2.rootExpr?.isNone
let state2parent ← serializeExpressionSexp state2.parentExpr?.get! (sanitize := false)
-- This is due to delayed assignment
let state2parent ← state2.withParentContext do
serializeExpressionSexp (← instantiateAll state2.parentExpr?.get!) (sanitize := false)
let orPQ := s!"((:c Or) (:fv {fvP}) (:fv {fvQ}))"
let orQP := s!"((:c Or) (:fv {fvQ}) (:fv {fvP}))"
let motive := s!"(:lambda t._@._hyg.26 {orPQ} (:forall h ((:c Eq) ((:c Or) (:fv {fvP}) (:fv {fvQ})) (:fv {fvH}) 0) {orQP}))"
let caseL := s!"(:lambda h._@._hyg.27 (:fv {fvP}) (:lambda h._@._hyg.28 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inl) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseL}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let caseR := s!"(:lambda h._@._hyg.29 (:fv {fvQ}) (:lambda h._@._hyg.30 ((:c Eq) {orPQ} (:fv {fvH}) ((:c Or.inr) (:fv {fvP}) (:fv {fvQ}) 0)) (:subst (:mv {caseR}) (:fv {fvP}) (:fv {fvQ}) 1)))"
let conduit := s!"((:c Eq.refl) {orPQ} (:fv {fvH}))"
addTest $ LSpec.test "(2 parent)" (state2parent ==
"((:mv _uniq.43) (:fv _uniq.16) ((:c Eq.refl) ((:c Or) (:fv _uniq.10) (:fv _uniq.13)) (:fv _uniq.16)))")
s!"((:c Or.casesOn) (:fv {fvP}) (:fv {fvQ}) {motive} (:fv {fvH}) {caseL} {caseR} {conduit})")
let state3_1 ← match ← state2.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state3_1parent ← serializeExpressionSexp state3_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == "((:c Or.inr) (:fv _uniq.13) (:fv _uniq.10) (:mv _uniq.78))")
let state3_1parent ← state3_1.withParentContext do
serializeExpressionSexp (← instantiateAll state3_1.parentExpr?.get!) (sanitize := false)
addTest $ LSpec.test "(3_1 parent)" (state3_1parent == s!"((:c Or.inr) (:fv {fvQ}) (:fv {fvP}) (:mv _uniq.91))")
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check " assumption" state4_1.goals.isEmpty
let state4_1parent ← serializeExpressionSexp state4_1.parentExpr?.get! (sanitize := false)
addTest $ LSpec.test "(4_1 parent)" (state4_1parent == "(:fv _uniq.47)")
let state4_1parent ← instantiateAll state4_1.parentExpr?.get!
addTest $ LSpec.test "(4_1 parent)" state4_1parent.isFVar
addTest $ LSpec.check "(4_1 root)" state4_1.rootExpr?.isNone
let state3_2 ← match ← state2.tryTactic (goalId := 1) (tactic := "apply Or.inl") with
let state3_2 ← match ← state2.tacticOn (goalId := 1) (tactic := "apply Or.inl") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inl" (state3_2.goals.length = 1)
let state4_2 ← match ← state3_2.tryTactic (goalId := 0) (tactic := "assumption") with
let state4_2 ← match ← state3_2.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -271,13 +327,13 @@ def test_or_comm: TestM Unit := do
return ()
| .ok state => pure state
addTest $ LSpec.test "(resume)" (state2b.goals == [state2.goals.get! 0])
let state3_1 ← match ← state2b.tryTactic (goalId := 0) (tactic := "apply Or.inr") with
let state3_1 ← match ← state2b.tacticOn (goalId := 0) (tactic := "apply Or.inr") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check "· apply Or.inr" (state3_1.goals.length = 1)
let state4_1 ← match ← state3_1.tryTactic (goalId := 0) (tactic := "assumption") with
let state4_1 ← match ← state3_1.tacticOn (goalId := 0) (tactic := "assumption") with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -292,75 +348,12 @@ def test_or_comm: TestM Unit := do
userName? := .some caseName,
target := { pp? := .some "q p" },
vars := #[
{ userName := "p", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "q", type? := .some typeProp, isInaccessible? := .some false },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible? := .some true }
{ userName := "p", type? := .some typeProp },
{ userName := "q", type? := .some typeProp },
{ userName := "h✝", type? := .some { pp? := .some varName }, isInaccessible := true }
]
}
def test_have: TestM Unit := do
let state? ← startProof (.expr "∀ (p q: Prop), p → ((p q) (p q))")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro p q h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (goalId := 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (goalId := 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(4 root)" state4.rootExpr?.isSome
example : ∀ (a b c1 c2: Nat), (b + a) + c1 = (b + a) + c2 → (a + b) + c1 = (b + a) + c2 := by
intro a b c1 c2 h
conv =>
@ -379,7 +372,7 @@ def test_conv: TestM Unit := do
return ()
let tactic := "intro a b c1 c2 h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -387,7 +380,7 @@ def test_conv: TestM Unit := do
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "a + b + c1 = b + a + c2"])
let state2 ← match ← state1.conv (goalId := 0) with
let state2 ← match ← state1.conv (state1.get! 0) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -396,7 +389,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "a + b + c1 = b + a + c2" with isConversion := true }])
let convTactic := "rhs"
let state3R ← match ← state2.tryTactic (goalId := 0) convTactic with
let state3R ← match ← state2.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -405,7 +398,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "b + a + c2" with isConversion := true }])
let convTactic := "lhs"
let state3L ← match ← state2.tryTactic (goalId := 0) convTactic with
let state3L ← match ← state2.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -414,7 +407,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "a + b + c1" with isConversion := true }])
let convTactic := "congr"
let state4 ← match ← state3L.tryTactic (goalId := 0) convTactic with
let state4 ← match ← state3L.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -426,7 +419,7 @@ def test_conv: TestM Unit := do
])
let convTactic := "rw [Nat.add_comm]"
let state5_1 ← match ← state4.tryTactic (goalId := 0) convTactic with
let state5_1 ← match ← state4.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -435,7 +428,7 @@ def test_conv: TestM Unit := do
#[{ interiorGoal [] "b + a" with isConversion := true, userName? := .some "a" }])
let convTactic := "rfl"
let state6_1 ← match ← state5_1.tryTactic (goalId := 0) convTactic with
let state6_1 ← match ← state5_1.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -450,7 +443,7 @@ def test_conv: TestM Unit := do
return ()
let convTactic := "rfl"
let state6 ← match ← state4_1.tryTactic (goalId := 0) convTactic with
let state6 ← match ← state4_1.tacticOn (goalId := 0) convTactic with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -465,7 +458,7 @@ def test_conv: TestM Unit := do
return ()
let tactic := "exact h"
let stateF ← match ← state1_1.tryTactic (goalId := 0) (tactic := tactic) with
let stateF ← match ← state1_1.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -492,7 +485,7 @@ def test_calc: TestM Unit := do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro a b c d h1 h2"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -500,7 +493,7 @@ def test_calc: TestM Unit := do
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "a + b = c + d"])
let pred := "a + b = b + c"
let state2 ← match ← state1.tryCalc (goalId := 0) (pred := pred) with
let state2 ← match ← state1.tryCalc (state1.get! 0) (pred := pred) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -510,11 +503,11 @@ def test_calc: TestM Unit := do
interiorGoal [] "a + b = b + c" (.some "calc"),
interiorGoal [] "b + c = c + d"
])
addTest $ LSpec.test "(2.0 prev rhs)" (state2.calcPrevRhsOf? 0 |>.isNone)
addTest $ LSpec.test "(2.1 prev rhs)" (state2.calcPrevRhsOf? 1 |>.isSome)
addTest $ LSpec.test "(2.0 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 0) |>.isNone)
addTest $ LSpec.test "(2.1 prev rhs)" (state2.calcPrevRhsOf? (state2.get! 1) |>.isSome)
let tactic := "apply h1"
let state2m ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
let state2m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -525,7 +518,7 @@ def test_calc: TestM Unit := do
addTest $ expectationFailure "continue" e
return ()
let pred := "_ = c + d"
let state4 ← match ← state3.tryCalc (goalId := 0) (pred := pred) with
let state4 ← match ← state3.tryCalc (state3.get! 0) (pred := pred) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -534,9 +527,9 @@ def test_calc: TestM Unit := do
#[
interiorGoal [] "b + c = c + d" (.some "calc")
])
addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? 0 |>.isNone)
addTest $ LSpec.test "(4.0 prev rhs)" (state4.calcPrevRhsOf? (state4.get! 0) |>.isNone)
let tactic := "apply h2"
let state4m ← match ← state4.tryTactic (goalId := 0) (tactic := tactic) with
let state4m ← match ← state4.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
@ -548,95 +541,181 @@ def test_calc: TestM Unit := do
("h1", "a + b = b + c"), ("h2", "b + c = c + d")] ++ free
buildGoal free target userName?
def test_let (specialized: Bool): TestM Unit := do
let state? ← startProof (.expr "∀ (a: Nat) (p: Prop), p → p ¬p")
def test_nat_zero_add: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro a p h"
let state1 ← match ← state0.tryTactic (goalId := 0) (tactic := tactic) with
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "p ¬p"])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (goalId := 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (goalId := 0) (expr := expr)
let state2 ← match result2 with
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let serializedState2 ← state2.serializeGoals (options := ← read)
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
#[
interiorGoal [] letType,
interiorGoal [] "let b := ?m.20;\np ¬p"
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal "_uniq.68" [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
])
-- Check that the goal mvar ids match up
addTest $ LSpec.check expr ((serializedState2.map (·.name) |>.get! 0) = "_uniq.20")
let tactic := "exact a"
let state3 ← match ← state2.tryTactic (goalId := 0) (tactic := tactic) with
let tactic := "exact n"
let state3b ← match ← state2.tacticOn (goalId := 1) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
addTest $ LSpec.check tactic ((← state3b.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2b ← match state3b.continue state2 with
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals (options := ← read)).map (·.devolatilize) =
#[interiorGoal [] "let b := a;\np ¬p"])
let tactic := "exact h"
match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = "type mismatch\n h\nhas type\n p : Prop\nbut is expected to have type\n let b := a;\n p ¬p : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "intro b"
let state4 ← match ← state3r.tryTactic (goalId := 0) (tactic := tactic) with
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "exact (λ x => x + 0 = x)"
let state3c ← match ← state2b.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let tactic := "exact Or.inl h"
let state5 ← match ← state4.tryTactic (goalId := 0) (tactic := tactic) with
addTest $ LSpec.check tactic ((← state3c.serializeGoals (options := ← read)).map (·.devolatilize) =
#[])
let state2c ← match state3c.continue state2b with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "intro t h"
let state3 ← match ← state2c.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(5 root)" state5.rootExpr?.isSome
where
interiorGoal (free: List (String × String)) (target: String) (userName?: Option String := .none) :=
let free := [("a", "Nat"), ("p", "Prop"), ("h", "p")] ++ free
buildGoal free target userName?
addTest $ LSpec.check tactic ((← state3.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("t", "Nat"), ("h", "Nat.below t")] "t + 0 = t"])
let tactic := "simp"
let state3d ← match ← state3.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let state2d ← match state3d.continue state2c with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let tactic := "rfl"
let stateF ← match ← state2d.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← stateF.serializeGoals (options := ← read)) =
#[])
let expr := stateF.mctx.eAssignment.find! stateF.root
let (expr, _) := instantiateMVarsCore (mctx := stateF.mctx) (e := expr)
addTest $ LSpec.check "(F root)" stateF.rootExpr?.isSome
def test_nat_zero_add_alt: TestM Unit := do
let state? ← startProof (.expr "∀ (n: Nat), n + 0 = n")
let state0 ← match state? with
| .some state => pure state
| .none => do
addTest $ assertUnreachable "Goal could not parse"
return ()
let tactic := "intro n"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat")] "n + 0 = n"])
let recursor := "@Nat.brecOn"
let state2 ← match ← state1.tryMotivatedApply (state1.get! 0) (recursor := recursor) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let major := "_uniq.68"
addTest $ LSpec.check s!"mapply {recursor}" ((← state2.serializeGoals (options := ← read)).map (·.devolatilizeVars) =
#[
buildNamedGoal "_uniq.67" [("n", "Nat")] "Nat → Prop" (.some "motive"),
buildNamedGoal major [("n", "Nat")] "Nat",
buildNamedGoal "_uniq.69" [("n", "Nat")] "∀ (t : Nat), Nat.below t → ?motive t",
buildNamedGoal "_uniq.70" [("n", "Nat")] "?motive ?m.68 = (n + 0 = n)" (.some "conduit")
])
let tactic := "intro x"
let state3m ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3m.serializeGoals (options := ← read)).map (·.devolatilize) =
#[buildGoal [("n", "Nat"), ("x", "Nat")] "Prop" (.some "motive")])
let tactic := "apply Eq"
let state3m2 ← match ← state3m.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let (eqL, eqR, eqT) := ("_uniq.88", "_uniq.89", "_uniq.87")
addTest $ LSpec.check tactic $ state3m2.goals.map (·.name.toString) = [eqL, eqR, eqT]
let [_motive, _major, _step, conduit] := state2.goals | panic! "Goals conflict"
let state2b ← match state3m2.resume [conduit] with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let cNatAdd := "(:c HAdd.hAdd) (:c Nat) (:c Nat) (:c Nat) ((:c instHAdd) (:c Nat) (:c instAddNat))"
let cNat0 := "((:c OfNat.ofNat) (:c Nat) (:lit 0) ((:c instOfNatNat) (:lit 0)))"
let fvN := "_uniq.63"
let conduitRight := s!"((:c Eq) (:c Nat) ({cNatAdd} (:fv {fvN}) {cNat0}) (:fv {fvN}))"
let substOf (mv: String) := s!"(:subst (:mv {mv}) (:fv {fvN}) (:mv {major}))"
addTest $ LSpec.check "resume" ((← state2b.serializeGoals (options := { ← read with printExprAST := true })) =
#[
{
name := "_uniq.70",
userName? := .some "conduit",
target := {
pp? := .some "(?m.92 ?m.68 = ?m.94 ?m.68) = (n + 0 = n)",
sexp? := .some s!"((:c Eq) (:sort 0) ((:c Eq) {substOf eqT} {substOf eqL} {substOf eqR}) {conduitRight})",
},
vars := #[{
name := fvN,
userName := "n",
type? := .some { pp? := .some "Nat", sexp? := .some "(:c Nat)" },
}],
}
])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
let tests := [
("identity", test_identity),
("Nat.add_comm", test_nat_add_comm false),
("Nat.add_comm manual", test_nat_add_comm true),
("Nat.add_comm delta", test_delta_variable),
("arithmetic", test_arith),
("Or.comm", test_or_comm),
("have", test_have),
("conv", test_conv),
("calc", test_calc),
("let via assign", test_let false),
("let via tryLet", test_let true),
("Nat.zero_add", test_nat_zero_add),
("Nat.zero_add alt", test_nat_zero_add_alt),
]
tests.map (fun (name, test) => (name, proofRunner env test))

View File

@ -50,9 +50,9 @@ def test_sexp_of_elab (env: Environment): IO LSpec.TestSeq := do
let entries: List (String × (List Name) × String) := [
("λ x: Nat × Bool => x.1", [], "(:lambda x ((:c Prod) (:c Nat) (:c Bool)) ((:c Prod.fst) (:c Nat) (:c Bool) 0))"),
("λ x: Array Nat => x.data", [], "(:lambda x ((:c Array) (:c Nat)) ((:c Array.data) (:c Nat) 0))"),
-- This tests `autoBoundImplicit`
("λ {α: Sort (u + 1)} => List α", [`u], "(:lambda α (:sort (+ u 1)) ((:c List) 0) :implicit)"),
("λ {α} => List α", [], "(:lambda α (:sort (+ (:mv _uniq.4) 1)) ((:c List) 0) :implicit)"),
("(2: Nat) <= (5: Nat)", [], "((:c LE.le) (:mv _uniq.18) (:mv _uniq.19) ((:c OfNat.ofNat) (:mv _uniq.4) (:lit 2) (:mv _uniq.5)) ((:c OfNat.ofNat) (:mv _uniq.14) (:lit 5) (:mv _uniq.15)))"),
]
entries.foldlM (λ suites (source, levels, target) =>
let termElabM := do
@ -64,7 +64,7 @@ def test_sexp_of_elab (env: Environment): IO LSpec.TestSeq := do
| .ok expr => pure expr
| .error e => return elabFailure e
return LSpec.check source ((← serializeExpressionSexp expr) = target)
let metaM := (Elab.Term.withLevelNames levels termElabM).run' (ctx := defaultTermElabMContext)
let metaM := (Elab.Term.withLevelNames levels termElabM).run' (ctx := Condensed.elabContext)
return LSpec.TestSeq.append suites (← runMetaMSeq env metaM))
LSpec.TestSeq.done
@ -85,7 +85,7 @@ def test_sexp_of_expr (env: Environment): IO LSpec.TestSeq := do
let testCaseName := target.take 10
let test := LSpec.check testCaseName ((← serializeExpressionSexp expr) = target)
return LSpec.TestSeq.append suites test) LSpec.TestSeq.done
runMetaMSeq env $ termElabM.run' (ctx := defaultTermElabMContext)
runMetaMSeq env $ termElabM.run' (ctx := Condensed.elabContext)
-- Instance parsing
def test_instance (env: Environment): IO LSpec.TestSeq :=

4
Test/Tactic.lean Normal file
View File

@ -0,0 +1,4 @@
import Test.Tactic.Congruence
import Test.Tactic.MotivatedApply
import Test.Tactic.NoConfuse
import Test.Tactic.Prograde

View File

@ -0,0 +1,88 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Congruence
def test_congr_arg_list : TestT Elab.TermElabM Unit := do
let expr := "λ {α} (l1 l2 : List α) (h: l1 = l2) => l1.reverse = l2.reverse"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.30"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → List α"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (l1.reverse = l2.reverse)"),
])
let f := newGoals.get! 3
let h := newGoals.get! 4
let c := newGoals.get! 5
let results ← f.apply (← parseSentence "List.reverse")
addTest $ LSpec.check "apply" (results.length = 0)
addTest $ LSpec.check "h" ((← exprToStr $ ← h.getType) = "?a₁ = ?a₂")
addTest $ LSpec.check "conduit" ((← exprToStr $ ← c.getType) = "(?a₁.reverse = ?a₂.reverse) = (l1.reverse = l2.reverse)")
def test_congr_arg : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) (h: n = m) => n * n = m * m"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceArg target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.70"),
(`a₁, "?α"),
(`a₂, "?α"),
(`f, "?α → Nat"),
(`h, "?a₁ = ?a₂"),
(`conduit, "(?f ?a₁ = ?f ?a₂) = (n * n = m * m)"),
])
def test_congr_fun : TestT Elab.TermElabM Unit := do
let expr := "λ (n m: Nat) => (n + m) + (n + m) = (n + m) * 2"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruenceFun target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.159"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`h, "?f₁ = ?f₂"),
(`a, "?α"),
(`conduit, "(?f₁ ?a = ?f₂ ?a) = (n + m + (n + m) = (n + m) * 2)"),
])
def test_congr : TestT Elab.TermElabM Unit := do
let expr := "λ (a b: Nat) => a = b"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let newGoals ← runTacticOnMVar Tactic.evalCongruence target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ x => mvarUserNameAndType x)) =
[
(`α, "Sort ?u.10"),
(`f₁, "?α → Nat"),
(`f₂, "?α → Nat"),
(`a₁, "?α"),
(`a₂, "?α"),
(`h₁, "?f₁ = ?f₂"),
(`h₂, "?a₁ = ?a₂"),
(`conduit, "(?f₁ ?a₁ = ?f₂ ?a₂) = (a = b)"),
])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("congrArg List.reverse", test_congr_arg_list),
("congrArg", test_congr_arg),
("congrFun", test_congr_fun),
("congr", test_congr),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Congruence

View File

@ -0,0 +1,113 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.MotivatedApply
def test_type_extract : TestT Elab.TermElabM Unit := do
let recursor ← parseSentence "@Nat.brecOn"
let recursorType ← Meta.inferType recursor
addTest $ LSpec.check "recursorType" ("{motive : Nat → Sort ?u.1} → (t : Nat) → ((t : Nat) → Nat.below t → motive t) → motive t" =
(← exprToStr recursorType))
let info ← match Tactic.getRecursorInformation recursorType with
| .some info => pure info
| .none => throwError "Failed to extract recursor info"
addTest $ LSpec.check "iMotive" (info.iMotive = 2)
let motiveType := info.getMotiveType
addTest $ LSpec.check "motiveType" ("Nat → Sort ?u.1" =
(← exprToStr motiveType))
def test_nat_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let test := LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
"?motive ?m.67 = (n + 0 = n)",
])
addTest test
def test_list_brec_on : TestT Elab.TermElabM Unit := do
let expr := "λ {α : Type} (l: List α) => l ++ [] = [] ++ l"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@List.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Type ?u.90",
"List ?m.92 → Prop",
"List ?m.92",
"∀ (t : List ?m.92), List.below t → ?motive t",
"?motive ?m.94 = (l ++ [] = [] ++ l)",
])
def test_partial_motive_instantiation : TestT Elab.TermElabM Unit := do
let expr := "λ (n t: Nat) => n + 0 = n"
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "@Nat.brecOn")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalMotivatedApply recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
let majorId := 67
addTest $ (LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) =
[
"Nat → Prop",
"Nat",
"∀ (t : Nat), Nat.below t → ?motive t",
s!"?motive ?m.{majorId} = (n + 0 = n)",
]))
let [motive, major, step, conduit] := newGoals | panic! "Incorrect goal number"
addTest $ (LSpec.check "goal name" (major.name.toString = s!"_uniq.{majorId}"))
-- Assign motive to `λ x => x + _`
let motive_assign ← parseSentence "λ (x: Nat) => @Nat.add x + 0 = _"
motive.assign motive_assign
addTest $ ← conduit.withContext do
let t := toString (← Meta.ppExpr $ ← conduit.getType)
return LSpec.check "conduit" (t = s!"(?m.{majorId}.add + 0 = ?m.138 ?m.{majorId}) = (n + 0 = n)")
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("type_extract", test_type_extract),
("Nat.brecOn", test_nat_brec_on),
("List.brecOn", test_list_brec_on),
("Nat.brecOn partial motive instantiation", test_partial_motive_instantiation),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.MotivatedApply

View File

@ -0,0 +1,72 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.NoConfuse
def test_nat : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: 0 = n + 1) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals" ((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def test_nat_fail : TestT Elab.TermElabM Unit := do
let expr := "λ (n: Nat) (h: n = n) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
try
let tactic := Tactic.evalNoConfuse recursor
let _ ← runTacticOnMVar tactic target.mvarId!
addTest $ assertUnreachable "Tactic should fail"
catch _ =>
addTest $ LSpec.check "Tactic should fail" true
def test_list : TestT Elab.TermElabM Unit := do
let expr := "λ (l: List Nat) (h: [] = 1 :: l) => False"
let expr ← parseSentence expr
Meta.lambdaTelescope expr $ λ _ body => do
let recursor ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let target ← Meta.mkFreshExprSyntheticOpaqueMVar body
let tactic := Tactic.evalNoConfuse recursor
let newGoals ← runTacticOnMVar tactic target.mvarId!
addTest $ LSpec.check "goals"
((← newGoals.mapM (λ g => do exprToStr (← g.getType))) = [])
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("Nat", test_nat),
("Nat fail", test_nat_fail),
("List", test_list),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.NoConfuse

300
Test/Tactic/Prograde.lean Normal file
View File

@ -0,0 +1,300 @@
import LSpec
import Lean
import Test.Common
open Lean
open Pantograph
namespace Pantograph.Test.Tactic.Prograde
def test_define : TestT Elab.TermElabM Unit := do
let expr := "forall (p q : Prop) (h: p), And (Or p q) (Or p q)"
let expr ← parseSentence expr
Meta.forallTelescope expr $ λ _ body => do
let e ← match Parser.runParserCategory
(env := ← MonadEnv.getEnv)
(catName := `term)
(input := "Or.inl h")
(fileName := filename) with
| .ok syn => pure syn
| .error error => throwError "Failed to parse: {error}"
-- Apply the tactic
let goal ← Meta.mkFreshExprSyntheticOpaqueMVar body
let target: Expr := mkAnd
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
(mkOr (.fvar ⟨uniq 8⟩) (.fvar ⟨uniq 9⟩))
let h := .fvar ⟨uniq 8⟩
addTest $ LSpec.test "goals before" ((← toCondensedGoal goal.mvarId!).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h
],
target,
})
let tactic := Tactic.evalDefine `h2 e
let m := .mvar ⟨uniq 13⟩
let [newGoal] ← runTacticOnMVar tactic goal.mvarId! | panic! "Incorrect goal number"
addTest $ LSpec.test "goals after" ((← toCondensedGoal newGoal).devolatilize == {
context := #[
cdeclOf `p (.sort 0),
cdeclOf `q (.sort 0),
cdeclOf `h h,
{
userName := `h2,
type := mkOr h m,
value? := .some $ mkApp3 (mkConst `Or.inl) h m (.fvar ⟨uniq 10⟩)
}
],
target,
})
let .some e ← getExprMVarAssignment? goal.mvarId! | panic! "Tactic must assign"
addTest $ LSpec.test "assign" e.isLet
def test_define_proof : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let evalBind := "y"
let evalExpr := "Or.inl h"
let state2 ← match ← state1.tryDefine (state1.get! 0) (binderName := evalBind) (expr := evalExpr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"eval {evalBind} := {evalExpr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some "(p q) p q"},
vars := #[
{ userName := "p", type? := .some { pp? := .some "Prop" } },
{ userName := "q", type? := .some { pp? := .some "Prop" } },
{ userName := "h", type? := .some { pp? := .some "p" } },
{ userName := "y",
type? := .some { pp? := .some "p ?m.25" },
value? := .some { pp? := .some "Or.inl h" },
}
]
}])
let expr := "Or.inl y"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
addTest $ LSpec.check "(3 root)" state3.rootExpr?.isSome
def fun_define_root_expr: ∀ (p: Prop), PProd (Nat → p) Unit → p := by
intro p x
apply x.fst
exact 5
def test_define_root_expr : TestT Elab.TermElabM Unit := do
--let rootExpr ← parseSentence "Nat"
--let state0 ← GoalState.create rootExpr
--let .success state1 ← state0.tacticOn (goalId := 0) "exact 5" | addTest $ assertUnreachable "exact 5"
--let .some rootExpr := state1.rootExpr? | addTest $ assertUnreachable "Root expr"
--addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "5")
let rootExpr ← parseSentence "∀ (p: Prop), PProd (Nat → p) Unit → p"
let state0 ← GoalState.create rootExpr
let tactic := "intro p x"
let .success state1 ← state0.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let binderName := `binder
let value := "x.fst"
let expr ← state1.goals[0]!.withContext $ strToTermSyntax value
let tacticM := Tactic.evalDefine binderName expr
let .success state2 ← state1.tryTacticM (state1.get! 0) tacticM | addTest $ assertUnreachable s!"define {binderName} := {value}"
let tactic := s!"apply {binderName}"
let .success state3 ← state2.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let tactic := s!"exact 5"
let .success state4 ← state3.tacticOn (goalId := 0) tactic | addTest $ assertUnreachable tactic
let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr"
addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p x =>\n let binder := x.fst;\n binder 5")
--set_option pp.all true
--#check @PSigma (α := Prop) (β := λ (p: Prop) => p)
--def test_define_root_expr : TestT Elab.TermElabM Unit := do
def test_have_proof : TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro p q h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "(p q) p q"])
let expr := "Or.inl (Or.inl h)"
let state2 ← match ← state1.tryAssign (state1.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state2.serializeGoals).map (·.devolatilize) =
#[])
let haveBind := "y"
let haveType := "p q"
let state2 ← match ← state1.tryHave (state1.get! 0) (binderName := haveBind) (type := haveType) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!"have {haveBind}: {haveType}" ((← state2.serializeGoals).map (·.devolatilize) =
#[
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p")] "p q",
buildGoal [("p", "Prop"), ("q", "Prop"), ("h", "p"), ("y", "p q")] "(p q) p q"
])
let expr := "Or.inl h"
let state3 ← match ← state2.tryAssign (state2.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state3.serializeGoals).map (·.devolatilize) =
#[])
let state2b ← match state3.continue state2 with
| .ok state => pure state
| .error e => do
addTest $ assertUnreachable e
return ()
let expr := "Or.inl y"
let state4 ← match ← state2b.tryAssign (state2b.get! 0) (expr := expr) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check s!":= {expr}" ((← state4.serializeGoals).map (·.devolatilize) =
#[])
let .some rootExpr := state4.rootExpr? | addTest $ assertUnreachable "Root expr"
addTest $ LSpec.check "root" ((toString $ ← Meta.ppExpr rootExpr) = "fun p q h y => Or.inl y")
def test_let (specialized: Bool): TestT Elab.TermElabM Unit := do
let rootExpr ← parseSentence "∀ (p q: Prop), p → ((p q) (p q))"
let state0 ← GoalState.create rootExpr
let tactic := "intro a p h"
let state1 ← match ← state0.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state1.serializeGoals).map (·.devolatilize) =
#[{
target := { pp? := .some mainTarget },
vars := interiorVars,
}])
let letType := "Nat"
let expr := s!"let b: {letType} := _; _"
let result2 ← match specialized with
| true => state1.tryLet (state1.get! 0) (binderName := "b") (type := letType)
| false => state1.tryAssign (state1.get! 0) (expr := expr)
let state2 ← match result2 with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
let serializedState2 ← state2.serializeGoals
let letBindName := if specialized then "b" else "_1"
addTest $ LSpec.check expr (serializedState2.map (·.devolatilize) =
#[{
target := { pp? := .some letType },
vars := interiorVars,
userName? := .some letBindName
},
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some letType },
value? := .some { pp? := .some s!"?{letBindName}" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact 1"
let state3 ← match ← state2.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.check tactic ((← state3.serializeGoals).map (·.devolatilize) = #[])
let state3r ← match state3.continue state2 with
| .error msg => do
addTest $ assertUnreachable $ msg
return ()
| .ok state => pure state
addTest $ LSpec.check "(continue)" ((← state3r.serializeGoals).map (·.devolatilize) =
#[
{
target := { pp? := .some mainTarget },
vars := interiorVars ++ #[{
userName := "b",
type? := .some { pp? := .some "Nat" },
value? := .some { pp? := .some "1" },
}],
userName? := if specialized then .none else .some "_2",
}
])
let tactic := "exact h"
match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with
| .failure #[message] =>
addTest $ LSpec.check tactic (message = s!"type mismatch\n h\nhas type\n a : Prop\nbut is expected to have type\n {mainTarget} : Prop")
| other => do
addTest $ assertUnreachable $ other.toString
let tactic := "exact Or.inl (Or.inl h)"
let state4 ← match ← state3r.tacticOn (goalId := 0) (tactic := tactic) with
| .success state => pure state
| other => do
addTest $ assertUnreachable $ other.toString
return ()
addTest $ LSpec.test "(4 root)" state4.rootExpr?.isSome
where
mainTarget := "(a p) a p"
interiorVars: Array Protocol.Variable := #[
{ userName := "a", type? := .some { pp? := .some "Prop" }, },
{ userName := "p", type? := .some { pp? := .some "Prop" }, },
{ userName := "h", type? := .some { pp? := .some "a" }, }
]
def suite (env: Environment): List (String × IO LSpec.TestSeq) :=
[
("define", test_define),
("define proof", test_define_proof),
("define root expr", test_define_root_expr),
("have proof", test_have_proof),
("let via assign", test_let false),
("let via tryLet", test_let true),
] |>.map (λ (name, t) => (name, runTestTermElabM env t))
end Pantograph.Test.Tactic.Prograde

View File

@ -42,16 +42,16 @@
"nixpkgs-old": "nixpkgs-old"
},
"locked": {
"lastModified": 1714704934,
"narHash": "sha256-q0kLyIahUXolkSrBZSegPF+R99WAH1YC96JfKoFntDE=",
"lastModified": 1719788866,
"narHash": "sha256-kB2cp1XJKODXiuiKp7J5OK+PFP+sOSBE5gdVNOKWCPI=",
"owner": "leanprover",
"repo": "lean4",
"rev": "dcccfb73cb247e9478220375ab7de03f7c67e505",
"rev": "3b58e0649156610ce3aeed4f7b5c652340c668d4",
"type": "github"
},
"original": {
"owner": "leanprover",
"ref": "v4.8.0-rc1",
"ref": "v4.10.0-rc1",
"repo": "lean4",
"type": "github"
}
@ -91,16 +91,16 @@
"lspec": {
"flake": false,
"locked": {
"lastModified": 1701971219,
"narHash": "sha256-HYDRzkT2UaLDrqKNWesh9C4LJNt0JpW0u68wYVj4Byw=",
"lastModified": 1722857503,
"narHash": "sha256-F9uaymiw1wTCLrJm4n1Bpk3J8jW6poedQzvnnQlZ6Kw=",
"owner": "lurk-lab",
"repo": "LSpec",
"rev": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"rev": "8a51034d049c6a229d88dd62f490778a377eec06",
"type": "github"
},
"original": {
"owner": "lurk-lab",
"ref": "3388be5a1d1390594a74ec469fd54a5d84ff6114",
"ref": "8a51034d049c6a229d88dd62f490778a377eec06",
"repo": "LSpec",
"type": "github"
}

View File

@ -6,10 +6,10 @@
flake-parts.url = "github:hercules-ci/flake-parts";
lean = {
# Do not follow input's nixpkgs since it could cause build failures
url = "github:leanprover/lean4?ref=v4.8.0-rc1";
url = "github:leanprover/lean4?ref=v4.10.0-rc1";
};
lspec = {
url = "github:lurk-lab/LSpec?ref=3388be5a1d1390594a74ec469fd54a5d84ff6114";
url = "github:lurk-lab/LSpec?ref=8a51034d049c6a229d88dd62f490778a377eec06";
flake = false;
};
};
@ -37,14 +37,25 @@
};
project = leanPkgs.buildLeanPackage {
name = "Pantograph";
roots = [ "Main" "Pantograph" ];
src = pkgs.lib.cleanSourceWith {
roots = [ "Pantograph" ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path) &&
!(pkgs.lib.hasSuffix "Makefile" path);
};
!(pkgs.lib.hasSuffix "Repl.lean" path);
});
};
repl = leanPkgs.buildLeanPackage {
name = "Repl";
roots = [ "Main" "Repl" ];
deps = [ project ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "/Test/" path) &&
!(pkgs.lib.hasSuffix ".md" path);
});
};
test = leanPkgs.buildLeanPackage {
name = "Test";
@ -52,18 +63,22 @@
# root begins (e.g. `import Test.Environment` and not `import
# Environment`) and thats where `lakefile.lean` resides.
roots = [ "Test.Main" ];
deps = [ lspecLib project ];
src = pkgs.lib.cleanSourceWith {
deps = [ lspecLib repl ];
src = pkgs.lib.cleanSource (pkgs.lib.cleanSourceWith {
src = ./.;
filter = path: type:
!(pkgs.lib.hasInfix "Pantograph" path);
};
});
};
in rec {
packages = {
inherit (leanPkgs) lean lean-all;
inherit (project) sharedLib executable;
default = project.executable;
inherit (project) sharedLib;
inherit (repl) executable;
default = repl.executable;
};
legacyPackages = {
inherit project leanPkgs;
};
checks = {
test = pkgs.runCommand "test" {

View File

@ -4,13 +4,16 @@ open Lake DSL
package pantograph
lean_lib Pantograph {
roots := #[`Pantograph]
defaultFacets := #[LeanLib.sharedFacet]
}
lean_lib Repl {
}
@[default_target]
lean_exe pantograph {
lean_exe repl {
root := `Main
-- Somehow solves the native symbol not found problem
-- Solves the native symbol not found problem
supportInterpreter := true
}
@ -18,8 +21,9 @@ require LSpec from git
"https://github.com/lurk-lab/LSpec.git" @ "3388be5a1d1390594a74ec469fd54a5d84ff6114"
lean_lib Test {
}
@[test_driver]
lean_exe test {
root := `Test.Main
-- Somehow solves the native symbol not found problem
-- Solves the native symbol not found problem
supportInterpreter := true
}

View File

@ -1 +1 @@
leanprover/lean4:v4.8.0-rc1
leanprover/lean4:v4.10.0-rc1