Pantograph/experiments/dsp/main.py

335 lines
13 KiB
Python

import sys, os, json, subprocess
from dataclasses import dataclass
from pathlib import Path
from typing import Union, Any, Tuple
from tqdm import tqdm
from openai import OpenAI
import wandb
from tenacity import retry, stop_after_attempt, wait_exponential
from pantograph import Server
from termcolor import colored
from solve.prompts import (
extract_lean_code,
SYSTEM_PROMPT_DRAFT_V0,
SYSTEM_PROMPT_SKETCH_V0,
prompt_draft_template_lean4_v0,
prompt_sketch_template_lean4_v0,
STOP_TOKENS_DRAFT_V0,
STOP_TOKENS_SKETCH_V0,
get_prompt_sketch_template_4_lean_v0,
)
from solve.prove import HammerAgent
# prompt_draft_template_lean4_v0 = "Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + 0 = n.\n\n### Solution\n\nConsider any natural number n. From properties of addition, adding zero does not change its values. Thus, n + 0 = n.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n, n + (m + 1) = (n + m) + 1.\n\n### Solution\n\nConsider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)\n\nInformal:\n(*### Problem\n\nProve that for any natural number n and m, n + m = m + n.\n\n### Solution\n\nConsider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m + (n + 1). Thus, by induction, n + m = m + n, qed.*)\n\nInformal: \n(*### Problem\n\n{nl_problem}\n\n### Solution\n"
@dataclass
class SamplingParams:
n: int
max_tokens: int
top_p: int
temperature: float
stop: str
class Engine:
def __init__(self):
pass
def __call__(self, *args, **kwards):
pass
class OpenAI_DSP_Engine(Engine):
def __init__(
self,
model: str,
api_key: str = None,
base_url: str = None, # e.g., Mistral-7B-Instrcut-v0.2 on http://120.77.8.29:12345
# Draft Params
draft_system_prompt: str = SYSTEM_PROMPT_DRAFT_V0, # 'You are an expert mathematician and an expert in the Lean 4 Proof Assistant.' (goal do draft)
draft_prompt_template: str = prompt_draft_template_lean4_v0,
draft_sampling_params = None,
draft_stop_tokens: list[str] = STOP_TOKENS_DRAFT_V0,
# Sketch Params
sketch_system_prompt: str = SYSTEM_PROMPT_SKETCH_V0,
sketch_prompt_template: str = prompt_sketch_template_lean4_v0,
sketch_sampling_params = None,
sketch_stop_tokens: list[str] = STOP_TOKENS_SKETCH_V0,
# Prove Params
# ...TODO not sure if needed right now...
# Misc
verbose_init: bool = True,
):
super().__init__()
print(f'{base_url=}') if verbose_init else None
if not ('gpt-4-' in model or 'gpt-3.5-' in model or 'gpt-4o' in model):
raise ValueError(f"Model {model=} not supported.")
self.model = model
self.api_key = api_key
self.llm = OpenAI(api_key=self.api_key, base_url=base_url)
# Draft params
self.draft_system_prompt = draft_system_prompt
self.draft_prompt_template = draft_prompt_template
self.draft_sampling_params = draft_sampling_params
# self.draft_sampling_params.stop = draft_stop_tokens
# Sketch params
self.sketch_system_prompt = sketch_system_prompt
self.sketch_prompt_template = sketch_prompt_template
self.sketch_sampling_params = sketch_sampling_params
# self.sketch_sampling_params.stop = sketch_stop_tokens
# Prove params
# ...TODO not sure if needed right now...
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def autoformalize_prob(
eng,
data_pt: dict,
verbose: bool = False,
):
""" Autoformalize natural language problem to formal language problem. """
...
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def draft(
eng,
data_pt: dict,
verbose: bool = False,
) -> list:
"""
Creates (informal nl) draft (nl soln, nl proof sketch) for latter use in a formal proof sketch.
y_pred_nl ~ draft(eng, x_nl_prob, P_draft)
"""
# Make prompt from template
nl_problem: str = data_pt['nl_problem'][0]
prompt = eng.draft_prompt_template.replace('{nl_problem}', nl_problem)
# Get all **completions** to single prompt, one (in) -> many (out)
# ref: https://platform.openai.com/docs/api-reference/chat/object
response: Any = eng.llm.chat.completions.create(
model=eng.model,
messages=[
{"role": "system", "content": eng.draft_system_prompt},
{"role": "user", "content": prompt},
],
temperature=eng.draft_sampling_params.temperature,
top_p=eng.draft_sampling_params.top_p,
n=eng.draft_sampling_params.n,
stop=eng.draft_sampling_params.stop[:3],
)
# Get all completions for single prompt
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
drafts: list[str] = completions
return drafts
@retry(stop=stop_after_attempt(15), wait=wait_exponential(multiplier=2, max=128))
def sketch(
eng,
data_pt: dict,
drafts: list,
autoformalize_prob_in_prompt: bool = False,
verbose: bool = False,
) -> Tuple[list[str], str]:
"""
Creates (formal fl) sketch (fl proof sketch) for latter use in a formal proof sketch.
z_pred_fl ~ sketch(eng, x_nl_prob, y_pred_nl, x_fl_prob, P_sketch)
"""
assert len(drafts) == 1, f"For now only 1 draft."
# Make prompt from template
x_nl_problem: str = data_pt['nl_problem'][0]
y_nl_solution: str = drafts[0]
x_fl_problem = None
if autoformalize_prob_in_prompt:
# prompt = eng.sketch_prompt_template.replace('{nl_problem}', x_nl_problem).replace('{nl_solution}', y_nl_solution)
not NotImplemented
else:
x_fl_problem = data_pt['fl_problem'][0] if 'fl_problem' in data_pt else autoformalize_prob(eng, data_pt)
prompt = eng.sketch_prompt_template.replace('{fl_problem}', x_nl_problem).replace('{fl_problem}', y_nl_solution)
# Get all **completions** to single prompt, one (in) -> many (out), ref: https://platform.openai.com/docs/api-reference/chat/object
response: Any = eng.llm.chat.completions.create(
model=eng.model,
messages=[
{"role": "system", "content": eng.sketch_system_prompt},
{"role": "user", "content": prompt},
],
temperature=eng.sketch_sampling_params.temperature,
top_p=eng.sketch_sampling_params.top_p,
n=eng.sketch_sampling_params.n,
# stop=eng.sketch_sampling_params.stop[:3],
)
# Get all completions for single prompt
completions: list[str] = [completion.message.content for completion in response.choices] # response.choices[i].message
sketches: list[str] = completions
# Return
return sketches, x_fl_problem
def prove(
eng: Engine,
server: Server,
fl_prob: str,
fl_sketch: list[str],
):
"""
Complete formal sketch and check if it proves the theorem.
fl_prob --> Lean4 theorem (problem)
fl_sketch --> Lean4 Form Sketch --> have x have ha
"""
# If this throws index out of bound errors it means the source doesn't contain walled off Lean sections.
lean_code, = [extract_lean_code(sketch)[0] for sketch in fl_sketch]
state, = server.load_sorry(lean_code)
agent = HammerAgent()
result = agent.search(server, state, verbose=True)
print(colored(f"Result: {result}", "blue"))
raise RuntimeError("Not implemented")
return
# -- DSP for Lean
def single_proof_search_dsp_lean(
eng: Engine,
server: Server,
data_pt: dict,
) -> bool:
# -- Draft: [y_nl_pred_draft]_n ~ draft(eng, x_nl_prob, P_draft)
y_nl_pred_drafts = draft(eng, data_pt)
# -- Sketch: z_fl_pred_sketch ~ sketch(eng, x_nl_prob, [y_nl_pred_draft]_n, x_fl_prob, P_sketch)
z_fl_pred_sketches, x_fl_prob = sketch(eng, data_pt, y_nl_pred_drafts)
# -- Prove: y_fl = prove(eng, x_fl_prob, z_fl_pred_sketches)
result: bool = prove(eng, server, x_fl_prob, z_fl_pred_sketches)
# -- Return
return result
def full_proof_search_dsp_lean(
eng: Engine,
server: Server,
path_2_eval_dataset: Path,
):
# -- Get eval data
eval_dataset: list[dict] = json.load(open(path_2_eval_dataset, 'r'))
print(f'{len(eval_dataset)=}')
# -- Proof search by DSP over all eval data
for data_pt in tqdm(eval_dataset, total=len(eval_dataset), desc='DSP proof loop per data point in benchmark.'):
print("Problem:", colored(data_pt["nl_problem"][0], "green", attrs=["underline"]))
print(f'{data_pt=}')
flag = single_proof_search_dsp_lean(eng, server, data_pt)
server.gc()
return
experiment_dir = Path(__file__).resolve().parent
def get_project_and_lean_path():
cwd = experiment_dir / 'lean_src_proj'
p = subprocess.check_output(['lake', 'env', 'printenv', 'LEAN_PATH'], cwd=cwd)
return cwd, p
# -- Main
def main(args):
import time
start_time = time.time()
path_2_eval_dataset = Path(args.eval_dataset).expanduser()
print(f'{path_2_eval_dataset=}')
project_path, lean_path = get_project_and_lean_path()
server = Server(
imports=["Mathlib", "Aesop"],
project_path=project_path,
lean_path=lean_path,
)
# - Start wandb run
# print(f'\n\n-- Setup params')
# CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES")
# current_tmux_session = os.environ.get("TMUX", "").split(",")[-1]
# today = datetime.datetime.now().strftime("%Y-m%m-d%d-t%Hh_%Mm_%Ss")
# config = {'today': today, "CUDA_VISIBLE_DEVICES": CUDA_VISIBLE_DEVICES, "current_tmux_session": current_tmux_session, "model": model, "path_2_eval_dataset": path_2_eval_dataset}
# project: str = 'pypantograph'
# run_name = f"{project}: ({config})"
# run = wandb.init(mode=mode, project=project, name=run_name, save_code=True, config=config)
# print(f"{run.url=}")
# print(f'\n Config: \n{config=}')
# - Run DSP for Lean
api_key = os.environ['OPENAI_API_KEY']
draft_sampling_params = SamplingParams(
n=args.n_samples,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
stop=STOP_TOKENS_DRAFT_V0,
)
sketch_sampling_params = SamplingParams(
n=args.n_samples,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
stop=STOP_TOKENS_SKETCH_V0,
)
eng: OpenAI_DSP_Engine = OpenAI_DSP_Engine(
model=args.model,
api_key=api_key,
verbose_init=True,
draft_sampling_params=draft_sampling_params,
sketch_sampling_params=sketch_sampling_params,
)
# - Full proof search with DSP
print(f'\n\n-- Full proof search with DSP')
full_proof_search_dsp_lean(eng, server, path_2_eval_dataset)
msg = f"Time taken: {time.time() - start_time:.2f} seconds, or {(time.time() - start_time) / 60:.2f} minutes, or {(time.time() - start_time) / 3600:.2f} hours.\a"
print(colored(msg, "magenta"))
# - End run
# wandb.config.update(config)
# print(f"{wandb.config=}")
# run.finish()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
prog='DSP',
description="Draft-Sketch-Prove on Lean code",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
'mode',
help="Function",
choices=['eval', 'prompts'],
)
parser.add_argument(
"--eval-dataset",
help="Evaluation dataset path",
default=experiment_dir / 'debug/toy_example1_dsp/dsp_debug5_sf/dsp_debug5_sf_train.json',
)
parser.add_argument(
"--model",
help="Model",
default="gpt-4o",
choices=["gpt2", "gpt-3.5-turbo", "gpt-4o", "deepseek-ai/deepseek-math-7b-instruct"],
)
parser.add_argument("--start", default=0)
parser.add_argument("--end", default=sys.maxsize)
parser.add_argument("--batchsize", default=10, help="putnam has 348")
parser.add_argument("--n-samples", default=1, help="num seqs to return for given prompt")
parser.add_argument("--max-tokens", default=2048, help="Maximum number of tokens in one sample")
parser.add_argument("--top-p", default=0.95, help="Sampling top p")
parser.add_argument("--temperature", default=0.8, help="Sampling temperature")
parser.add_argument("--verbose", action='store_true')
args = parser.parse_args()
if args.mode == "eval":
main(args)
elif args.mode == "prompts":
prompt = get_prompt_sketch_template_4_lean_v0(verbose=args.verbose)
print(prompt)
else:
raise ValueError(f"Unknown mode: {args.mode}")