chore: Version 0.3 #136
|
@ -31,14 +31,20 @@ protected def GoalState.create (expr: Expr): M GoalState := do
|
|||
--let expr ← instantiateMVars expr
|
||||
let goal := (← Meta.mkFreshExprMVar expr (kind := MetavarKind.synthetic) (userName := .anonymous))
|
||||
let savedStateMonad: Elab.Tactic.TacticM Elab.Tactic.SavedState := MonadBacktrack.saveState
|
||||
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [goal.mvarId!]}
|
||||
let root := goal.mvarId!
|
||||
let savedState ← savedStateMonad { elaborator := .anonymous } |>.run' { goals := [root]}
|
||||
return {
|
||||
savedState,
|
||||
root := goal.mvarId!,
|
||||
newMVars := SSet.empty,
|
||||
root,
|
||||
newMVars := SSet.insert .empty root,
|
||||
}
|
||||
protected def GoalState.goals (goalState: GoalState): List MVarId := goalState.savedState.tactic.goals
|
||||
|
||||
private def GoalState.mctx (state: GoalState): MetavarContext :=
|
||||
state.savedState.term.meta.meta.mctx
|
||||
private def GoalState.mvars (state: GoalState): SSet MVarId :=
|
||||
state.mctx.decls.foldl (init := .empty) fun acc k _ => acc.insert k
|
||||
|
||||
def executeTactic (state: Elab.Tactic.SavedState) (goal: MVarId) (tactic: Syntax) :
|
||||
M (Except (Array String) (Elab.Tactic.SavedState × List MVarId)):= do
|
||||
let tacticM (stx: Syntax): Elab.Tactic.TacticM (Except (Array String) (Elab.Tactic.SavedState × List MVarId)) := do
|
||||
|
@ -93,13 +99,13 @@ protected def GoalState.execute (state: GoalState) (goalId: Nat) (tactic: String
|
|||
let prevMCtx := state.savedState.term.meta.meta.mctx
|
||||
-- Generate a list of mvarIds that exist in the parent state; Also test the
|
||||
-- assertion that the types have not changed on any mvars.
|
||||
let newMVars := (← nextMCtx.decls.foldlM (fun acc mvarId mvarDecl => do
|
||||
let newMVars ← nextMCtx.decls.foldlM (fun acc mvarId mvarDecl => do
|
||||
if let .some prevMVarDecl := prevMCtx.decls.find? mvarId then
|
||||
assert! prevMVarDecl.type == mvarDecl.type
|
||||
return acc
|
||||
else
|
||||
return mvarId :: acc
|
||||
) []).toSSet
|
||||
return acc.insert mvarId
|
||||
) SSet.empty
|
||||
let nextState: GoalState := {
|
||||
savedState := nextSavedState
|
||||
root := state.root,
|
||||
|
@ -115,38 +121,70 @@ protected def GoalState.execute (state: GoalState) (goalId: Nat) (tactic: String
|
|||
| .none => throwError s!"Parent mvar id does not exist {nextGoal.name}"
|
||||
return .success nextState goals.toArray
|
||||
|
||||
/-- After finishing one branch of a proof (`graftee`), pick up from the point where the proof was left off (`target`) -/
|
||||
protected def GoalState.continue (target: GoalState) (graftee: GoalState): Except String GoalState :=
|
||||
if target.root != graftee.root then
|
||||
.error s!"Roots of two continued goal states do not match: {target.root.name} != {graftee.root.name}"
|
||||
-- Ensure goals are not dangling
|
||||
else if ¬ (target.goals.all (λ goal => graftee.mvars.contains goal)) then
|
||||
.error s!"Some goals in target are not present in the graftee"
|
||||
else
|
||||
-- Set goals to the goals that have not been assigned yet, similar to the `focus` tactic.
|
||||
let unassigned := target.goals.filter (λ goal =>
|
||||
let mctx := graftee.mctx
|
||||
¬(mctx.eAssignment.contains goal || mctx.dAssignment.contains goal))
|
||||
.ok {
|
||||
savedState := {
|
||||
term := graftee.savedState.term,
|
||||
tactic := { goals := unassigned },
|
||||
},
|
||||
root := target.root,
|
||||
newMVars := graftee.newMVars,
|
||||
}
|
||||
|
||||
protected def GoalState.rootExpr (goalState: GoalState): Option Expr :=
|
||||
goalState.mctx.eAssignment.find? goalState.root |>.filter (λ e => ¬ e.hasMVar)
|
||||
|
||||
-- Diagnostics functions
|
||||
|
||||
/-- Print the metavariables in a readable format -/
|
||||
protected def GoalState.print (goalState: GoalState) (options: Protocol.GoalPrint := {}): Elab.TermElabM Unit := do
|
||||
protected def GoalState.print (goalState: GoalState) (options: Protocol.GoalPrint := {}): M Unit := do
|
||||
let savedState := goalState.savedState
|
||||
savedState.term.restore
|
||||
let goals := savedState.tactic.goals
|
||||
let mctx ← getMCtx
|
||||
let root := goalState.root
|
||||
-- Print the root
|
||||
match mctx.decls.find? root with
|
||||
| .some decl => printMVar ">" root decl
|
||||
| .none => IO.println s!">{root.name}: ??"
|
||||
goals.forM (fun mvarId => do
|
||||
let pref := "⊢"
|
||||
if mvarId != root then
|
||||
match mctx.decls.find? mvarId with
|
||||
| .some decl => printMVar pref mvarId decl
|
||||
| .none => IO.println s!"{pref}{mvarId.name}: ??"
|
||||
| .some decl => printMVar "⊢" mvarId decl
|
||||
| .none => IO.println s!"⊢{mvarId.name}: ??"
|
||||
)
|
||||
let goals := goals.toSSet
|
||||
mctx.decls.forM (fun mvarId decl => do
|
||||
if goals.contains mvarId then
|
||||
if goals.contains mvarId || mvarId == root then
|
||||
pure ()
|
||||
-- Always print the root goal
|
||||
else if mvarId == goalState.root then
|
||||
printMVar (pref := ">") mvarId decl
|
||||
else if ¬(goalState.newMVars.contains mvarId) then
|
||||
printMVar (pref := " ") mvarId decl
|
||||
-- Print the remainig ones that users don't see in Lean
|
||||
else if options.printNonVisible then
|
||||
printMVar (pref := "~") mvarId decl
|
||||
let pref := if goalState.newMVars.contains mvarId then "~" else " "
|
||||
printMVar pref mvarId decl
|
||||
else
|
||||
IO.println s!" {mvarId.name}{userNameToString decl.userName}"
|
||||
pure ()
|
||||
--IO.println s!" {mvarId.name}{userNameToString decl.userName}"
|
||||
)
|
||||
where
|
||||
printMVar (pref: String) (mvarId: MVarId) (decl: MetavarDecl): Elab.TermElabM Unit := do
|
||||
if options.printContext then
|
||||
decl.lctx.fvarIdToDecl.forM printFVar
|
||||
IO.println s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type} {← serialize_expression_ast decl.type}"
|
||||
let type_sexp ← serialize_expression_ast (← instantiateMVars decl.type) (sanitize := false)
|
||||
IO.println s!"{pref}{mvarId.name}{userNameToString decl.userName}: {← Meta.ppExpr decl.type} {type_sexp}"
|
||||
if options.printValue then
|
||||
if let Option.some value := (← getMCtx).eAssignment.find? mvarId then
|
||||
IO.println s!" = {← Meta.ppExpr value}"
|
||||
|
|
|
@ -167,7 +167,8 @@ structure GoalDeleteResult where
|
|||
structure GoalPrint where
|
||||
printContext: Bool := true
|
||||
printValue: Bool := true
|
||||
printNonVisible: Bool := true
|
||||
printNewMVars: Bool := false
|
||||
printNonVisible: Bool := false
|
||||
|
||||
|
||||
end Pantograph.Protocol
|
||||
|
|
|
@ -45,9 +45,11 @@ def type_expr_to_bound (expr: Expr): MetaM Protocol.BoundExpression := do
|
|||
return (toString (← fvar.fvarId!.getUserName), toString (← Meta.ppExpr (← fvar.fvarId!.getType)))
|
||||
return { binders, target := toString (← Meta.ppExpr body) }
|
||||
|
||||
private def name_to_ast: Lean.Name → String
|
||||
| .anonymous
|
||||
| .num _ _ => ":anon"
|
||||
private def name_to_ast (name: Lean.Name) (sanitize: Bool := true): String := match name with
|
||||
| .anonymous => ":anon"
|
||||
| .num n i => match sanitize with
|
||||
| false => s!"{toString n} {i}"
|
||||
| true => ":anon"
|
||||
| n@(.str _ _) => toString n
|
||||
|
||||
private def level_depth: Level → Nat
|
||||
|
@ -100,71 +102,73 @@ def serialize_sort_level_ast (level: Level): String :=
|
|||
/--
|
||||
Completely serializes an expression tree. Json not used due to compactness
|
||||
-/
|
||||
def serialize_expression_ast (expr: Expr): MetaM String := do
|
||||
match expr with
|
||||
def serialize_expression_ast (expr: Expr) (sanitize: Bool := true): MetaM String := do
|
||||
return self expr
|
||||
where
|
||||
self (e: Expr): String :=
|
||||
match e with
|
||||
| .bvar deBruijnIndex =>
|
||||
-- This is very common so the index alone is shown. Literals are handled below.
|
||||
-- The raw de Bruijn index should never appear in an unbound setting. In
|
||||
-- Lean these are handled using a `#` prefix.
|
||||
return s!"{deBruijnIndex}"
|
||||
s!"{deBruijnIndex}"
|
||||
| .fvar fvarId =>
|
||||
let name := name_to_ast fvarId.name
|
||||
return s!"(:fv {name})"
|
||||
let name := of_name fvarId.name
|
||||
s!"(:fv {name})"
|
||||
| .mvar mvarId =>
|
||||
let name := name_to_ast mvarId.name
|
||||
return s!"(:mv {name})"
|
||||
let name := of_name mvarId.name
|
||||
s!"(:mv {name})"
|
||||
| .sort level =>
|
||||
let level := serialize_sort_level_ast level
|
||||
return s!"(:sort {level})"
|
||||
s!"(:sort {level})"
|
||||
| .const declName _ =>
|
||||
-- The universe level of the const expression is elided since it should be
|
||||
-- inferrable from surrounding expression
|
||||
return s!"(:c {declName})"
|
||||
s!"(:c {declName})"
|
||||
| .app fn arg =>
|
||||
let fn' ← serialize_expression_ast fn
|
||||
let arg' ← serialize_expression_ast arg
|
||||
return s!"({fn'} {arg'})"
|
||||
let fn' := self fn
|
||||
let arg' := self arg
|
||||
s!"({fn'} {arg'})"
|
||||
| .lam binderName binderType body binderInfo =>
|
||||
let binderName' := name_to_ast binderName
|
||||
let binderType' ← serialize_expression_ast binderType
|
||||
let body' ← serialize_expression_ast body
|
||||
let binderName' := of_name binderName
|
||||
let binderType' := self binderType
|
||||
let body' := self body
|
||||
let binderInfo' := binder_info_to_ast binderInfo
|
||||
return s!"(:lambda {binderName'} {binderType'} {body'}{binderInfo'})"
|
||||
s!"(:lambda {binderName'} {binderType'} {body'}{binderInfo'})"
|
||||
| .forallE binderName binderType body binderInfo =>
|
||||
let binderName' := name_to_ast binderName
|
||||
let binderType' ← serialize_expression_ast binderType
|
||||
let body' ← serialize_expression_ast body
|
||||
let binderName' := of_name binderName
|
||||
let binderType' := self binderType
|
||||
let body' := self body
|
||||
let binderInfo' := binder_info_to_ast binderInfo
|
||||
return s!"(:forall {binderName'} {binderType'} {body'}{binderInfo'})"
|
||||
s!"(:forall {binderName'} {binderType'} {body'}{binderInfo'})"
|
||||
| .letE name type value body _ =>
|
||||
-- Dependent boolean flag diacarded
|
||||
let name' := name_to_ast name
|
||||
let type' ← serialize_expression_ast type
|
||||
let value' ← serialize_expression_ast value
|
||||
let body' ← serialize_expression_ast body
|
||||
return s!"(:let {name'} {type'} {value'} {body'})"
|
||||
let type' := self type
|
||||
let value' := self value
|
||||
let body' := self body
|
||||
s!"(:let {name'} {type'} {value'} {body'})"
|
||||
| .lit v =>
|
||||
-- To not burden the downstream parser who needs to handle this, the literal
|
||||
-- is wrapped in a :lit sexp.
|
||||
let v' := match v with
|
||||
| .natVal val => toString val
|
||||
| .strVal val => s!"\"{val}\""
|
||||
return s!"(:lit {v'})"
|
||||
| .mdata _ expr =>
|
||||
s!"(:lit {v'})"
|
||||
| .mdata _ inner =>
|
||||
-- NOTE: Equivalent to expr itself, but mdata influences the prettyprinter
|
||||
-- It may become necessary to incorporate the metadata.
|
||||
return (← serialize_expression_ast expr)
|
||||
self inner
|
||||
| .proj typeName idx struct =>
|
||||
let struct' ← serialize_expression_ast struct
|
||||
return s!"(:proj {typeName} {idx} {struct'})"
|
||||
|
||||
where
|
||||
let struct' := self struct
|
||||
s!"(:proj {typeName} {idx} {struct'})"
|
||||
-- Elides all unhygenic names
|
||||
binder_info_to_ast : Lean.BinderInfo → String
|
||||
| .default => ""
|
||||
| .implicit => " :implicit"
|
||||
| .strictImplicit => " :strictImplicit"
|
||||
| .instImplicit => " :instImplicit"
|
||||
of_name (name: Name) := name_to_ast name sanitize
|
||||
|
||||
def serialize_expression (options: Protocol.Options) (e: Expr): MetaM Protocol.Expression := do
|
||||
let pp := toString (← Meta.ppExpr e)
|
||||
|
|
|
@ -189,26 +189,36 @@ def proof_or_comm: TestM Unit := do
|
|||
| other => do
|
||||
addTest $ assertUnreachable $ other.toString
|
||||
return ()
|
||||
IO.println "===== 1 ====="
|
||||
state1.print
|
||||
IO.println "===== 2 ====="
|
||||
state2.print
|
||||
IO.println "===== 4_1 ====="
|
||||
state4_1.print
|
||||
let (state3_2, _goal) ← match ← state2.execute (goalId := 1) (tactic := "apply Or.inl") with
|
||||
| .success state #[goal] => pure (state, goal)
|
||||
| other => do
|
||||
addTest $ assertUnreachable $ other.toString
|
||||
return ()
|
||||
IO.println "===== 3_2 ====="
|
||||
state3_2.print
|
||||
let state4_2 ← match ← state3_2.execute (goalId := 0) (tactic := "assumption") with
|
||||
| .success state #[] => pure state
|
||||
| other => do
|
||||
addTest $ assertUnreachable $ other.toString
|
||||
return ()
|
||||
IO.println "===== 4_2 ====="
|
||||
state4_2.print
|
||||
|
||||
-- Ensure the proof can continue from `state4_2`.
|
||||
let state2b ← match state2.continue state4_2 with
|
||||
| .error msg => do
|
||||
addTest $ assertUnreachable $ msg
|
||||
return ()
|
||||
| .ok state => pure state
|
||||
addTest $ LSpec.test "state2b" (state2b.goals == [state2.goals.get! 0])
|
||||
let (state3_1, _goal) ← match ← state2b.execute (goalId := 0) (tactic := "apply Or.inr") with
|
||||
| .success state #[goal] => pure (state, goal)
|
||||
| other => do
|
||||
addTest $ assertUnreachable $ other.toString
|
||||
return ()
|
||||
let state4_1 ← match ← state3_1.execute (goalId := 0) (tactic := "assumption") with
|
||||
| .success state #[] => pure state
|
||||
| other => do
|
||||
addTest $ assertUnreachable $ other.toString
|
||||
return ()
|
||||
IO.println "===== 4_1 ====="
|
||||
state4_1.print ({ printNonVisible := false })
|
||||
|
||||
return ()
|
||||
where
|
||||
|
|
Loading…
Reference in New Issue